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The Maxwell equations in a weak gravitational f ield are leduced to one scalar wave equation. A

similar result is also obtained for a slowly varying gravitational f ield of arbitrary stlength, up to

and including terms ofsecond order in the photon wavelength. The index ofrefraction, the phase

velocity, and the group velocity ofthe electromagnetic waves have been calculated

PACS numbers :  04 .40  +  c ,41 .10 .Hv

1. In a gravitational f ield we write Maxwell 's equations

in the form

s,,a,F ̂"+ LLF b+ LPF p,:0,

where3/7 is the metric tensor, and

F^.-A,A,-A,A,, 6t:d/6t"

L-:  (-c)  -  
"d"[  ( -cJ '{ ' ] .  L, ' :s"c '"a^{ ' '

where, as can be seen by substituting into the equations (3),

fe1x"+0 {a :0,1,2), r/ '- lx")2, and in general I and l '  do

not vanish.
Taking account ofEq (4), Maxwell 's equations (2) lead

to the following estimatesl

Fn-F  n-  Q*o- ' )  F , , ,  I ' ' " -  (dzD- '+o- ' )  F" ' .

As a result of this we obtain to the desired degree olaccuracy

two equations that interconnect only the large field compo-

nenls:

F2AoA,+A^A^
- r a,a,- Q + a 

"f0 ) 
a o- &^+2a J^ ) a ̂- a 

"L') 
F ",

+ l (L"^" - L ""^ 
- a "f 

^) a 
"- Q"^', - a of^) a "+ Q "'0 

- a "f" ) a ̂

+ (L.^^- Lnt^-a"f^) a\-a"L^-a"L,^"+4.r"-'l r-o-0, (5)

where m,n,,l i  : 1,2.

{ l )

We make use of light-cone coordinates x" : t - z'

x3 : \t + zj/2. As the x3 coordinate axis we choose the null

".od"si" "iong 
which the wave propagates in the l imit of

i"nfinite frequency o. We additionally define the coordinate

,"rt"* to titut along this geodesic the metric tensor should

coincide with the metric tensor of a flat space: { ' : ' /" '  '

t t so : In :  l ,  q^ '  :n^^  :  -  6^ . ,  (m 'n  :  1 '2 ) '  a l l  o lh€r

ao-oon"n,t of ?a'' vanish Furthermore, a choice of the

coordinate system allows us to make the Christofel symbols

vanish alonj the geodesic (Ref l ) so that the deviation of the

metric tensor from the flat one,// '  : {" - ' t" , is a quan-

tity small of second order in x" (a : 0,1,2') '

We reduce the system of equations (1) in this locaUy

inertial frame to a second-order equation for a single un-

known function. We proceed in a manner similar to the one

usual in flat-space clectrodynamics We diferentiate the

e4uation (1)wiih v = n : 1,2 with respect toro, make use of

the second oair of Maxwell equations

It is convenient to introduce the new

means of the substitution

F"":E"+',/,r'E'.

functions E, by

(6)

As a result we obtain to the desired accuracy a system of

equations with an antisymmetric off-diagonal part, which

can be diagonalized by transforming to a helicity basis:

EF2- h (-\ 'E-iE,), 7': ' t l  (7)

The final equation has the form

afl'+a'F'r+a'F&:0 \z) {-za"o"+a^o^
and again ofEq. {l ) for r ' = 0. As a result ofall this we obtarn

_f" a,z _2f 
",a ",- 1,^a ^a ̂+u,^a,a,+ QA,s *- 0 -g ̂ "

eza o,+ a ̂a ) F ̂"-4" t (f'd,+r')r'"+r''r.l +
+ao [ (f'd,+r')F "+r.'F"] 

:0. (3) +'/ta$^^)a,-$a,c"^-a,en

Hele ,n, ,r take on the values l, 2, and d - 3 ̂  : dl + di. 
-?^e*'lt / zd^es\ 0'*0J e--0'0^C^"

We shalt assume that the wavelength @- I is small com- +n,t,r-t l, [ (d,g,,-a ,c)A"+ (d"g,"-A"g-+A,C,,
paled to the charactcristic distances D over which the gravt-

tational f elcl varies, and compared to the size d of the wave - d 'c ") 
d - Gog '"-a 'c'l

packet; in tum d<r. Without restricting 9uT.l*t,:,ll: +d,s,,-d,c,,\ 0,+,/,e,a^e_"-d:a^c^)-zn,*J )E^:0.
gcomctric optics approrimation, we retaln ln the equallons (E)
ierms of thi ord,er'rl 'd', ad, l, azdrD--t,,a-!'^!.- 1'.,and 

summation is undersrood overall pairs of repeated rndrces;
@2d'D-2( i t isobviousthat l r " l .d l l ] ,9 . !^1 lY, l l l  

; ; , . ' : r , , ,  _ f , " ;  * .  note that  i f  one takes in to account
us to calculate the efects of focusing.and 1:1"":19 :,-1 i!.-, 

"ir,igfrJi 
o.der in the gravitational field, thef,,. dc-

beam, ctrects which depend on the polaflzatron..:: 
::li:: frned by this equation cannot be obtained from

the corrections to the group and phase velocrtres. we searcn 
f" : {" _ r/'. by simply lowering the indices. Further-

for thc solurion in the form more f@ : 1r', + Z'fu,.fr. _ f ,, f ,, . In our approximation
F"o-exp {-ioro+io}9*i9*i<,r-r1), {4) the Riemann curvature tensor equals
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R,*,:' /,@,4^e -+a "A a "'- a d a.\- a'a a,,\,

even though the gravitational 6eld is not assumed to be weak

2. In the l inear approximation with respect to the gravi-

tational f ield the equation {8}simplif ies noticeably, since the

derivatives,r.Er and 0^E, are themselves proportional to
the gravitational f ield. As a result we obtain

(-2dnA s+A^A,,,- rl ' .g. - ito l '+ W)Er:0, {9)

where

v :2a"e --a-g ^'+' / d'g-^+ i) ' (0 G!-a,g f),

W - R '",+ A; I "- 
0,4 ̂s ̂ '

+' / ld "a lg ̂ -+ i], (2R n*+' / , i t,a ̂c  ̂ ,- '  La ,a -E ̂ ,\ .

Note that this equation is valid without assuming that the
photon wavelength is short lthis is due to the fact that in the
expression for l l / we have retained the term \1,/2)doAA^^,
wh ich  was omi t ted  f rom Eq.  r8 ) ]

We shall search for a solution of Eq. (9) in the form (4),
although it is not quite consistent to put @t + q + @-tX
into the exponent, since the equation (9) is valid only in the
weak-field approximation. However, this form is convenient
for the calculation of corrections to the phase and group
velocities ofan electromagnetic wave traveiing in a gravita-
tional f ield. Substituting the expression (4) into the equation
(9)we obtain the following system ofequarions which deter-
mrne t!, q, and y to lowest order in the gravitational 6eld.

2d,$:-e",
2a3e: i@-a^-2a"a , ) t - i v ,  (10)

2a 'x -  i  (0  ̂0  - -20  d  
" )  

q+  W.

From this it foilows, in particular, that

- t ad q: 
n(W 

- d,v+ d, 'c, , )  + 
,  J dr"  (d^d^v-2dod^a^s,,)

d.z"'d&rd^a^E* (l 1)

Making further use of the identit ies

0 ̂0 ̂s -:2R x- a,' e ̂^* 20 p ̂  c - ",
a^0 ^@ ,c,"-a,s .\ :a 'a ̂Q ,s,^- a,s ,^)

+2 (a,nz3_a,R,!+a,R,1'o),

one can simplify the expression (l l)considerably

d,x - ,/r (Rr,,r+rr,.Ra_)

i l  n r  r :  +
+ ; I dt G,R,,-d,R,,)+ + I dt I dx", '  d^4^R-.,I2)

We note that d]l. does not depend directly either on the
metric tensor or on the Christoffel symbols, and is deter-
mined only by the Riemann curvature tensor. In the region
where there are no sources of the gravitational f ield, i.e.,
Xr' : 0, the integral terms in Eq. {12) vanish, and the result
acquires a maximally simple form

asx-'/,(R.n+i1,Ra-) . (13)

r ; -  l @ '  I

r d
u: 

I  a(<on)
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3. We now derive an expression for the phase velocity of
a wave in a gravitational freld, relative to an observer at rest
in the given coordinate frame. The three-velocity ofa point
experiencing the displacement dxl is2

u': (c',) ' t 'dz'/ (e,,dt+g,i l) .

Here the indices r', j takeon the spatial valuesx,.y,z, while I is
the time coordinate. The transition from .ro and xr to z and t
is achieved by means ofa coordinate-independent rotation of
all space, leading to a trivial change of the tensorial quanti-
t ies and f !-.

Assume that the surface ofconstant phase is defined by
the equation @ (x,J,, z, / ) : 0. We represent a displacement of
a point ofthis surface in the form

dt'- p'+ d.ur,

where p, :0,@, and d' : lg,)-tt ' l t , 0, 0, 0) is
velocity of the observer. The condition d@:0
phase be constant means that pFd/' : 0, hence

dx'- p'- f p"p'/ p \u\ .

Substituting Eq. {16) into 114) and calculating the square of
the phase three-velocity

72'- (- g ,,! g',g x/ g , 1) utu, ,

we obtainl

u -z :1_g, ,ga  p ,pJ  p i

This quantity may be interpreted as the square of the
index of refraction, nr, for l ight in an external gravitational
field. A simole calculation vields

As can be seen from Eqs. (10) and (13), along the xr axis we
have

85 exl

u> I  s ign,

( 1 5 )

the four-
that the

( 1 6 )

* '  T h "  1
1 i ! l
"accordtng
. tivc index

i 6 n -  I m

; Along tit'

j addition I

i exPressto

: .  Imn

Thus, if I

rf,laiz.atl
. sign it de'
i  4 . I n

.lio d*"lt ,

:bhotons i

radiative
noted th.
charactel
qucncies
tion to th
of the po
limit ar<
dcfinite,
tbe au
t{@ = 0)
fot one o
similar a

Fro

(14)

t I  1  \
( ; d ' e * ; d ' r /

( 1 7 )

( 1 8 )

{ le)
1 _

u : n - : l - - f i , . , r
2u'  "

However, ifone takcs into account the cxplicit expression for
!, it follows from Eqs. (10)and (19)that in an arbitrary coor.
dinate system the indcx of refraction dcpends only on thc
curvature tensor. This is quite natural: for example, in a
frame in which the xr and x2 axes rotate along the trajectory,
z must depend, ofcourse, on thesign ofthecircular polariza-
tion l. -

Utilizing Eq. {18) one can obtain an expression for thc
group velocity of a wave packet:

: t +1ne a,x:r +f n,,,,. lzot
Thus, the first.order correction to the index ofrcfraction and
the group velocity in the coordinate system that was used is
determined by the scalar curvature of a two-dimcnsional
surface orthogonal to the trajectory ofthe wave packet. Thc
sign ofthe conection is not defined and the group velocity u
may be either larger or smaller than unity. This, however,
does not violatc thc causality condition, which implies that
the velocity ofthe wave front is bounded bv one. This veloc-
ity is1

Lim n-t (r,r)
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-./ as erp€cted. this equals onc accordlng to Eq (19) Hcre

Lr"i .,rnrrt onty a deformation of wave packet'
t ' ' ir 'r"l 

pnrt. @ has a nonvanishing imaginary part'-and

ur.orJtirtt there appears an imaginary part on the refrac-

t ive lndexi 
, .

.  1 1  t , . t -  - L | / a " " , , -  [ a , ' , n . , ' l
t m n - l m \ ; o " ! - ; " ' x J :  

- 2 , \  ' ' '  J - " )

.  r  [n , , .^ .  I  a , , ,G,a" ._a"n, ;  I  .  tz r '- 2 d  
l " ' " '  J  

- -  ' - '  '  '  
I

^ lone rhe  coord ina te  ax ts  x '  we have dogs '  =  0 '  and i f  in

;;;;;;"" ," that the wave propagates in emPtv space the

expression for Im n becomes qulte slmple:

lm n: (?'/2o') R,"," ' l22l

Thu ' ,  i f  lQr r , , , -0  then fo r  one o f  the  s igns  o f  the  c i rcu la r

io t -u . ; ru , ton t t t .  " "ue  
ampl i tude inc reases '  and fo r  the  o ther

to" 
I ti"Jiill'.,'"n with what was said so far we would like

to  dwe l l  on  the  asser t ion  one can f ind  ln  the  l l (e ra tu re  tha l

"fr"i"", 
l" a gravitation field propagate faster than light if

iuai"tiu. 
"ot.i"t ions 

are taken into account ln Ref 5 it was

roi"a tft^, the radiative corrections lead to a change of the

"haracteristi"s 
of the wave equation for the photon for fre'

ir.n"l., trnuff .ornpared to the electron mass m" Theaddi-

ion ro the inae* of refract ion lurns oul to be negative for one

ofthe polarizations and independent ofthe frequency tn the

limit r..r(m.. Based on the assumption that Im r is positive

Jefinite, and making use of the dispersion relation for r(a') '

, ir. authors of Ref 5 have concluded that

1111'1 : Ql2 n\a- c:), and consequently, ' l@- cc ) < l '  so that

for one ofthe polarizations causality is €xplicit ly violated A

similar assertion for neutrinos was later made in Ref 6 
^

From what was said one can infer two inadequactes ol

the mentioned reasoning. First, the value n(0) has in fact

never been computed in a gravitational f ield In particular'

there is the correction (19) to n(rr- co ) which is much larger

than the one which was found in Ref 5 However' the

expression (19) is valid only for a)D> I' which prevents one

from realistically calculating n (0). Second, the sign of Im r is

undefined when the wave propagates through inhomogen-

eous media, as can be seen from the expressions (21) and (221'

The physical reason for this is clear. In a homogeneous medt-

um wiihout instabil ity (no particle creation) the change of

the amplitude of the wave is due only to the elimination of

panicles from the beam, which is reflected in the condition

Im a > 0. If the medium is not homogeneous focusing {or

bunching) processes are possible, lcading to a growth of the

amplitude; this corresponds to Im n < 0. One can illustrate

this assertion on a simple example from quantum mecnan-

ics. The quasiclassical expression for a wave propagating

along the x axis in a potential U{x),

r  < o '  r r '  ( . i  '  l
'p :13, , -  ,  J  

erp{ i  Ja ' '1 , ' - t l t r ' ) } "  i
can be rewrit len for @> U ln the form

r  i  r '  . . ,
, D : " * p [ i , '  - ^ \ * '  u t z ' ) ' r Z ; u ( r ) J  t : r t
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From this it follows that

ln  n (a :  x )  - - '  / ,<n- 'du /  dz '

It is obvious that the sign of this quantity may be atbitrary'

Thus, the conclusion reached in Refs 5 and 6 that cau-

sality is violated, seems unfounded Unfortunately, our Pre-

uious attemptt to refute this assertion was unsuccessful'

5. We retum to an arbitrary gravitational field in which

the wave propagation is described by Eq (8) Substitutingt}le

solution in the form {4), it is easy to derive a system ofnonlin-

ear equations for the functions ry',I '  and l Sinceweconsider

the size of the wave packet to be considerably smaller than

the characteristic lengths over which the external field var-

ies, it is convenient to expand thes€ functions in powers of

x" (a :0,1, 2). ln particular, in the expansion of /, the ap-

proximation we have adopted allows us to retain only terms

up to fourth order:

U -'7.q"0 1.r' ; e..z!*'/,{.r, (r ' ) r"rDr'+'/,,r l"ar, (r ') r".r 'r lro.
(241

The equation for the function ry'

2d,$-2a,td,$+a"ta"$+2foa!$-t",,td"$:fo (2s)

leads to the following system of equations for tt ' .0"

d'g.r*t."tr":f i-,0 126\

l herea ,p :O, l ,2 ,a . r rdn :1 ,2 )  The func t ions  ry ' r  t '  r y ' r r '  and

ry'.2 satisfy an independent subsystem ofnonlinear equations:

a,$^.+$r,+-":R.r, ^. 121)

After determining ry'*,,, the calculation of / 'u1 and tl 'o" re-

duces to solving a l inear sYStem

a!t"-+$""!)-":n!,-, (28)

and finally, for known ry'o" the function /o,, is found by plain

integratlon
r . . . ^  ( 2 9 )

$oo : J 
dr'(nro,o-tP61Ph,r

The equations for the functions ry'"p,. and tltoo"6 are also

easily obtained from Eq. (25). we do not write them out here'

in view of their bulkiness.
The equations for the functions I and 1 which are anal-

ogous to Eq. (25) turn out to be nonlinear' ln our approxima-

tion g can be written in the form

*:*r'r 1e';+9" (' ') ."+'/,q"o(r"rx"f, (30)

and it suffices to consider 1 for x" :0 The equation for

g(o)(x3) has the simple form

ale lo ) - r l t  ( t , r+ f , ! ) ,  (31)

but the other equations, which are also easily derived' turn

out to be clumsy, and we do not writc them out herc'

In conclusion, we note that making use ofEq {17) it is

easy to frnd thc indcx of rcfraction forx" :0:

t
R e  n - t  +  

, ; [ 2 R e d , 1 + ( R e 9 , ) r + ( R e q , ) t ] ,  
( 3 2 )

where g" is defined according to Eq (30) This yietds in

particular, that the index ofrefraction, and with it thc phase

and group vclocitics, do not depend on the helicity ' l '-By 
iierations it is not dimcult to obtain the nonlinear
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corrections to the real and imaginary parts of the index of
reftaction. Further investigations of the solution would re-
quire a knowledge of the explicit form of the gravitational

field.
We are grateful to I. P. Grishchuk and I. Yu. Kobzarev

for useful discussions.
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