(54) 发明名称
蓝花侧金盏有效部位及其制备方法和应用

(57) 摘要
蓝花侧金盏有效部位及其制备方法和应用，属于植物提取物技术领域。选自蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位、蓝花侧金盏正丁醇部位、蓝花侧金盏水相萃取部位中的一种或两种以上的任意质量比的混合物。将蓝花侧金盏全草粉碎，加入质量百分比浓度65%-95%乙醇溶液回流提取，将所得提取液浓缩、干燥，得浸膏；将浸膏加蒸馏水分散，得浸膏分散液，依次用石油醚、乙酸乙酯和正丁醇作为溶剂萃取浸膏分散液，挥去溶剂后得蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位、蓝花侧金盏正丁醇部位；将萃取后的浸膏分散液浓缩、干燥，得蓝花侧金盏水相萃取部位。本发明的蓝花侧金盏有效部位在制备抑制HDAC1酶药物方面的应用，能够用于制备抗肿瘤药物。
1. 蓝花侧金盏有效部位，其特征在于：选自蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位、蓝花侧金盏正丁醇部位、蓝花侧金盏水相萃取部位中的一种或两种以上的任意质量比的混合物。

2. 根据权利要求1所述的蓝花侧金盏有效部位，其特征在于：选自蓝花侧金盏乙酸乙酯部位，或者蓝花侧金盏乙酸乙酯部位和蓝花侧金盏水相萃取部位任意质量比的混合物。

3. 权利要求1所述的蓝花侧金盏有效部位的制备方法，其特征在于，包括下述步骤：将蓝花侧金盏全草粉碎，加入质量百分比浓度65%～95%乙醇溶液提取，将所得提取液浓缩、干燥，得浸膏；将浸膏加蒸馏水分散，得浸膏分散液，依次用石油醚、乙酸乙酯和正丁醇作为溶剂萃取浸膏分散液，挥去溶剂后得蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位和蓝花侧金盏正丁醇部位；将萃取后的浸膏分散液浓缩、干燥，得蓝花侧金盏水相萃取部位。

4. 权利要求3所述的蓝花侧金盏有效部位的制备方法，其特征在于：所述的提取为超声波辅助回流提取；超声波辅助回流提取的具体操作为：将粉碎后的蓝花侧金盏全草加入质量百分比浓度65%～95%乙醇溶液超声波提取0.5～3小时，过滤，滤渣回流提取1～3次，合并提取液，即得。

5. 权利要求1所述的蓝花侧金盏有效部位的应用，其特征在于：在制备抑制HDAC1酶药物方面的应用。

6. 根据权利要求5所述的蓝花侧金盏有效部位的应用，其特征在于：所述制备抑制HDAC1酶药物是通过蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位、蓝花侧金盏正丁醇部位和蓝花侧金盏水相萃取部位中的一种或两种以上的任意质量比的混合物，与药用辅料混合制成的口服制剂或注射制剂。

7. 根据权利要求6所述的蓝花侧金盏有效部位的应用，其特征在于：所述的注射制剂为脂质体注射剂、纳米粒注射剂或微球注射剂。

8. 根据权利要求6所述的蓝花侧金盏有效部位的应用，其特征在于：所述的口服制剂为散剂、片剂、颗粒剂、胶囊剂或溶液剂。
说明书

蓝花侧金盏有效部位及其制备方法和应用

技术领域
[0001] 本发明涉及蓝花侧金盏有效部位及其制备方法和应用，属于植物提取物技术领域。

背景技术

[0003] 肿瘤是危害人类健康的重大疾病之一，恶性肿瘤的防治已成为医学界所关注的重要课题。恶性肿瘤的防治已成为医学界所关注的重要课题。肿瘤作为目前人类死亡的首要原因，对其治疗仍局限于癌症疾病的多样性及反复性。然而，尽管不同的癌症的致癌原因可能不尽相同，但其组织结构均表现出相似的细胞周期紊乱以及迅速不可控制的细胞生长及转移。因此，对参与细胞周期调控的一些家族蛋白的研究在推动癌症治疗中成为重要因素。组蛋白去乙酰化酶（HDAC）是一类蛋白酶，对染色体的结构修饰和基因表达调控发挥着重要的作用。一般情况下，组蛋白的乙酰化有利于DNA与组蛋白八聚体的解离，核小体结构松弛，从而使各种转录因子和协同转录因子能与DNA结合位点特异性结合，激发基因的转录。在癌细胞中，HDAC的过度表达导致去乙酰化作用的增强，通过破坏组蛋白正电荷，从而增加DNA与组蛋白之间的引力，使核小体的核小体变得十分紧密，不利于蛋白表达的，包括一些肿瘤抑制蛋白。组蛋白去乙酰化酶抑制剂（histone deacetylase inhibitors，HDACi）则可通过抑制染色质特定区域组蛋白乙酰化，从而调控细胞凋亡及分化相关蛋白的表达和稳定性，诱导细胞凋亡及分化，成为一类新的抗肿瘤药物。HDACi不仅对多种血液系统肿瘤和实体瘤具有良好的治疗作用，而且具有肿瘤细胞相对较高选择性和低毒的优点。

发明内容
[0005] 本发明要解决的技术问题是：克服现有技术的不足，提供蓝花侧金盏有效部位及
其制备方法和应用，该蓝花侧金盏有效部位能有效抑制HDAC1酶的活性，用于制备抑制HDAC1酶药物，具有较好的抗肿瘤作用。

【0006】本发明解决其技术问题所采用的技术方案是：该蓝花侧金盏有效部位，其特征在于：选自蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位、蓝花侧金盏正戊醇部位、蓝花侧金盏水相萃取部位中的一种或两种以上的任意质量比的混合物。

【0007】该蓝花侧金盏有效部位，其特征在于：选自蓝花侧金盏乙酸乙酯部位，或者蓝花侧金盏乙酸乙酯部位和蓝花侧金盏水相萃取部位任意质量比的混合物。

【0008】该蓝花侧金盏有效部位的制备方法，其特征在于，包括下述步骤：将蓝花侧金盏全草粉碎，加入质量百分比浓度65%~95%乙醇溶液提取，将所得提取液浓缩、干燥，得浸膏；将浸膏加蒸馏水分散，得浸膏分散液，依次用石油醚、乙酸乙酯和正丁醇作为溶剂萃取浸膏分散液，将去溶剂后得蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位和蓝花侧金盏正丁醇部位，将萃取后的浸膏分散液浓缩、干燥，得蓝花侧金盏水相萃取部位。

【0009】优选的，所述的提取为超声波辅助回流提取，超声波辅助回流提取的具体操作为：将粉碎后的蓝花侧金盏全草加入质量百分比浓度65%~95%乙醇溶液超声波提取0.5~3小时，过滤，滤渣回流提取1~3次，合并提取液，即得。

【0010】该蓝花侧金盏有效部位的应用，其特征在于：在制备抑制HDAC1酶药物方面的应用。

【0011】所述抑制HDAC1酶药物是通过蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位、蓝花侧金盏正丁醇部位和蓝花侧金盏水相萃取部位中的一种或两种以上的任意质量比的混合物，而药用辅料混合制成的口服制剂或注射剂。

【0012】所述的注射剂为脂质体注射剂、纳米粒注射剂或微球注射剂。

【0013】所述的口服制剂为散剂、片剂、颗粒剂、胶囊剂或溶液剂。

【0014】对于本发明的说明如下：

现有技术中，蓝花侧金盏常规用途为用于治疗疮疹及牛皮癣，未见其有抗肿瘤功效的相关报道。申请人研究发现：目前抗肿瘤药物的原料较为匮乏，现有技术中蓝花侧金盏中部分提取物还具有抗肿瘤的作用。因此通过怎样的溶剂、采用怎样制备方法，才能获得抑制HDAC1酶活性效果最好的有效部位，是必须要解决的问题。申请人通过研究发现：采用本发明制备方法，筛选出的蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位、和蓝花侧金盏水相萃取部位，其抑制HDAC1酶效果较好。

【0015】制备方法中，所述的超声波提取为常温下进行。具体的，超声波提起后，过滤获得超声波提取液和滤渣，向滤渣中加质量百分比浓度65%~95%乙醇溶液回流提取1~3次，合并超声波提取和回流提取所得提取液。回流提取1~3次是指：向回流加热装置中加入粉碎后的药材和乙醇溶液，加热、回流提取，放冷过滤得一次提取液和药渣；向药渣中加入乙醇溶液，加热、进行第二次回流提取，放冷过滤得二次提取液和药渣；合并多次提取液，即得回流提取的提取液。优选的，每次回流提取0.5~2小时；每次回流提取时所加乙醇溶液没过药材表面1cm~2cm。回流提取的温度为乙醇回流提取的常规温度，需高于乙醇的沸点，优选为80℃~100℃。

【0016】制备方法中，浸膏为粗提取物，采用不同的溶剂萃取浸膏分散液，指的是依次将石油醚加入浸膏分散液萃取分离获得石油醚萃取液，将乙酸乙酯加入浸膏分散液萃取分离获
得乙酸乙酯萃取液，将正丁醇加入显性分散液萃取分离获得正丁醇萃取液；取石油醚萃取液、乙酸乙酯萃取液和正丁醇萃取液分别挥发除去溶剂后，即对应得到蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位和蓝花侧金盏正丁醇部位；将萃取后剩余的显性分散液（溶剂为水），挥发除去溶剂即得蓝花侧金盏水相萃取部位。溶剂的部位指的是该溶剂的萃取物，水相萃取部位也可以称作水相萃取物，水相萃取部位易溶于水；而相对的，石油醚、乙酸乙酯和正丁醇为有机相，石油醚部位、乙酸乙酯部位和正丁醇部位对应易溶于石油醚、乙酸乙酯和正丁醇。其中，蓝花侧金盏石油醚部位主要含有脂肪酸类、蓝花侧金盏乙酸乙酯部位主要含有黄酮类、蓝花侧金盏正丁醇部位主要含有苷类；蓝花侧金盏水相萃取部位主要含有糖和有机酸类化合物，挥发除去溶剂即挥发除去溶剂，挥发除去溶剂可以采用常压加热使溶剂（即石油醚、乙酸乙酯和正丁醇）挥发。优选的，挥发除去溶剂采用减压浓缩，该方法效率高，并且能避免热敏性成分因高温丧失药性。

【0017】优选的，制备的抑制HDAC1酶药物，为口服制剂或注射制剂。口服制剂和注射制剂为最佳给药途径，此处所述口服制剂为经肠胃道给药制剂，优选的，口服制剂为缓释、控释型口服制剂。也可以为非肠胃道给药的其他，如呼吸道给药制剂（雾剂、气雾剂、粉雾剂）皮肤给药制剂（外用溶液剂、洗剂、搽剂、软膏剂、硬膏剂、糊剂、贴剂）；肌注给药制剂（滴眼剂、滴鼻剂、眼用软膏、含漱剂、舌下片剂）；腔道给药制剂（栓剂）。注射制剂可以为常规注射制剂。根据药物传递系统进行分类，优选的，本发明的注射制剂为脂质体注射剂、纳米粒注射剂或微球注射剂；其他的，本发明的注射制剂还可以为微囊注射剂、聚合物胶束注射剂、微乳或亚微乳注射剂、亚微粒注射剂或凝胶注射剂，以上药物传递系统的注射剂能延长药物载体在体内的循环时间，延长药物微粒在吸收部位的停留时间，控制药物在释放初期的突释效应。药用辅料包括药物载体，以及溶剂、增溶剂、助溶剂、乳化剂、助悬剂、澄清剂、反絮凝剂、矫味剂、着色剂、防腐剂、化学灭菌剂、吸附剂、助滤剂、抗氧剂、pH调节剂、等渗调节剂、稀释剂、粘合剂、润湿剂、崩解剂、润滑剂、助流剂、抗粘着剂、缓释剂、控释剂、包衣材料、成膜材料、胶囊材料中的一种或多种。

【0018】与现有技术相比，本发明的蓝花侧金盏有效部位及其制备方法和应用所具有的有益效果是:

1. 该蓝花侧金盏有效部位能有效抑制HDAC1酶的活性，用于制备抑制HDAC1酶药物，具有较好的抗肿瘤作用。申请人在研究发现：目前抗肿瘤药物的原料较为稀缺。而现有技术中主要用于治疗癌症及皮肌炎的蓝花侧金盏，还具有抗肿瘤的新功效。申请人通过研究确定其所抑制的酶的种类，设计制备方法获得蓝花侧金盏各部位，并且首次在HDAC1酶上进行药效筛选，通过大量研究确定蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位、蓝花侧金盏正丁醇部位和蓝花侧金盏水相萃取部位中的一种或两种以上的任意质量比的混合物均具有较好的抑制HDAC1酶活性，其HDAC1酶存活率19.13%-24.56%，适宜开发成抗肿瘤藏药新药。申请人在以上发现问题解决的过程中，付出了大量的创造性劳动。

【0019】2. 该蓝花侧金盏有效部位的制备方法提取方便，提取效率高。制备方法中，申请人设计加入质量百分比浓度60%-95%乙醇溶液进行超声波辅助回流提取，提高了提取效率；萃取中，依次用石油醚、乙酸乙酯和正丁醇作为溶剂萃取显性分散液，采用以上溶剂萃取顺序所得的石油醚部位、蓝花侧金盏乙酸乙酯部位、蓝花侧金盏正丁醇部位具有较好的抑制HDAC1酶的效果。
具体实施方式

实施例1-3是本发明的蓝花侧金盏有效部位及其制备方法和应用的具体实施方式，其中实施例1为最佳实施例。

实施例1

制备方法，包括下述步骤：将蓝花侧金盏全草粉碎，采用质量百分比浓度75-85%乙醇溶液超声波提取1小时，然后过滤并回流提取液得提取液，合并提取液，浓缩干燥得浸膏；将浸膏加蒸馏水分散，得浸膏分散液，然后依次采用石油醚、乙酸乙酯和正丁醇作为溶剂萃取浸膏分散液，挥去溶剂后得到蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位和蓝花侧金盏正丁醇部位；将萃取后剩余的浸膏分散液浓缩、干燥，得蓝花侧金盏水相萃取部位。

实施例2

制备方法，包括下述步骤：将蓝花侧金盏全草粉碎，采用质量百分比浓度85-95%乙醇溶液超声波提取3小时，然后过滤，滤渣回流提取2次，每次1小时，合并提取液，浓缩干燥得浸膏；将浸膏加蒸馏水分散，得浸膏分散液，然后依次采用石油醚、乙酸乙酯和正丁醇作为溶剂萃取浸膏分散液，挥去溶剂后得到蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位和蓝花侧金盏正丁醇部位；将萃取后剩余的浸膏分散液浓缩、干燥，得蓝花侧金盏水相萃取部位。

实施例3

制备方法，包括下述步骤：将蓝花侧金盏全草粉碎，采用质量百分比浓度65-75%乙醇溶液超声波提取0.5小时，然后过滤，滤渣回流提取1次，用时2小时，合并提取液，浓缩干燥得浸膏；将浸膏加蒸馏水分散，得浸膏分散液，然后依次采用石油醚、乙酸乙酯和正丁醇作为溶剂萃取浸膏分散液，挥去溶剂后得到蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位和蓝花侧金盏正丁醇部位；将萃取后剩余的浸膏分散液浓缩、干燥，得蓝花侧金盏水相萃取部位。

性能测试

分别各取0.4mg干燥后的蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位、蓝花侧金盏正丁醇部位和蓝花侧金盏水相萃取部位，各自溶解于100μL的二甲基亚砜（DMSO）中形成DMSO溶液，超声5分钟。再分别取1μL溶解样品的DMSO溶液，各加入缓冲液99μL，分别得到用于检测的蓝花侧金盏石油醚部位的缓冲溶液、蓝花侧金盏乙酸乙酯部位的缓冲溶液、蓝花侧金盏正丁醇部位的缓冲溶液和蓝花侧金盏水相萃取部位的缓冲溶液。缓冲液的配方为：50mM/L的Tris-HCl、0.137 mM/L的NaCl、2.7mM/L的KCl、1mM/L的MgCl₂、0.01%吐温20，缓冲液pH 8.4。

抑制HDAC1酶实验。

以实施例1得到的蓝花侧金盏各部位为受试药物，检测蓝花侧金盏各部位抑制HDAC1酶的活性。

其方法是：分别另取4μL的蓝花侧金盏石油醚部位的缓冲溶液（标号F）、蓝花侧金盏乙酸乙酯部位的缓冲溶液（标号G）、蓝花侧金盏正丁醇部位的缓冲溶液（标号H）和蓝花侧
金盏水相萃取部位的缓冲溶液（标志1），分别进行如下操作：将所取的4μL缓冲溶液（F、G、H、I）置于96孔板中，再分别加入2μL HDAC1酶，室温条件下反应5min，加入4μL H3（1-21）K9底物，37°C，培养箱中培养60分钟。加入5μL SA-XL665和5μL H3K9me0抗体，665nm测值，得实验组吸光度。

[0029] 将4μL的缓冲液置于96孔板中，再分别加入2μL HDAC1酶，室温条件下反应5min，加入4μL H3（1-21）K9底物，37°C，培养箱中培养60分钟。加入5μL SA-XL665和5μL H3K9me0抗体，665nm测值，得对照组吸光度。计算HDAC1酶存活率：存活率（%）=实验组吸光度/对照组吸光度×100%。

[0030] 表1 蓝花侧金盏有效部位抑制HDAC1酶的活性测试结果

<table>
<thead>
<tr>
<th>浓度 mg/mL</th>
<th>浓度 mg/mL</th>
<th>HDAC1酶存活率 %*</th>
</tr>
</thead>
<tbody>
<tr>
<td>F（蓝花侧金盏石油醚部位）</td>
<td>24.56</td>
<td></td>
</tr>
<tr>
<td>G（蓝花侧金盏乙酸乙酯部位）</td>
<td>19.69</td>
<td></td>
</tr>
<tr>
<td>H（蓝花侧金盏正丁醇部位）</td>
<td>22.68</td>
<td></td>
</tr>
<tr>
<td>I（蓝花侧金盏水相萃取部位）</td>
<td>19.13</td>
<td></td>
</tr>
<tr>
<td>对照组</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

[0031] 表1中* P<0.01，通过表1可以看出：蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位、蓝花侧金盏正丁醇部位和蓝花侧金盏水相萃取部位对于HDAC1酶均有良好的抑制效果。

[0032] 二、抗肿瘤活性测试。

[0033] 利用MTT法测定蓝花侧金盏有效部位对肿瘤细胞的细胞毒活性。分别取出实施例1所得蓝花侧金盏石油醚、石油醚部位、乙酸乙酯部位、正丁醇部位和水相萃取部位适量，DMSO溶解后，利用MTT法分别测定对人结肠癌HCT-8、人肝癌BEL-1402细胞、人胃癌BGC-803细胞、人肺腺癌A549细胞和人卵巢癌A-2780细胞生长的抑制率。

[0034] 实验方法：将对数生长期的细胞，用0.25%胰酶-EDTA消化后，制成一定浓度的单细胞悬液，根据细胞生长速度的差异，按400-2000个/孔接种于96孔板，每孔加入细胞悬液100μL。24h后，加入不同浓度化合物及相应溶剂对照的新鲜培养基，每孔加入100μL DMSO终浓度<0.1%，每种受试化合物设5-7个剂量组，每组至少设3个平行孔，于37°C继续培养72h后，弃上清液，每孔加入100μL新鲜配制的含0.5mg/mL MTT的无血清培养基，继续培养4 h，弃上清液后，每孔加入200μL DMSO溶解MTT甲氧滴定，微型振荡器振荡混匀，用酶标仪在参考波长450nm，检测波长570nm条件下测定光密度值（OD），以溶剂对照处理的肿瘤细胞为对照组，用以下公式计算化合物对肿瘤细胞的抑制率，并按中效方程计算IC50：抑制率=（对照组平均OD值－给药组平均OD值）÷对照组平均OD值×100%。将制备方法中的浸膏，以及所得的蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位、蓝花侧金盏正丁醇部位和蓝花侧金盏水相萃取部位进行体外肿瘤细胞毒活性筛选，结果见表2。

[0035] 表2 体外肿瘤细胞毒活性筛选结果
说明 书

<table>
<thead>
<tr>
<th>样品</th>
<th>IC₅₀ (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HCT-8 Bel-7402 BGC823 A549 A2780</td>
</tr>
<tr>
<td>久膏</td>
<td></td>
</tr>
<tr>
<td>蓝花侧金盏石油醚部位</td>
<td>25.43</td>
</tr>
<tr>
<td>蓝花侧金盏乙酸乙酯部位</td>
<td>39.51</td>
</tr>
<tr>
<td>蓝花侧金盏正丁醇部位</td>
<td>>50</td>
</tr>
<tr>
<td>蓝花侧金盏水相萃取部位</td>
<td>>50</td>
</tr>
</tbody>
</table>

[0036] 注: 1) HCT-8为人结肠癌细胞，Bel-7402为人肝癌细胞，BGC-823为人胃癌细胞，
A549为人肺癌细胞，A2780为人卵巢癌细胞。2) >50表明不具有细胞毒活性。通过表2可看
出: 蓝花侧金盏石油醚部位、蓝花侧金盏乙酸乙酯部位、蓝花侧金盏正丁醇部位和蓝花侧金
盏水相萃取部位确实有较好的抗肿瘤的效果。

[0037] 三、体外S₁₈₀荷瘤小鼠抗肿瘤实验。

[0038] 1.实施例1各部位的S₁₈₀荷瘤小鼠抗肿瘤实验方法如下:

 a) 5~6周龄昆明小鼠，随机选鼠分组，每组10只，每组雌雄各半；分组名称为：空白对照
组、环磷酸胺组，给药组；给药组包括：蓝花侧金盏石油醚部位低、中、高剂量组，蓝花侧金盏
乙酸乙酯部位低、中、高剂量组，蓝花侧金盏正丁醇部位低、中、高剂量组，蓝花侧金盏水相
萃取部位低、中、高剂量组；对每只小鼠进行皮肤消毒。

 b) 于右前肢皮下接种S₁₈₀瘤液0.2ml(S₁₈₀瘤细胞数在2.0×10⁶~2.2×10⁶范围内)。

 c) 步骤b)接种24小时后给药：空白对照组灌胃给药10ml/kg注射用生理盐水；环磷酸胺
组腹腔注射环磷酸胺20mg/kg; 给药组采用灌胃给药实施例1制得的蓝花侧金盏石油醚部位
、蓝花侧金盏乙酸乙酯部位、蓝花侧金盏正丁醇部位和蓝花侧金盏水相萃取部位；首次给
药后，隔日称小鼠首次体重；每组每天给药1次，每次给药剂量详见表3，连续给药14天。

 d) 末次给药1小时后，处死小鼠，称小鼠末次体重，剥离称重，计算抑肿瘤。抑肿瘤率=
(空白对照组平均瘤重—给药组平均瘤重) ÷ 空白对照组平均瘤重×100%，将抑肿瘤率计算结
果录入表3。

[0039] 表3 实施例1各部位对小鼠S₁₈₀实体瘤的影响
<table>
<thead>
<tr>
<th>组别</th>
<th>剂量（mg/kg/d）</th>
<th>S_{50}抑制率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>空白对照组</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>环磷酰胺组</td>
<td>20</td>
<td>63.45</td>
</tr>
<tr>
<td>茴花侧金盏石油醚部位低剂量组</td>
<td>200</td>
<td>13.45</td>
</tr>
<tr>
<td>茴花侧金盏石油醚部位中剂量组</td>
<td>500</td>
<td>47.18</td>
</tr>
<tr>
<td>茴花侧金盏石油醚部位高剂量组</td>
<td>800</td>
<td>63.91</td>
</tr>
<tr>
<td>茴花侧金盏乙酸乙酯部位低剂量组</td>
<td>200</td>
<td>19.69</td>
</tr>
<tr>
<td>茴花侧金盏乙酸乙酯部位中剂量组</td>
<td>500</td>
<td>52.82</td>
</tr>
<tr>
<td>茴花侧金盏乙酸乙酯高剂量组</td>
<td>800</td>
<td>66.67</td>
</tr>
<tr>
<td>茴花侧金盏正丁醇部位低剂量组</td>
<td>200</td>
<td>5.05</td>
</tr>
<tr>
<td>茴花侧金盏正丁醇部位中剂量组</td>
<td>500</td>
<td>18.26</td>
</tr>
<tr>
<td>茴花侧金盏正丁醇部位高剂量组</td>
<td>800</td>
<td>64.48</td>
</tr>
<tr>
<td>茴花侧金盏水相萃取部位低剂量组</td>
<td>200</td>
<td>4.25</td>
</tr>
<tr>
<td>茴花侧金盏水相萃取部位中剂量组</td>
<td>500</td>
<td>17.22</td>
</tr>
<tr>
<td>茴花侧金盏水相萃取部位高剂量组</td>
<td>800</td>
<td>66.23</td>
</tr>
</tbody>
</table>

[0040] 实施例2各部位的S_{50}荷瘤小鼠方法同实施例1，数据录入表4。
[0041] 表4 实施例2各部位对小鼠S_{50}实体瘤的影响
实施例3各部位的S_{180}荷瘤小鼠抗肿瘤实验的方法同实施例1,数据录入表5。

表5实施例3各部位对小鼠S_{180}实体瘤的影响

<table>
<thead>
<tr>
<th>组别</th>
<th>剂量 (mg/kg/d)</th>
<th>S_{180} 抑瘤率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>空白对照组</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>环磷酰胺组</td>
<td>20</td>
<td>63.45</td>
</tr>
<tr>
<td>蓝花侧金盏石油醚部位低剂量组</td>
<td>200</td>
<td>13.42</td>
</tr>
<tr>
<td>蓝花侧金盏石油醚部位中剂量组</td>
<td>500</td>
<td>47.17</td>
</tr>
<tr>
<td>蓝花侧金盏石油醚部位高剂量组</td>
<td>800</td>
<td>63.91</td>
</tr>
<tr>
<td>蓝花侧金盏乙酸乙酯低剂量组</td>
<td>200</td>
<td>19.63</td>
</tr>
<tr>
<td>蓝花侧金盏乙酸乙酯中剂量组</td>
<td>300</td>
<td>52.82</td>
</tr>
<tr>
<td>蓝花侧金盏乙酸乙酯高剂量组</td>
<td>800</td>
<td>66.66</td>
</tr>
<tr>
<td>蓝花侧金盏正丁醇部位低剂量组</td>
<td>200</td>
<td>5.05</td>
</tr>
<tr>
<td>蓝花侧金盏正丁醇部位中剂量组</td>
<td>500</td>
<td>18.27</td>
</tr>
<tr>
<td>蓝花侧金盏正丁醇部位高剂量组</td>
<td>800</td>
<td>64.48</td>
</tr>
<tr>
<td>蓝花侧金盏水相萃取部位低剂量组</td>
<td>200</td>
<td>4.26</td>
</tr>
<tr>
<td>蓝花侧金盏水相萃取部位中剂量组</td>
<td>500</td>
<td>17.22</td>
</tr>
<tr>
<td>蓝花侧金盏水相萃取部位高剂量组</td>
<td>800</td>
<td>66.25</td>
</tr>
</tbody>
</table>

经申请人统计：给药组与空白对照组相比, 小鼠体重变化无显著性差异 (P>0.05)。表3-5中:S_{180}是指小鼠腹水瘤细胞, 表3-5中S_{180}抑瘤率数值越大表示抗肿瘤效果越好, 由表3-5可以看出: 首先, 实施例1-3均有较好的抗肿瘤效果, 实施例1-3中相同部位相同剂量时, 各组间的抗肿瘤效果无明显差别, 其次, 与空白对照组相比, 蓝花侧金盏石油醚部位中、高剂量组, 蓝花侧金盏乙酸乙酯部位中、高剂量组, 蓝花侧金盏正丁醇高剂量组, 蓝花侧金盏水相萃取部位高剂量组, 水相磷酰胺组, 均可显著抑制S_{180}肿瘤的生长。

实施例4

将蓝花侧金盏有效部位制备为片剂, 采用如下步骤: 将蓝花侧金盏石油醚部位300mg和淀粉100mg混匀, 加质量百分比浓度10%的淀粉糊40mg制成软材, 过筛得湿颗粒, 干燥得干颗粒, 整粒, 加硬脂酸镁4 mg混匀、压片, 即得。

实施例5

冲剂的制备方法: 按重量份数比将蓝花侧金盏水相萃取部位5份、蔗糖1份、糊精3份混匀, 加入适量质量百分比95%乙醇溶液2.5份, 经加边搅拌, 制得软材, 将软材干燥, 过16目筛, 分装即得。

实施例6

微丸胶囊由以下重量份数料组成: 蓝花侧金盏乙酸乙酯部位30份、卵磷脂5份、牛黄胆酸钠5份、微晶纤维素30份。

微丸胶囊的制备方法: 按配比将蓝花侧金盏乙酸乙酯部位、卵磷脂、牛黄胆酸钠和微晶纤维素混匀, 倒入乙醇水溶液搅匀获得软材, 将软材倒入挤出机制出, 经滚圆获得颗粒,
挤出转速250r/min,滚圆转速800r/min,滚圆时间20min,干燥,过24-30目筛获得微丸,将微丸灌装入胶囊壳内,即得。

【0048】实施例7

脂质体注射剂的制备方法:1)在氮气保护下,将50g胆固醇琥珀酸酯、250g二硬脂酰磷脂酰乙醇胺、40g大豆卵磷脂、50g泊洛沙姆-188、和10g蓝花侧金盏乙酸乙酯部位溶解于1500ml体积比为1:1的乙醇和正丁醇的有机溶剂中,搅拌使其溶解获得混悬液;将混悬液通过减压浓缩挥去有机溶剂,获得磷脂膜;

2) 在氮气保护下,向磷脂膜中加入8000ml pH为6.8的磷酸盐缓冲溶液,搅拌,使磷脂膜洗脱并充分溶解水合,经0.22um微孔滤膜过滤,得蓝花侧金盏乙酸乙酯部位的脂质体;

3) 在无菌条件下,向蓝花侧金盏乙酸乙酯部位的脂质体中,加入100g海藻糖,搅拌均匀,超声波处理0.5-1小时,加注射用水定容,经0.22um微孔滤膜过滤,灌装,即得蓝花侧金盏乙酸乙酯部位的脂质体注射剂。

【0049】实施例8

纳米粒注射剂的制备方法:取25g蓝花侧金盏石油醚部位和100g泊洛沙姆407用3000ml无水乙醇溶解,加入30ml 1mol/L氯化锌的乙醇溶液,搅拌混合,超声波处理0.5-1小时使其溶解,获得混合液;将混合液减压浓缩挥去溶剂,放入-20℃冰箱冷冻2小时;取出加注射用水定容,超声波处理0.5-1小时,经0.22um微孔滤膜过滤,灌装,即得蓝花侧金盏石油醚部位的纳米粒注射剂。

【0050】以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。