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Abstract: The authors present an in-depth theoretical study of two nonlinear circuits capa-
ble of transient thermal energy harvesting at one temperature. The first circuit has a storage
capacitor and diode connected in series. The second circuit has three storage capacitors, and
two diodes arranged for full wave rectification. The authors solve both Ito–Langevin and
Fokker–Planck equations for both circuits using a large parameter space including capaci-
tance values and diode quality. Surprisingly, using diodes one can harvest thermal energy
at a single temperature by charging capacitors. However, this is a transient phenomenon.
In equilibrium, the capacitor charge is zero, and this solution alone satisfies the second law
of thermodynamics. The authors found that higher quality diodes provide more stored
charge and longer lifetimes. Harvesting thermal energy from the ambient environment
using diode nonlinearity requires capacitors to be charged but then disconnected from the
circuit before they have time to discharge.

Keywords: transient dynamics; diode nonlinearity; storage capacitor; energy harvesting;
stochastic simulations; Fokker–Planck; Ito–Langevin

1. Introduction
Recent advances in ultralow power circuit designs have dramatically reduced power

consumption to nanowatts in active mode and picowatts in standby mode [1–5]. Low-
power usage opens up the possibility of self-powering from ambient sources. This amount
of power can easily be found from electromagnetic sources and even from mechanical
vibrations in noisy environments. Even if the mechanical vibrations are stochastic in nature,
they can be used as a source of power [6]. However, in a dark and quiet setting these
sources are not available and only thermal energy at a single temperature is present.

Random electrical signals from thermal energy have a rich history going back to the
1920s when Johnson and Nyquist discovered electronic noise generated by charge carriers
inside conductors in thermal equilibrium [7,8]. Once the diode was invented, it was natural
to ask if diodes could rectify this noisy alternating current. This question was investigated
by many notable scientists over the decades [9–14].

If two temperatures are present, then a diode can be used to harvest energy in the
steady state [15,16]. Also, if the noise is non-Gaussian, other researchers discovered that
one can then harvest energy from a single temperature [17–21]. As an example, our
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earlier experimental work found that the velocity distribution of a freestanding graphene
membrane follows a heavy-tailed Lorentzian distribution [22,23].

More recently, our theoretical work discovered that one can harvest thermal energy
directly from a single temperature using diode nonlinearity [24]. This is a transient phe-
nomenon, and we showed that the detailed balance is temporarily broken to produce a
non-zero direct current. Experimentally, just this year, thermal noise rectification has been
achieved using a graphene-based ballistic diode utilizing the Tesla valve design [25].

Our previous study solved the Fokker–Planck (FP) equation for various circuits to
prove energy harvesting at a single temperature. These are computationally intensive
because one directly solves for the probability distribution for the charge on a capacitor
in time [26,27]. As an example, it was not possible for us to solve circuits with more
than two current junctions using FP. Ito–Langevin (IL) simulations, on the other hand, are
capable of solving much more complex circuits as the output from each time step is a single
value [28–31].

In this study, we numerically analyze two circuits using both the FP and IL methods.
All circuit components are held at the same temperature. By using both approaches, we
determine the largest possible IL time step that provides agreement with FP. The initial
state of the storage capacitors is shorted to have zero charge, variance, and entropy. From
a physical point of view, we imagine connecting a wire with zero resistance across the
capacitor, forcing the charge distribution to be a delta function centered at zero charge, and
then we remove the wire to start the dynamics (i.e., the Nyquist voltage variance is zero for
zero resistance). The temperature is always the same. We then track the charge, variance,
and entropy in time using a large range of parameter values.

2. Results and Discussion
2.1. Single Loop Circuit

The first circuit we analyze consists of a capacitor in series with a diode, as shown
in Figure 1a. The diode orientation allows positive charge carriers to flow clockwise with
minimal resistance. The energy of this circuit is given by

H(q) =
q2

2C
, (1)

where H is the Hamiltonian, q is the charge on the capacitor, and C is its capacitance.
For the diode, we model its directional-dependent conductance, µ, using a sigmoid

function given by

µ(u) =
1
R

1
1 + e−u/u0

, (2)

where R is its resistance at high-forward bias, u is the voltage drop across the diode, and u0

controls its quality. Notice that µ depends on q through u.
The diode’s conductance versus bias voltage is plotted for R = 1 and u0 = 0.1 in

Figure 1c. The conductance is near zero for negative bias voltages and rises quickly to unity
for positive bias voltages. As the diode parameter u0 approaches zero, the diode becomes
a step function or an ideal switch. As u0 approaches infinity, the diode has a constant
conductance of 1/2 for all bias voltages and the diode becomes a linear resistor.

The derivative of the conductance is also shown in Figure 1c. Its value is zero except
close to zero bias, where its value is 2.5. We will see later that this non-zero derivative
value at zero bias volts drives the initial current that charges the storage capacitor. The
current-voltage (I − u) characteristics of the diode are shown in Figure 1d. The I − u curve
is similar to an ideal diode in series with a resistor, which at high forward bias is more
realistic than the Shockley diode equation [32].
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Figure 1. Two circuits analyzed in this study and diode properties shown with R = 1 and u0 = 0.1.
(a) Diode−capacitor circuit. (b) Two diode and three capacitor circuit. (c) Diode conductance (green curve)
and its derivative (purple curve) shown versus diode voltage. (d) Diode current−voltage characteristics.

2.1.1. Differential Equations

The IL equation for the circuit shown in Figure 1a in terms of the conductance and
Hamiltonian is given by

dq =

(
kBT

∂µ

∂q
− µ

∂H
∂q

)
dt +

√
2µkBT dζq(t), (3)

where kB is the Boltzmann constant, T is the absolute temperature, t is time, and dζq is
delta function correlated Gaussian noise with mean zero and variance dt. Notice the first
term on the right-hand side is kBT times the derivative of µ. As alluded to earlier, this term
produces the initial direct current at zero bias and places a net charge on the capacitor.

The equivalent FP equation for this circuit is given by

∂ρ

∂t
=

∂

∂q
(µρ

∂H
∂q

) + kBT
∂

∂q
(µ

∂ρ

∂q
), (4)

where ρ(q, t) is the probability distribution for the charge on the capacitor in time. The
derivation of our IL and FP equations can be found here [23,24].

2.1.2. Simulations

We performed numerical simulations of Equations (3) and (4). We use the first-order
Milstein numerical scheme for IL, and for FP we use an explicit forward in time and
centered in space scheme on a square grid in q with ∆q = 0.01 and ∆t = 10−5 [33]. The
averages presented from Equation (3) are found after performing 3000 realizations. For this
first circuit, we present most of our results in terms of dimensionless variables, which helps
us present the large range of parameter values used in the study.

The charge on the capacitor, q/Cu0, in time, t/RC, is shown in Figure 2a. The four
plots represent different temperatures, θ = kBT/Cu2

0. The IL solutions are the jagged
lines, while the FP solutions are smooth. The average charge values for IL are in excellent
agreement with those found using FP. However, this agreement only occurs at sufficiently
short IL time steps. The simulations require times dt = 10−6 for this agreement. When dt is
larger, the capacitor may remain charged for all time (i.e., revealing an integration error).
For all of the temperatures studied, the capacitor initially charges, reaches a maximum
charge, and then begins to discharge. Notice that higher temperatures have a higher rate
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of initial charging. Furthermore, higher temperatures reach a higher overall maximum
negative charge.

It is easiest to understand the capacitor charging results if we first consider the equi-
librium solution. As mentioned previously, the capacitor begins with zero charge and
zero variance, and in equilibrium it will also have zero charge but its variance will be
kBTC. If the diode was a resistor, then the charge would remain zero for all time, while
the variance would grow from zero to kBTC with a time constant of RC. However, the
directional conductance of the diode changes the dynamics. With a small forward-bias
resistance, the variance quickly reaches equilibrium for negative charges. With a large
reverse-bias resistance, the variance requires an extremely long time to reach equilibrium
for positive charges. Consequently, the capacitor quickly builds up a negative charge and
then slowly discharges. Furthermore, higher temperatures will have higher rates of initial
charging and as a result reach a higher maximum charge.

We can quantify, to some degree, the slow capacitor discharge if we scale the charge in
the FP equation with Cu0. Then, the eigenvalue λ, obtained by separating variables, scales
as λ × (Cu0)

2, which tends to zero with u0. This shows that the time scale (proportional to
1/eigenvalue) becomes longer as u0 tends to zero. This scaling is a consequence of the two
derivatives of the probability density that appear in the FP equation [24].

Figure 2. Numerical solutions of FP (smooth lines) and IL (jagged lines) equations for the
diode−capacitor circuit shown in terms of dimensionless variables. (a) Capacitor charge vs. time for
four temperatures. (b) Variance vs. time for four temperatures. (c) Shannon entropy vs. time for four
temperatures. (d) Time to reach maximum charge vs. temperature. (e) Probability distribution vs.
charge at two simulation times. At time t = 1, FP (red curve) and IL (green curve). At time t = 10
FP, (blue curve) and IL (yellow curve). The vertical dashed line at zero charge represents the initial
conditions. The two arrows indicate the spreading direction in time. The equilibrium solution is
shown as a dotted−dashed line. (f) Time evolution of the probability distribution divided by the
equilibrium distribution vs. charge at four simulation times. The left two curves are at times 1 and 2,
while the right two curves are at times 5 and 6.
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The variance (dimensionless) in time for the same four temperatures is shown in
Figure 2b. Excellent agreement between IL and FP is found. In all cases, the variance starts
at zero and rapidly rises before plateauing. As expected from the equilibrium solution
mentioned earlier, systems held at a higher temperature have a higher variance.

The entropy in time at the different temperatures is shown in Figure 2c. Again, we
have excellent agreement between IL and FP. Entropy is calculated using the Shannon
entropy, S = −⟨ln ρ⟩ [30]. One can understand the entropy results by again looking at the
equilibrium solution, where Seq = ln(2πe variance)/2. Given that the equilibrium entropy
is simply the logarithm of the equilibrium variance, the entropy changes mirror those of
the variance.

The time required for the capacitor to reach its maximum charge, tmax, as a function
of temperature is shown in Figure 2d. The time plotted here is again dimensionless
and has been divided by the characteristic charging time, RC; surprisingly this time it
significantly increases with temperature. To understand this result, we must again consider
the properties of the diode. In particular, the derivative of the conductance is multiplied by
the temperature in Equation (3) as mentioned earlier. This factor drives the initial charging
higher, and our tmax data highlight the significant impact of diode nonlinearity.

The time evolution of the probability distribution is shown in Figure 2e. Initially, the
probability distribution is the vertical dashed line shown at zero charge. This distribution
has zero charge and zero variance. At equilibrium, the probability distribution is the dash-
dotted Gaussian curve. At simulation time, t = 1, the FP probability distribution and the IL
probability distribution are the highest two curves and are in excellent agreement. Notice
the negative charge side of the probability distributions has already reached equilibrium.
The probability distribution at time t = 10 is also shown, and it has moved closer to the
equilibrium distribution for positive charges but is still far away.

We can understand these results by again considering the diode’s asymmetric conduc-
tance. The forward bias has a very low resistance compared to the reverse bias; therefore,
the negative charges reach equilibrium quickly, while the positive charges require an
extremely long time to reach equilibrium.

We plot the function g(q, t) = ρ(q, t)/ρeq in Figure 2f at four different times (the
solution found from the advection–diffusion equation). This function nicely captures the
flow in time to equilibrium. Since the system has already reached equilibrium for negative
charges, this function is one for negative charge values. However, for positive charges
the probability is far below equilibrium and thus g(q, t) is close to zero. The right edge or
front of this function is moving to the right in time. For example, the left-most pair of lines
shows the function at times t = 1 and t = 2. Notice how far the function has moved to the
right in one time step. The right-most pair of lines shows the function at times t = 5 and
t = 6. Notice how much further the function has progressed to the right. However, more
importantly, notice the lack of comparable progress for the additional time step. What we
found is that the approach to equilibrium is slowing down in time, and this plot captures
that [24].

2.2. Two Loop Circuit

The second circuit we studied has two current junctions, three capacitors, and two
diodes, as shown in Figure 1b. The conductance function for the diodes is identical to
the earlier section. For this circuit, from the perspective of capacitor C0 the diodes are
wired in opposition for full-wave rectification. Capacitor C0 experiences forward bias (low
resistance) for current flowing from above and below, while the other two capacitors see
forward bias for current flowing in only one direction. This property will play an important
role in understanding the performance of the circuit. The energy of this circuit is given by
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H(q1, q2) =
(q1 + q2)

2

2C0
+

q2
1

2C1
+

q2
2

2C2
, (5)

where q1 and q2 are the charges on C1 and C2, respectively. Due to the junction rule and the
initial charge being set to zero, the charge on C0 is q1 + q2. For all the results presented here,
we set C1 = C2. The simulations give identical results for both capacitors but opposite in
sign; therefore, we present only those for C1.

2.2.1. Differential Equations

The IL equations for the charge on capacitors C1 and C2 are given by

dq1 =

(
kBT

∂µ1

∂q1
− µ1

∂H
∂q1

)
dt +

√
2µ2kBT dζ1(t) (6)

dq2 =

(
kBT

∂µ2

∂q2
− µ2

∂H
∂q2

)
dt +

√
2µ2kBT dζ2(t), (7)

where ζ1(t) and ζ2(t) are zero mean and independent white noise.
The equivalent FP equations for this circuit are given by

∂ρ

∂t
=

2

∑
i=1

[
∂

∂qi
(µiρ

∂H
∂qi

) + kBT
∂

∂qi
(µi

∂ρ

∂qi
)

]
. (8)

2.2.2. Simulations—Charge Variance

For this more complicated circuit, we begin by presenting the results for the variance
of the charge on capacitor C1, instead of its average charge. We set the initial variance
to zero, and we calculated the final variance using Equation (5). Knowing the extrema
helps explain the dynamics. We performed numerical simulations of Equations (6)–(8) and
averaged 3000 realizations for IL. We generally set kBT = 1 and R = 1 for these simulations.

The charge variance in time from IL for various values of the diode parameter, u0, is
shown in Figure 3a. The value of u0 is shown adjacent to its particular data plot, and we set
C0 = 100 and C1 = 10 for all of these runs. For each data set, the variance begins at zero,
rises for a short period of time, and then plateaus. Lower values of u0 show a lower value
of variance at the end of the simulation.

To understand these results, first notice the equilibrium variance is nine, as shown in
the second row in column three of Table 1. The top three variance plots have reached nine
by the end of the simulation, and these all have high values of u0, which means the diodes
are closer to a resistor than a switch. The plots with smaller values of u0 will clearly require
a lot more time to reach equilibrium. This is because the diode primarily conducts in one
direction, and the high reverse bias resistance yields a very long time constant.

The variance in time for two u0 values for both IL and FP is shown in Figure 3b.
Excellent agreement between the two methods is found. Notice how the variance for the
smaller u0 value is extremely flat for most of the simulation even though it too must reach
nine at some point in time.

The charge variance in time from IL for various values of capacitance C1 is shown in
Figure 3c. Lower values of C1 rise and level off during the simulation time, while higher
values have nearly linear growth in time.

In order to understand these results, it is helpful to know the equilibrium variance.
The value was calculated using Equation (5) and listed in column three of Table 1 in
the next four rows. Near the end of the variance plots, for small capacitance values,
notice the equilibrium value is nearly reached, and this is why the curves start to level
off. For large capacitance values, the plots are not leveling off. In other words, the larger
capacitance values take longer to reach equilibrium, but this is consistent with RC being
the time constant.
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Figure 3. Charge variance on C1 using kBT = 1 and R = 1. (a) Time dependence of charge variance
from IL for different values of u0 and fixed values of C1 = C2 = 10 and C0 = 100. (b) Comparison
of FP (smooth lines) and IL (jagged lines) for fixed values of C1 = C2 = 10 and C0 = 100 while u0

changes from 0.005 to 0.08. (c) Variance for different values of C1 with fixed values of C0 = 1 and
u0 = 0.1. (d) Variance for different values of C0 with fixed values of u0 = 0.1 and C1 = 100.

Table 1. Calculated equilibrium charge variance values and equivalent capacitance values for the
circuit shown in Figure 1b for various combinations of C0 and C1 used in this study.

The variance over time from IL for various C0 values is shown in Figure 3d. After close
inspection, the dynamics of these are opposite to those shown in Figure 3c. For example,
when C0 = 1000 the variance rises but then plateaus, but when C0 = 1 the variance grows
almost linearly throughout the simulation time.

To understand these results, we need more information than just the capacitance and
the equilibrium variance increasing in value. Notice, the equilibrium variance is shown in
Table 1. When C0 = 1000, the equilibrium variance is 92, and by the end of the simulation
the value is already close to 90. So, it has almost reached equilibrium already. At the other
extreme, when C0 = 1 the equilibrium variance is 50, but the simulation has only reached
half of this value. So, even though C0 is decreasing, the time constant for the circuit is
actually increasing.

The reason for this can be understood by considering the resistance of the diodes in
the circuit. When C1 is large compared to C0, then the lowest electrical reactance path
for the current is circulating between C1 and C2. For this current path, the diodes are in
series with a low resistance for the counterclockwise current and a high resistance for the
clockwise current. However, when C1 is small compared to C0, then the lowest reactance
path for the current is circulating through C0. There are two possible paths for this current,
either through D1 or D2. Since the diodes are wired in opposition, both current paths will
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have low resistance to C0. This significantly lowers the overall resistance and thus the time
constant, as the reverse bias of the diodes is not needed to reach equilibrium.

To further support this concept, we present the equivalent capacitance for current
paths that both include and exclude C0, as shown in the last two columns of Table 1. The
largest equivalent capacitance between the two columns then determines the primary path
of the current flow and hence the resistance. When C0 = 1000, the C0 capacitance path is 91
versus 50 for C1, so the C0 path wins. However, when C1 = 1000 the C1 capacitance path
is 500 versus 1. We will revisit the effective time constant when we present the average
charge formed on the capacitors later on.

2.2.3. Simulations—Entropy

The charge entropy in time from IL for various values of the diode parameter, u0, is
shown in Figure 4a. The value of u0 is shown in the same order as the data plots. For each
data set, the entropy begins at zero, rises very quickly for a short period of time, and then
plateaus. Also, notice that the lower values of u0 show a lower value of entropy at the
end of the simulation. As expected, these results track the variance results presented and
discussed earlier.

Figure 4. Numerical solutions for entropy using kBT = 1 and R = 1. (a) Time dependence of entropy
from IL for different values of u0 and fixed values for C1 = C2 = 10 and C0 = 100. (b) Comparison
of FP (smooth lines) and IL (jagged lines) for fixed values of C1 = C2 = 10 and C0 = 100 while u0

changes from 0.005 to 0.08. (c) Entropy for different values of C1 and fixed values of C0 = 1 and
u0 = 0.1. (d) Entropy for different values of C0 and fixed values of u0 = 0.1 and C1 = C2 = 100.

The entropy in time for u0 = 0.08 and u0 = 0.005 and is shown for both IL and
FP in Figure 4b. Excellent agreement between the two methods is found. The charge
entropy in time from IL for various values of capacitance C1 is shown in Figure 4c. Lower
values of C1 rise but then level off during the simulation time. Higher values of C1 show
nearly linear growth in entropy. These results follow the variance as the entropy is simply
related. The entropy over time from IL for various C0 values is shown in Figure 4d. After
close inspection, the dynamics of these results are opposite to those of Figure 4c. When
C0 = 1000 the entropy rises but then plateaus. When C0 = 1, the entropy grows throughout
the simulation time. As expected, these results also follow the same trend as the variance.
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2.2.4. Simulations—Average Charge

The charge in time on C1 from IL for various values of the diode parameter, u0, is
shown in Figure 5a. The value of u0 is shown adjacent to its particular data plot. For
each data set, the charge begins at zero, decreases for a short period of time, and then
plateaus. Lower values of u0 show a higher negative charge on the capacitor at the end of
the simulation.

We can understand these results from our earlier discussion. Only the top three
charge plots have reached zero, which is equilibrium, by the end of the simulation. This
is consistent with the variance reaching equilibrium, as discussed earlier, and is due to
the diodes being similar to resistors. All the other plots with smaller values of u0 will
require more time to reach equilibrium, and as a result they are still charged. As the diode
parameter approaches zero, the diode becomes an ideal switch, so it conducts current
primarily in one direction. In other words, the system can charge quickly, but it discharges
very slowly.

Figure 5. Numerical solution for the average charge on C1 with kBT = 1 and R = 1. (a) Time-dependent
average charge from IL when varying u0 with fixed C1 = C2 = 10 and C0 = 100. (b) FP (smooth lines)
and IL (jagged lines) solutions for average charge with fixed C1 = C2 = 10, C0 = 100 and varying u0

from 0.005 to 0.08. (c) Average charge when varying C1 with fixed C0 = 1 and u0 = 0.1. (d) Average
charge comparison of FP and IL for varying C1 = C2 vs. the scaled time, t/RC. (e) Average charge
when varying C0 with fixed u0 = 0.1 and C1 = 100. (f) Average charge when varying C0 vs. the
scaled time, t/τ, with each value of τ listed in the legend.

The charge in time for u0 = 0.08 and u0 = 0.005 is shown for both IL and FP in
Figure 5b. Excellent agreement between the two methods is found. Notice how the charge
for the smaller u0 value is extremely large and flat for most of the simulation even though
it must reach zero at some point in time.
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The charge in time from IL for various values of capacitance C1 is shown in Figure 5c.
Lower values of C1 show the charge decrease, level off, and begin discharging during the
simulation time, while higher values only charge.

As with the variance discussion earlier, we found that the time constant for the circuit
follows RC and thus increases with increasing capacitance. In order to show the time
constant is the only property changing for the various capacitor values, we replot the
charge versus t/RC for both IL and FP in Figure 5d. Notice how all the data plots collapse
on each other and also have excellent agreement with the FP solution.

The charge in time from IL for various C0 values is shown in Figure 5e. After close
inspection, the dynamics of these are opposite those shown in Figure 5c. When C0 = 1000,
the capacitor charges, levels off, and discharges. When C0 = 1, the capacitor only charges
throughout the simulation time.

As with the variance discussion earlier, we found that the resistance of the circuit
drops considerably as the value of C0 increases. In order to quantify this, we scaled the
capacitor charge for various values of C0 with a time constant, τ, as shown in Figure 5f.
The required value for τ to collapse the data is written in the legend adjacent to the value of
C0. Notice larger C0 values require smaller τ values, which is consistent with the resistance
significantly decreasing.

3. Conclusions
In summary, the authors studied two circuits by solving both Ito–Langevin (IL) and

Fokker–Planck (FP) equations. The first circuit has a single diode in series with a capacitor.
The charge, variance, and entropy dynamics were presented for various temperatures. In
all cases, the capacitor charged quickly and discharged slowly, with the maximum charge
reached increasing with temperature and diode quality.

The second circuit consists of two diodes, three capacitors, and two current junctions.
The diodes are oriented in opposite directions for full-wave rectification. Diode quality
and capacitance values were varied over a large range. The capacitors again quickly
charged and slowly discharged, and the maximum charge reached was higher for higher
quality diodes. The variance and entropy were also presented. The authors found that the
maximum charge achieved occurs when the capacitance of C0 is much smaller than the
capacitance of the storage capacitors C1 and C2. The charges stored are equal in magnitude
but opposite in sign.

Solutions using FP require significant computing power compared to IL. As a result,
FP may only be used for relatively simple circuits. The authors found excellent agreement
between IL and FP, but only when the time step for IL is sufficiently small. Nevertheless,
this result opens up the possibility of using IL with confidence for much more complex
circuits in the future.

Surprisingly, using diodes one can harvest thermal energy at a single temperature by
charging capacitors. However, this is a transient phenomenon. In equilibrium, the capacitor
charge is zero, and this solution alone satisfies the second law of thermodynamics. The
authors found that higher quality diodes provide more stored charge and longer lifetimes.
Harvesting thermal energy from the ambient environment using diode nonlinearity requires
capacitors be charged but then disconnected from the circuit before they have time to
discharge.
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