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Abstract. The global potential for collecting usable water

from dew on an artificial collector sheet was investigated by

utilizing 34 years of meteorological reanalysis data as in-

put to a dew formation model. Continental dew formation

was found to be frequent and common, but daily yields were

mostly below 0.1 mm. Nevertheless, some water-stressed ar-

eas such as parts of the coastal regions of northern Africa

and the Arabian Peninsula show potential for large-scale dew

harvesting, as the yearly yield may reach up to 100 L m−2 for

a commonly used polyethylene foil. Statistically significant

trends were found in the data, indicating overall changes in

dew yields of between ±10 % over the investigated time pe-

riod.

1 Introduction

The increasing concern over the diminishing and uneven dis-

tribution of fresh water resources affects the daily life and

even survival of billions of people. The United Nations De-

velopment Programme (2006) estimated that there were al-

ready 1.1 billion people in developing countries lacking ad-

equate access to water, a figure that is expected to climb to

3 billion by 2025 due to the increasing population particu-

larly in the most water-stressed parts of the planet.

On the other hand, water exists everywhere in one form

or another: ground water, rivers, lakes, seas, glaciers, snow,

ice caps, clouds, soil, and as air moisture. In particular, air

moisture is present everywhere; even the driest of deserts

have some, and warm air can contain more humidity than

cold air. The absolute quantities of water by volume of air are

of course very small (of the order of grams or some tens of

grams per cubic metre), and harvesting it may be expensive

or technologically demanding – factors that are rarely met

in the areas of most immediate need for sustainable sources

of water. Nevertheless, if no other sources of usable water

exist nearby, harvesting water from the air might provide an

economically sound supply of water for both drinking and

agriculture.

Harvesting moisture from the air has two potential path-

ways: fog and dew. Fog is a highly local phenomenon that

occurs, for example, when moist air is cooled by the emis-

sion of long-wave radiation or by forced ascent up a moun-

tain slope: the decrease in temperature causes supersaturation

and the formation of fog. The droplets may then be harvested

by artificial structures resembling tennis nets equipped with

rain gutters as has been investigated in many previous studies

(e.g. Schemenauer and Cereceda, 1991; Klemm et al., 2012;

Fessehaye et al., 2014).

The formation of dew occurs when the temperature of a

surface is below the dew point temperature, and water vapour

condenses onto the surface. In this study, the surface is as-

sumed to be a macroscopic, artificial structure. Since only a

thin layer of air over the surface reaches supersaturation, by

volume the formation of dew is a very slow process com-

pared to the formation of fog. Nevertheless, the formation

and collection of dew has been studied and has been found to

be feasible in several locations around the world (e.g. Nils-

son, 1996; Zangvil, 1996; Kidron, 1999; Jacobs et al., 2000;

Beysens et al., 2005; Lekouch et al., 2012). Additionally, ma-

terial design can affect the characteristics of the condensing

surface and improve its efficiency for dew collection. For ex-

ample, the higher the emissivity of the surface, the higher its

rate of cooling by radiation. During nights with clear skies,
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when both sunlight and thermal radiation from clouds are ab-

sent, the incoming radiation may be exceeded by the device’s

own out-going thermal radiation, resulting in a net cooling.

In this global modelling study we focus on the formation

of dew onto an artificial surface, and investigate the potential

for its collection. This seemingly arbitrary limitation is based

on the following facts: (a) the potential for dew formation is

almost ubiquitous regardless of orographic features or pres-

ence of water in other forms, (b) the formation of dew can be

artificially enhanced with relatively minor efforts, (c) the for-

mation of dew is a well-defined mathematical problem suit-

able for computer modelling at global scales, and (d) we are

unaware of any such previous studies.

This paper describes the implementation of a model for

dew formation onto an artificial surface, which is upscaled

with meteorological input from a long-term reanalysis data

set that spans the years 1979–2012. Modelling 34 years of

dew formation ensures that the results are statistically robust.

Our approach is based on an energy balance model similar

to those in e.g. Nilsson (1996), Madeira et al. (2002), Bey-

sens et al. (2005), Jacobs et al. (2008), Richards (2009) and

Maestre-Valero et al. (2011), who have demonstrated that

their models are able to predict the measured dew yields

within reasonable accuracy.

The dew formation model, forced with reanalysis data,

provides spatially coarse (80 km) estimates of dew collection

yields for given sheet technologies along with the temporal

evolution of dew formation. Therefore, the model output al-

lows global maps of dew formation to be produced and areas

with potential for large-scale dew collection to be identified.

The modelled dew collection estimates can be used as first-

order estimates by those who are planning local feasibility

studies that include additional factors such as lakes, rivers,

and road access. The long time series of our study provides

information about the seasonal variation of dew formation as

well as long-term trends in dew yield, which could be asso-

ciated with climate change.

2 Methods

In order to form global estimates of dew collection poten-

tial, we combined a computationally efficient dew formation

model with historical, global meteorological reanalysis data

spanning 34 years. The offline model was run on a computer

cluster with 128 cores, which allowed global model runs with

different parameterizations to be run in approximately 24 h

each.

The program source code, written in Python and Cython,

is available at https://github.com/vuolleko/dew_collection/.

2.1 Model description

In implementing the model that describes the formation of

dew (represented by mass yield of either liquid water or ice),

Table 1. Some parameters used in the model, unless specified oth-

erwise. The properties of the foil are for common low-density

polyethylene with composition according to Nilsson et al. (1994)

and radiative properties as found by Clus (2007).

Parameter Value

Sheet density ρc 920 kg m−3

Sheet thickness δc 0.39 mm

Sheet specific heat capacity Cc 2300 J kg−1 K−1

Sheet IR emissivity e 0.94

Sheet short-wave albedo a 0.84

Time step 10 s

we followed the approach presented by Pedro and Gillespie

(1982) and Nikolayev et al. (1996), which has been found to

agree reasonably well with empirical measurements of dew

collection (e.g. Nilsson, 1996; Beysens et al., 2005; Jacobs

et al., 2008; Richards, 2009; Maestre-Valero et al., 2011).

The algorithm integrates the prognostic equations for the

mass and heat balance by turns, thereby describing the tem-

perature of the condenser and the resulting condensation rate

onto it. As the model is global and thus incorporates both

polar regions, we include the dynamics of water changing

phase between liquid and solid. However, for simplicity, here

we refer to both phase changes of vapour-to-liquid (conden-

sation) and vapour-to-ice (desublimation) as condensation,

and to both liquid and solid phases as water, unless speci-

fied otherwise. In our model we consider dew only and the

occurrence of precipitation or fog are unaccounted for apart

from their potential indirect effects included within the input

reanalysis data.

The condenser in our model is a horizontally aligned sheet

of some suitable material, such as low-density polyethylene

(LDPE) or polymethylmethacrylate (PMMA), and is ther-

mally insulated from the ground at a height of 2 m. Unless

specified otherwise, the particular parameter values used in

the model (listed in Table 1) match those of the inexpen-

sive LDPE foil used by e.g. the International Organization

for Dew Utilization, whose foil composition follows Nilsson

et al. (1994).

The heat equation can be written as

dTc

dt
(Ccmc+Cwmw+Cimi)= Prad+Pcond+Pconv+Plat, (1)

where Tc,Cc, and mc are the condenser’s temperature, spe-

cific heat capacity and mass, respectively. The condenser’s

mass is given by mc = ρcScδc, where ρc,Sc and δc are its

density, surface area (here 1 m2) and thickness (see Table 1).

Cw and mw are the specific heat capacity and mass of liq-

uid water, representing the cumulative mass of water that has

condensed onto the sheet, whereas Ci and mi are the respec-

tive values for ice.

The right-hand side of Eq. (1) describes the powers in-

volved in the heat exchange processes. The radiation term,
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Table 2. The data acquired from the ECMWF’s ERA-Interim

database.

Original parameter Derived model input

10 metre U wind component

10 metre V wind component Wind speed

Forecast surface roughness

2 metre temperature Air temperature

2 metre dew point temperature Dew point

Surface solar radiation downwards Short-wave radiation in

Surface thermal radiation downwards Long-wave radiation in

Prad, consists of three parts:

Prad = (1− a)ScRsw+ εcScRlw−Pc, (2)

where Rsw and Rlw are the solar and thermal components of

the incoming radiation from the input reanalysis data (see Ta-

ble 2), a is the sheet’s albedo and εc its emissivity (i.e. the ab-

sorbed fraction of radiation) in the infra-red band. Note that

the effect of cloudiness is indirectly included via the input

radiation terms. The outgoing radiative power, Pc, is given

by the Stefan–Boltzmann law,

Pc = ScεcσT
4

c , (3)

where σ is the Stefan–Boltzmann constant.

Returning to Eq. (1), the term Pcond describes the conduc-

tive heat exchange between the condenser surface and the

ground. For simplicity, we assume perfect insulation, and the

term vanishes.

The convective heat-exchange term, Pconv, is given by

Pconv = Sch(Ta− Tc), (4)

where Ta is the 2 m ambient air temperature and h is the heat

transfer coefficient, estimated by a semi-empirical equation

(Richards, 2009):

h= 5.9+ 4.1u
511+ 294

511+ Ta
(5)

in units W K−1 m−2, where u is the prevailing 2 m horizon-

tal wind speed. However, for convenience, the model accepts

any parameterization of the heat transfer coefficient (in func-

tional form) as a model input parameter. Please see Sect. 2.3

for more details on the heat transfer coefficient.

The final term in Eq. (1), Plat, represents the latent heat

released by the condensation/desublimation of water

Plat =

{
Lvw

dmw

dt
if Tc ≥ 0◦C

Lvi
dmi

dt
if Tc < 0◦C,

(6)

where Lvw and Lvi are the specific latent heat of vaporization

and desublimation for water, the appropriate one selected

based on whether the temperature of the condenser is above

or below the freezing point of water. The algorithm imposes a

similar condition for dynamically changing the phase of pre-

existing water or ice on the condenser sheet: if liquid water

exists (i.e. mw > 0) while Tc < 0 and the sheet is losing en-

ergy (i.e. the right-hand side of Eq. 1 is negative), instead of

solving Eq. (1), the model will keep Tc constant and solve

Lwi

dmw

dt
= Prad+Pconv+Plat, (7)

where Lwi is the latent heat of fusion. The mass of lost (i.e.

frozen) water is added to the cumulated mass of ice. A simi-

lar equation is solved for mi in situations when there is ice

present on the condenser but the temperature of the con-

denser is above zero degrees Celsius. Note that Eq. (7) is

unrelated to condensation, and only describes the phase tran-

sition of already condensed water or ice.

For the rate of condensation (independent of Eq. 7) we can

write a mass balance equation

dm

dt
=max(0,Sck(psat(Td)−pc(Tc))), (8)

where m represents either mi or mw depending on whether

Tc < 0◦C or not, psat(Td) is the saturation pressure at the

dew point temperature, pc(Tc) is the vapour pressure over

the condenser sheet and k is the mass transfer coefficient, de-

fined through the heat transfer coefficient (Eq. 5)

k =
h

Lvwγ
=

0.622h

Cap
, (9)

where γ is the psychrometric constant, p is the atmospheric

air pressure and Ca is the specific heat capacity of air. Note

that Eq. (8) assumes irreversible condensation, i.e. there is no

evaporation or sublimation during daytime even when Tc >

Ta. This assumption simulates the daily manual collection

of the condensed water around sunrise, soon after which the

temperature of the sheet often increases above the dew point

temperature. In the model we reset the cumulated values for

water and ice at local noon, and take the preceding maximum

value of mw+mi as the representative daily yield.

In our model we approximate the vapour pressure pc(Tc)

in Eq. (8) by the saturation pressure of water at temperature

Tc. In reality, the wettability of the surface affects the vapour

pressure pc directly above it: a wetted surface decreases the

vapour pressure, and condensation may take place even if

Tc > Td (Beysens, 1995). Beysens et al. (2005) accounted for

this effect by including an additional empirical parameter, T0,

such that pc(Tc)= psat(Tc+T0), and found the optimal value

of T0 to be −0.35 K. However, Beysens et al. (2005) used a

collector with a different design to that assumed in this study,

a more expensive, 5 mm thick PMMA plate, and we were un-

able to find a reference value for T0 valid for LDPE. We thus

set T0 = 0. This simplification causes a small underestima-

tion of the condensation rate calculated by Eq. (8).
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Figure 1. An example of modelled dew formation events on two

consecutive days in September 2000 in Helsinki, Finland. The

short-wave and long-wave radiation, wind speed, air temperature

and dew point are input from the ERA-Interim data set. Note that

the cumulated amount of dew (vertical bars) is reset daily at local

noon (dashed vertical lines). All data are in 3 h resolution.

The model reads all input data for a given grid point and

solves Eqs. (1), (7) and (8) using a fourth-order Runge–Kutta

algorithm with a 10 s time step. An example case spanning

two consecutive days is presented in Fig. 1, which shows the

long- and short-wave radiation components, wind speed, air

temperature, dew point temperature as well as the modelled

sheet temperature and cumulated dew. During daytime, the

incoming short-wave radiation from the sun as well as the

atmospheric long-wave radiation act to increase the tempera-

ture of the condenser sheet. In contrast, during dark periods,

the outgoing thermal radiation exceeds the atmospheric long-

wave radiation, the latter of which is greatly influenced by

cloudiness: the thermal emission by clouds, especially low

clouds, increases the incoming thermal radiation at the sur-

face. As condensation occurs when the temperature of the

condenser sheet is below the dew point temperature (Eq. 8),

significant dew cumulation can only occur during night-time.

The daily collection of dew occurs at noon, depicted by the

dashed vertical lines.

2.2 Meteorological input data

The meteorological input data for the dew formation model

is obtained from the European Centre for Medium Range

Weather Forecasts (ECMWF) Interim Reanalysis (ERA-

Interim, Dee et al., 2011). Such reanalysis data sets are pro-

duced by combining historical observations from multiple

sources with a comprehensive numerical model of the atmo-

sphere using data assimilation systems. As numerical mod-

els of the atmosphere are constantly evolving, reanalysis data

sets are more appropriate for long-term studies than opera-

tional analyses as a fixed numerical model is used. Numer-

ous different global reanalysis data sets are available, for

example NASA MERRA (Rienecker et al., 2011), JRA-25

(Onogi et al., 2007) and NCEP-CFSR (Saha et al., 2010),

and many inter-comparison studies between the different re-

analysis data sets have been conducted (e.g. Lorenz and Kun-

stmann, 2012; Willett et al., 2013; Simmons et al., 2014).

ERA-Interim was selected for this study primarily because it

is the only available reanalysis which assimilates two-metre

temperature and therefore has a lower two-metre tempera-

ture bias than any other available re-analysis (Decker et al.,

2012).

ERA-Interim is ECMWF’s current global reanalysis data

set spanning 1979–present which has a horizontal resolution

of 0.75◦ (approximately 80 km) and 60 levels in the verti-

cal. We use 34 years (1979–2012) of ERA-Interim data and

the variables extracted from ERA-Interim to be applied in

the dew formation model are listed in Table 2. The data for

wind speed, temperature and dew point temperature origi-

nate from reanalysis fields valid at 00:00, 06:00, 12:00 and

18:00 UTC, while the data valid at 03:00 and 09:00 UTC

(15:00 and 21:00 UTC) are forecast fields based on the re-

analysis of 0:00 UTC (12:00 UTC). The radiative parameters

are purely forecast fields and are cumulative over the fore-

cast period; in this study we derive a simple average from

the difference between adjacent cumulative values to obtain

instantaneous values.

The dew formation model requires the wind speed at a

height of two metres, whereas only the 10 m wind speed

is available in the ERA-Interim reanalysis data set. There-

fore, the 2 m wind speed is estimated using the logarithmic

wind profile (e.g. Seinfeld and Pandis, 2006) in the positive-

definite form

u=
log((2+ z0)/z0)

log((10+ z0)/z0)

√
u2

10,x + u
2
10,y, (10)

where z0 is the forecast surface roughness taken from the

ERA-interim reanalysis data set and u10,x and u10,y are the

10 m horizontal wind speed components.

Even by combining the ERA-Interim forecast fields with

the analyses fields, the temporal resolution of the meteoro-

logical input data is only 3 hours. In contrast, the numeri-

cal dew formation model requires meteorological input every

time step (10 s). Therefore, the 3-hourly ERA-Interim data is

linearly interpolated to 10 s time resolution. This is a disad-

vantage of using reanalysis data compared to using more fre-

quent observations. However, we believe that this disadvan-

tage is considerably outweighed by the advantages of using

reanalysis data – the long time series and the uniform global

coverage. Finally, it should be emphasized that in addition to

their relatively low resolution, reanalysis data sets have in-

herent uncertainties and they must not be regarded as exact

representations of reality.
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Figure 2. Sensitivity of the model to the heat transfer coefficient.

The dashed lines represent heat transfer coefficients for different

parameterizations as functions of wind speed. The triangles repre-

sent annual mean daily yields of dew using one year of ERA-Interim

data for the grid point closest to the Negev Desert, Israel (30.75◦ N,

34.5◦ E) in 1992 (here plotted against the annual mean wind speed).

The solid lines are the same, but the wind speed has been fixed ac-

cording to x axis.

2.3 Transfer coefficients

In the model, the heat transfer coefficient determines how ef-

fectively the surrounding air heats or cools the condenser sur-

face. During dew formation the surface must be cooler than

the air surrounding it, which means that a high heat trans-

fer coefficient impedes dew formation. On the other hand,

the mass transfer coefficient is proportional to the heat trans-

fer coefficient, and determines the efficiency of water vapour

molecules condensing on the condenser surface. The net ef-

fect of a high heat transfer coefficient is therefore ambiguous.

The mentioned transfer phenomena can be divided into

free and forced (e.g. wind-driven) convection. In wind-driven

atmospheric conditions the heat transfer coefficient is often

parameterized as

h= a+ bun, (11)

where a, b and n are empirical constants (possibly related

to some other parameters). The constant a can be thought

to correspond to free convection, although absent in some

parameterizations.

Various such parameterizations (with somewhat differ-

ing assumptions) for the heat transfer coefficients can be

found in the literature; Table 3 lists a few of them. Fig-

ure 2 presents these heat transfer coefficients as functions of

wind speed (dashed lines). Clearly, the variance is large, es-

pecially at larger wind speeds. It should be noted that the

authors of these semi-empirical parameterizations have typ-

ically assumed a quite narrow range of validity in regard to

wind speed. For example, the parameterization by Richards

(2009), based on McAdams (1954), is said to be valid for

wind speeds u < 5 m s−1. However, 3 h average wind speeds

Table 3. A selection of the various parameterizations for the heat

transfer coefficient found in the literature. The first three are studies

on dew formation. Here, u and Ta are the horizontal wind speed and

air temperature at 2 m height, and D is the characteristic length of

the condenser (e.g. 1 m).

Source Equation

Richards (2009); this study h= 5.9+ 4.1u 511+294
511+Ta

Beysens et al. (2005) h= 4
√
u/D

Maestre-Valero et al. (2011) h= 7.6+ 6.6u 511+294
511+Ta

Jürges (1924) h= 5.7+ 3.8u

Watmuff et al. (1977) h= 2.8+ 3u

Test et al. (1981) h= 8.55+ 2.56u

Kumar et al. (1997) h= 10.03+ 4.687u

Sharples and Charlesworth (1998) h= 9.4
√
u

at 2 m derived from the ERA-Interim data set rarely exceed

this value over continental areas.

The mass transfer coefficient is defined through the heat

transfer coefficient according to Eq. (9). As noted, the effects

of heat and mass transfer are opposite during dew formation.

In order to gain some estimates of the model sensitiv-

ity to the transfer coefficients, we performed several series

of model runs with different parameterizations. Figure 2

presents the annual mean of the daily yield of dew in 1992

for the grid point closest to the Negev Desert, Israel. For each

parameterization, the model was run once with the ERA-

Interim data for the year 1992 (triangles). Next, the same

model run was repeated so that the wind speed was fixed to

one value for the entire year; this was repeated for all wind

speeds between 0 and 7 m s−1 in 0.1 m s−1 resolution (solid

lines). Altogether Figure 2 therefore presents 1+ 71 years

of simulations for each parameterization. Clearly, the dif-

ference in dew yields between the parameterizations is less

pronounced than in the heat transfer coefficients alone. Nev-

ertheless, the difference is significant, and suggests that the

choice of transfer coefficients is important for model per-

formance. Note especially the behaviour of parameteriza-

tions by Sharples and Charlesworth (1998) and Beysens et al.

(2005) for pure forced convection at wind speeds close to

zero.

The same test was performed for 10 locations globally (not

shown), and the general characteristics are similar to those

in Fig. 2, albeit a larger mean wind speed did cause more

deviation in some cases.

For the global runs presented in this paper, we chose the

parameterization used by Richards (2009), as this heat co-

efficient is close to the average presented in the literature

and is well behaved also at very low wind speeds, see Fig. 2.

Additionally, the study was also dedicated to dew, although

the condensing surface was an asphalt-shingle roof. The dew

study by Maestre-Valero et al. (2011) used the same type of

foil as our virtual condenser, albeit inclined at 30◦, which

www.hydrol-earth-syst-sci.net/19/601/2015/ Hydrol. Earth Syst. Sci., 19, 601–613, 2015
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Figure 3. Sensitivity of the model to the emissivity, albedo and heat

capacity of the condenser sheet as well as to the wind speed and

time step of the model (×10 in figure). The heat capacity is defined

here as CcρcScδc, i.e. its variation corresponds to varying any of

these factors. The input data correspond to Table 1 and the first day

of Fig. 1, where applicable. The vertical bars represent these default

values.

may be the reason for their significantly higher heat transfer

coefficient.

For convenience, our model accepts any functional form of

the heat transfer coefficient as input to the model, and several

are available built-in.

3 Results and discussion

Figure 3 illustrates the sensitivity of the modelled dew yield

to changes in the emissivity, albedo, and heat capacity of

the sheet as well as to the wind speed and the time step of

the model. The dew yield increases almost linearly with the

sheet’s emissivity, and the emissivity seems to be the most

important factor to consider when designing condenser ma-

terials (besides economic factors). The albedo of the sheet

has a smaller effect as it only affects the sheet’s temperature

during sunlit hours, when the sheet is anyhow heated convec-

tively by high air temperatures (see Fig. 1). The sheet’s heat

capacity does not significantly affect the dew yield unless it is

either very low or very high (note the logarithmic scale). In-

terestingly, the issue of heat capacity may have been the key

limiting factor in massive ancient dew collection infrastruc-

ture (Nikolayev et al., 1996). Note that for the simulated hori-

zontal plane, current technologies already lie close to optima.

The model time step was chosen to be 10 s as this keeps the

model stable even in the very-high-yield scenario of Fig. 3.

Finally, the effect of wind speed is more complex: decreas-

ing the wind speed reduces the mass flow towards the con-

denser, whereas increasing the wind speed increases convec-

tive heating. It should be noted that the model formulation

used in this study assumes a constant supply of atmospheric

moisture defined by the dew point temperature. In a more re-

alistic scenario, the layer of air directly above the surface of

the condenser should eventually dry if both vertical mixing

and the horizontal wind speed were small, which may be-

come important for very large collectors. On the other hand,

the potential for dew collection still exists, and when design-

ing large-scale dew collection, passive air-mixers should be

introduced to ensure a supply of moist air. For model sensi-

tivity regarding wind speed, see also Sect. 2.3 and Fig. 2.

The following results originate from a series of global sim-

ulations. The model simulations differ only by the parame-

ters of albedo and emissivity that describe the ability of the

condenser’s sheet to emit and absorb energy by radiation.

Recall that the spatial resolution of the meteorological input

data is relatively coarse, 0.75◦×0.75◦ (up to 80 km, depend-

ing on latitude), which does limit the model’s ability to cap-

ture small-scale phenomena such as those caused by local

topography. Therefore, this limitation should be considered

when interpreting the model results.

Furthermore, Beysens et al. (2005) introduced additional

site-specific parameters to the heat and mass transfer coef-

ficients (Eqs. 5, 9) to accommodate for differences in envi-

ronmental conditions between the condenser surface and the

meteorological instruments, as well as a correction in Eq. (8)

to account for surface wetting. In our study the difference

between the reanalysis data and any real physical location

within the area represented by the grid point could arguably

be much greater than the differences considered in Beysens

et al. (2005), but as we see no means to tailor the model sep-

arately for each grid point, we use the theoretical formula-

tion as it is. This assumption will inevitably cause some error

in the dew yield estimates, although the large-scale average

should be reasonably well predicted.

3.1 Occurrence of dew

First and foremost, it is important to gain insight into how

frequently dew forms onto the artificial surface in different

areas around the world. Our model results suggest that dew

formation is both global and common in continental areas,

with surprisingly little seasonal variation in most areas. Fig-

ure 4 presents the mean seasonal fraction of days during

which the formation of dew onto the collector occurs (i.e.

the yield is positive). Apart from very warm and dry deserts,

the meteorological conditions on almost all continental areas

favour the formation of dew onto the collector.

The lack of dew formation is generally caused by inef-

ficient nocturnal cooling of the surface as a result of high

incoming long-wave radiation, which occurs due to a high

cloud fraction and high humidity in the atmosphere (although

high humidity at surface level favours dew formation).

Perhaps somewhat counter-intuitively, in general the arti-

ficial surfaces over oceans do not collect dew as regularly as

those over land areas. The lack of oceanic dew formation is

probably caused by higher wind speeds and the weaker diur-
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Figure 4. Seasonal occurrence of dew as a fraction of days (%).

Figure 5. Seasonal occurrence of dew as a fraction of days (%) with a threshold of 0.1 mm d−1.

nal cycle in air temperature, denser average cloud cover (e.g.

King et al., 2013) and higher humidity compared to land ar-

eas, resulting in amplified long-wave radiation downwards,

and therefore weaker cooling.

In most dew events represented by Fig. 4, the cumu-

lated amount of water is insignificant (see Sect. 3.2). Fig-

ure 5 shows a similar seasonal occurrence of dew as fraction

of days, but only during which more than 0.1 mm d−1 (i.e.

0.1 L m−2 d−1) can be collected. The contrast between the

two figures is notable, as in the latter the seasonal variation

is higher and dew formation occurs regularly in far fewer ar-

eas, most of which do not have a water shortage problem.

However, in some water-stressed areas, such as the coastal

regions of North Africa and the Arabian Peninsula, dew col-

lection may be an alternative source of water worth investi-

gating further.
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Figure 6. Mean seasonal formation of dew (mm d−1).

Figure 7. Standard deviation of the seasonal formation of dew (mm d−1).

3.2 Yield of dew

Given the occurrence of dew formation events as presented in

Sect. 3.1, we subsequently calculated the mean seasonal val-

ues for the actual daily amounts of dew cumulated on the col-

lector sheet. The reported values represent the liquid water-

equivalent volumes of the sum of liquid water and ice. For

the condenser parameters shown in Table 1, this dew poten-

tial is presented in Fig. 6. Unsurprisingly, the global distribu-

tion of dew potential closely resembles Fig. 5 and indicates

that most areas with the potential to harvest non-negligible

quantities of dew are also those with sufficient other sources

of water. Note the high seasonal variation especially in equa-

torial Africa, Southeast Asia and southern Australia.

The standard deviation of the seasonal formation of dew

is presented in Fig. 7. The variation is surprisingly zonal

compared to Fig. 6. On the other hand, the highest varia-

tion is found in regions with the highest dew yields as might

be expected. In particular, dew yields in the aforementioned

coastal regions of northern Africa and the Arabian Penin-
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Figure 8. Time series of the modelled dew yield from one grid point, 30.75◦ N, 34.5◦ E, located in the Negev desert, Israel: (a) the monthly

means over the whole data set, as well as a linear fit to the data; (b) the monthly means as well as daily values for the year 1992.

Figure 9. The fractional increase in the seasonal occurrence of dew (%) with a threshold of 0.1 mm d−1, when the emissivity of the condenser

is increased from 0.94 to 0.999, and the albedo from 0.84 to 0.999.

sula exhibit high standard deviations, suggesting that if large-

scale dew collection in these areas was planned, varying dew

yields should be expected.

Figure 8 presents a time series of dew yield in the Negev

desert, Israel, where natural dew collection has been stud-

ied by several authors (e.g. Evenari, 1982; Zangvil, 1996;

Kidron, 1999; Jacobs et al., 2000). The values from our

model are significantly higher than most of the reported val-

ues in other studies. However, this is expected since the ma-

jority of studies report yields of natural dew, which artificial

surfaces typically outperform. In any case the coarse resolu-

tion of our data, as well as the differences in the collection
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Figure 10. The absolute increase in the mean seasonal formation of dew (mm d−1), when the emissivity of the condenser is increased from

0.94 to 0.999, and the albedo from 0.84 to 0.999.

Figure 11. The total change (%) in the mean seasonal formation of dew (mm d−1) over the years 1979–2012 as predicted by the Theil–Sen

estimator. Only locations with a statistically significant trend (p < 0.05) are shown.

methods, make direct comparison with measurements diffi-

cult. Note the decreasing trend in the modelled dew yields in

Fig. 8.

3.3 Increase of dew

The data presented in Fig. 5 are for a sheet emissivity of

0.94 and albedo of 0.84, both of which can possibly be im-

proved by means of material science. If both the emissivity

and the albedo were hypothetically increased to an extreme

value of 0.999, the occurrence of dew would increase as pre-

sented in Fig. 9. Although this ideal collector scenario is ex-

aggerated, these model results suggest that improvements in

the emissivity and albedo could have a significant effect on

the sheet’s ability to condense water, and thus the cost of a

high-performance sheet material may be justified. It should
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be noted that besides increasing the emissivity and the albedo

of the sheet, other means of enhancing the condenser’s per-

formance exist as well. For example, Beysens et al. (2013)

reported an increase in dew yields of up to 400 % for origami-

shaped collectors compared to a planar condenser inclined at

an angle of 30◦.

In general, the ideal condenser scenario suggests that

enhancing the properties of the condenser would increase

the occurrence of dew most significantly over the summer-

time Northern Hemisphere. In Antarctica and Greenland,

the summer-time dew yields increase significantly over the

subjective 0.1 mm d−1 limit in the ideal condenser scenario,

which results in these regions being highlighted in Fig. 9.

The absolute increase in the mean seasonal formation of

dew is presented in Fig. 10, suggesting that the dew yield

can be more than doubled in some areas in this extreme

scenario. In general, however, the increase in the absolute

dew yield is relatively small even in areas where enhancing

the condenser’s properties significantly increases dew occur-

rence. This implies that the relative importance of different

factors affecting dew formation varies globally, and that ra-

diative cooling is the main limiting factor, for example, in the

Mediterranean Sea.

3.4 Trend of dew

With the projected changes in climate and potentially in-

creasing occurrences of drought (Stocker et al., 2013), we

investigated the existence of temporal trends in the modelled

dew yields. Trends were calculated by applying the Mann–

Kendall (i.e. Kendall Tau-b) trend test (e.g. Agresti, 2010)

on seasonal means of yearly data. Unsurprisingly, the statis-

tical significance of the trends varies non-uniformly across

the globe. Nevertheless, in many regions a statistically sig-

nificant trend (p < 0.05) is found.

Figure 11 presents the overall change in the mean seasonal

formation of dew. Only statistically significant (p < 0.05)

changes are shown, with the trend being equal to the Theil–

Sen estimator (Theil, 1950; Sen, 1968). Interestingly, the

general trend appears to indicate a decrease in dew poten-

tial in most water-stressed areas. The changes appear in large

and roughly uniform areas, suggesting that the phenomenon

cannot be entirely attributed to noise. A significant decreas-

ing trend is also visible in the case study presented in Fig. 8.

In addition, a decreasing trend is also visible in parts of the

coastal regions of northern Africa and the Arabian Peninsula,

which we identified as regions of high dew collection poten-

tial (see previous sections).

4 Conclusions

The global potential for collecting dew on artificial surfaces

was investigated by implementing a dew formation model

based on solving the heat and mass balance equations. As

meteorological input, 34 years of global reanalysis data from

ECMWF’s ERA-Interim archive was used.

Dew formation was found to be common and frequent,

though mostly over land areas where other sources of wa-

ter exist. Nevertheless, some water-stressed areas, especially

parts of the coastal regions of northern Africa and the Ara-

bian Peninsula, might be suitable for economically viable

large-scale dew collection, as the yearly yield of dew may

reach up to 100 L m−2 for a commonly used LDPE foil. For

these locations, more accurate regional modelling and field

experiments should be conducted.

The long time series provides some statistical confidence

in conducting a trend analysis, and it suggests significant

changes in dew yields in some areas up to and exceeding

±10 % over the investigated time period.

It should be noted that the real-life usefulness of the results

presented in this paper depends on several factors not ac-

counted for in this study, such as other sources of water (pre-

cipitation, lakes, rivers, desalination of seawater), pipelines,

and road access to the location for transportation of water by

trucks, as well as financial and technological considerations.

Additionally, the uncertainties related to the transfer coeffi-

cients, the reanalysis data set and its near-surface application

as well as the inherent uncertainties in any global modelling

approaches should be acknowledged, and all numbers pre-

sented here are rough estimates only.
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