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Introduction 

In 1957, while studying Hilbert's famous thirteenth problem, A. N. Kolmogorov 
[86] obtained the following remarkable result. Set l = [O, 1], JR.= (-oo, +oo). 

KOLMOGOROV'S THEOREM. There exist increasing functions <ppq(x) E C(l), 
p = 1, ... , n, q = 1, ... , 2n + 1, such that an arbitrary given function 

can be represented in the form 

(0.1) 

where gq E C(R) depend on f. 

Thus, every continuous function of n variables can be represented by super
positions of continuous functions of one variable and the simplest function of two 
variables, namely, the sum of the variables. Earlier, Arnold [4], [5] showed that 
f E C ( 13) can be represented by superpositions of continuous functions of two vari
ables, while Kolmovorov himself [86] proved that f EC (In) is always representable 
as a superposition of continuous functions of three variables. Arnold's theorem has 
given a negative answer to Hilbert's conjecture. (About Hilbert's problems, we 
refer the reader to [72], [143-144], [145], [125], [95], [97-98].) 

Later on, Kolmogorov's theorem was extended and improved by a great many 
authors. (Of course, continuity is an essential requirement for representability by 
superpositions to become a deep and important result. When it is removed, the 
possibility of such representation is almost trivial. Let, say, f (x1, x2, xa) be an ar
bitrary function on 13, and let x1 = ~i(t), X2 = ~2(t) map l on 12. Ift = ~ (xi,x2) 
is any single-valued branch of the inverse map, it is necessarily discontinuous. Con
sider a function g(t, r) = f (~1(t), ~2(t), r) on 12. Then 

f (xi, x2, xa) = g [~(xi. x2), xa], 

and we obtain representation of an arbitrary function of three variables by a su
perposition of functions of two variables, although ~ is a discontinuous function 
here.) 

Besides problems of finding precise expressions for a given function in terms 
of a combination of functions of fewer variables, it is natural to consider problems 
concerning the best approximation of functions of several variables by combinations 
(of a special type) of functions of fewer variables. Back in 1938, Denisyuk [37] 
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considered the following approximation problem: for f(x, y) E £ 2 (12 ) find 

inf ff lf(x, y) - <p(x) - 1/J(y)l2 dxdy. 
<pEL2 (I) 11 
1/JEL2 (I) 12 

The space £ 2 being a Hilbert space, we can easily compute the best approximation 

(0.2) <po(x) + 1/Jo(Y) = 11 f(x, y)dy + 11 f(x, y)dx - ff f(x, y)dxdy. 
[2 

A similar problem in the space C (12), first studied by Diliberto and Straus [38], is 
much more delicate. Independently, the latter problem was studied by Aumann [9-
13]. In Ofman's paper [113], presenting results of Kolmogorov, Smolyak, Arnold, 
and Ofman himself, this problem was also studied independently of [38], and 12 

was replaced by an arbitrary set in the plane. In their paper, Diliberto and Straus 
initiated study of a natural procedure, a "levelling algorithm", for the construction 
of the best approximation <p*(x) +1/J*(y) of the function f(x, y). The same process, 
"by analogy", was suggested in [38] for the case where the number of variables is 
greater than two. However, Aumann [13] showed that already for the case of three 
variables, this algorithm does not lead to the corresponding best approximation 
and the calculation of its values. (Unfortunately, this work has not been widely 
known.) 

Golomb's paper [64] can be viewed as the starting point of a systematic study of 
approximation of functions of several variables by various combinations (including 
nonlinear ones) of functions of fewer variables in the £ 2-metric and in C. He has 
also described a more abstract version of the algorithm of Diliberto and Straus and 
an extension of that version to the case with a greater number of terms. However, in 
[13] it was also shown that this abstract version of the Diliberto-Straus algorithm 
cannot be extended to the case with more than two variables. 

Aumann suggested calling such approximation problems "approximate nomo
graphy". As is known, for a functional dependence to be nomographable, i.e., 
representable by a special system of graphic images (cf., e.g., [45a]), it is neces
sary that it admit a representation in terms of superpositions of a special kind 
(g (<p(x) + 1/J(y))). According to this viewpoint, consideration of precise represen
tations (similar to (0.1)) is "nomography", whil~ approximation by certain super
positions is "approximate nomography". In [37] it is also noted that the problem 
appeared due to the necessity of being able to approximate nomographically. How
ever, one has to keep in mind that Hilbert himself, while stating in his thirteenth 
problem ([72]) the question on superpositions, associated it directly with nomog
raphy, which had just then appeared in the fundamental treatise of M. d'Ocagne, 
"Traite de Nomographie", Paris, 1899. 

Also, note that in [38] the authors point out that their problem appeared in 
the framework of studies carried out by the Rand Corporation (and quite likely was 
associated with the possibility of the most economical storage of information in the 
memory (of a quite modest size) of contemporary computers). 

The above results on representation and approximation of functions of several 
variables by combinations of functions of fewer variables can be included (for the 
C-metric) into the following scheme. Let compact spaces X, {Xi} and continuous 
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maps cl>i : X --+ Xi, i = 1, ... , N, be given; we wish to study properties of the 
subspace D C C(X) that consists of the following sums of superpositions: 

D = {tgi o cI>i(x), 9i EC (Xi), i = 1, ... , N}. 
i=l 

(0.3) 

We are interested in the following properties of the subspace D: conditions 
when D coincides with C(X), i.e., D = C(X); density of D in C(X), closeness 
of D in C(X), proximinality of D, etc. The question is posed as follows: what 
requirements must one impose on the configuration (X, {Xi}, {cl>i}) in order that 
D possess one of the above properties? The problem can also be interpreted as the 
study of properties of the sum of closed subalgebras in the algebra C(X). For the 
study of equality D = C(X), the most crucial step after Kolmogorov's theorem was 
an approach based on duality introduced by Sternfeld in (133-136]. It turned out 
that the conditions ensuring the equality D = C(X) are realized as properties of 
the system cl>1, ... , cl> N to separate points or regular Borel measures on Y in some 
quite strong sense. Starting out from this observation, Sternfeld, in a difficult paper 
(135], showed that the number of terms in the Kolmogorov theorem (0.1) cannot 
be made smaller than 2n + 1. (Some preliminary results in those directions can be 
found in (132], (133].) 

Besides the above questions concerning properties of D, it is of interest to study 
the annihilator D.l.. in C(X)*, approximation of an individual function f E C(X) by 
functions in D: duality, existence and characterization of the best approximation 
off, its uniqueness (which almost always fails in such problems in the C-metric), 
and algorithms for constructing the best approximation. Similar questions arise for 
more general subspaces 

(0.4) D = { ~ hi(x) (gi o cI>i(x)J, 9i E C (Xi)}, 

where the hi(x) are given functions on X. Functions like those in (0.4) are called 
linear superpositions (A. G. Vitushkin). The most important example of linear 
superpositions is the following. Let (j) be a set of indices selected from N = 
{1, ... , N); (3) denotes a complementary set of indices to (j) (in N). Set Y(i) = 
Xi1 x · · · xXi;• where (j) =(ii, ... ,ii), and Y = X1 x · · · xXN. Let (ji), ... , (jm) 
be given index sets such that none of them completely includes another (non-empty 
intersections are allowed, though). Let Hi be a finite-dimensional subspace in 
C(Y(3>), and 

m 

(0.5) D = L Hi ® C(Y(3))• 
1 

In particular, for Hi one can take trigonometric polynomials (of several variables), 
provided that Y is a finite-dimensional Euclidean space. In that case, functions in 
Dare sometimes referred to as generalized polynomials, or quasi-polynomials. 

The list of problems discussed above (with some obvious modifications) is 
equally worth studying for other function spaces, as well. However, I have chosen 
to confine myself exclusively to the spaces C and l 00 • Only in §3 of the last chapter 
do I present a result regarding the space L 2 , one which provides a far-reaching 
extension of the solution (0.2). 
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The problems that we are dealing with in this monograph have attracted the 
attention of a large number of investigators, and the theory continues to develop 
actively. On one side, theory of approximation by linear superpositions provides 
a rich soil for models and development of general methods in Banach spaces, and 
contains a number of difficult problems. On the other side, it itself contains many 
possibilities for various applications (including numerical computations). Some 
developments of the theory were presented in the 1985 monograph by Cheney and 
Light (94], where approximation problems for a subspace D of (0.5)-type in two 
variables (N = m = 2) were considered. The book (94] also contains an extensive 
bibliography. The subject is, however, much larger than presented there, and, in 
particular, some important new results were obtained after (94] appeared. This 
allowed me to select the material for the present book in such a way that the 
overlaps with [94] are minimal. Formally, it overlaps with (94] only in §7 of Chapter 
2, where we study the algorithm of Diliberto and Straus. Though we only consider 
the case of the uniform metric and the subspace of sums (0.3) (N = 2), we go into 
much greater detail than [94] does. (In [94] the authors also considered not only 
subspaces (0.5) for N = m = 2, but different metrics as well.) 

In principle, investigations of superpositions of differentiable functions initiated 
by A.G. Vitushkin and later on studied in his joint work with G.M. Khenkin and 
by numerous other investigators, form an important part of the theory of super
positions. We have not pursued these developments here (let us cite the surveys 
[144], (145], [137], [95], [98]). 

Throughout the book, all propositions (theorems, lemmas, corollaries, etc.) 
are enumerated with the number of the section in which they appear and the 
number of the proposition itself in the section. Whenever we refer to a result from 
a different chapter, we also specify the chapter number. In some cases, for the 
reader's convenience, instead of referring to the preceding exposition, we reproduce 
the basic setting under investigation once more. 



CHAPTER 1 

Discussing Kolmogorov's Theorem 

§1. A. N. Kolmogorov's theorem 

The statement. The statement of Kolmogorov's Theorem given in the Intro
duction has been improved by many authors. G. Lorentz [35] observed that one 
could choose the functions 9k in (0.1) to be the same. Sprecher [123] showed that 
the functions cppq in (0.1) can be replaced by Apcpq with appropriate constants Ap· 

So, one can talk about representing an arbitrary continuous function f on 1n 
(where I= [O, 1]) in the form 

(1.1) f (x,, ... , Xn) ~ 2~1 
g (t, -"•"• (x,,)) . 

T. Hedberg [71] and J.-P. Kahane found a proof of (1.1) based on the Baire category 
theorem. 

Let us introduce some terminology: 

Quasi-all points. Let X be a complete metric space. We shall say that a 
certain property holds for quasi-all points in X (holds quasi-everywhere in X) if it 
holds for all points of a set U C X which is a countable intersection of open dense 
sets in X. (Therefore, the complement of U is a Fu set of the first Baire category.) 

Rationally independent numbers. Real numbers >..1 1 ••• , An are called ra
tionally independent if, for an arbitrary n-tuple ofrational numbers ri, ... , rni not 
all of which are equal to zero, the following holds: 

A.1r1 + · · · + AnTn =/:- 0. 

Rationally independent numbers >..1, ... , An must all be different, and at least n - 1 
of them are irrational. Quasi-all vectors >.. = (>..i. ... , An) of the space Rn have 
rationally independent coordinates. Indeed, any vector >.. = (>..i. ... , An) with ra
tionally dependent coordinates must belong to a hyperplane 

r1>..1+···+rnAn=0 

with a normal vector r = (r1, ... ,rn) with rational coordinates. Each such hyper
plane is a closed, nowhere dense set in X = Rn, and there are countably many of 
them. 

If we introduce a norm in Rn (for our purposes we do it by setting llA.11 = 
E~ IA.ii), then quasi-all vectors on the surface E of the unit ball have rationally 
independent coordinates. The ( n - 1 )-dimensional Lebesgue measure of the set r 
of those vectors equals the full measure of the surface E. 

5 
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Kahane's reformulation. Let ~ be a set of continuous, non-decreasing func
tions cp on I = (0, 1] such that cp{O) = 0, cp{l) = 1. Since it is a closed subset in the 
space C[O, 1] of continuous functions on (0, 1] (with the usual norm),~ is a complete 
metric space. It is not hard to see that quasi-all functions in ~ are in fact strictly 
increasing. Indeed, if 0 :5 ri < r2 :5 1 are two rational numbers, then the set Uri.r2 

of all functions cp E ~such that cp (r1) < cp (r2) is open and everywhere dense in~. 
The intersection U = n Uri.r2 consists of all strictly-increasing functions, and is 

r1,r2 
an intersection of a countable number of everywhere dense sets on ~. 

Set ~2n+l = {{cpi, ... , 'P2n+i), where 'Pi E ~. i = 1, ... , 2n + 1}. ~2n+l is 
a complete metric space as well (it is a closed subset of [C(I)]2n+i ). 

In Kahane's reformulation, the Kolmogorov theorem has the following form: 

THEOREM 1.1. Let .A1 > 0, ... , An > 0 be rationally independent numbers, 
n 

:~::::>P = 1. For quasi-all n-tuples ( cpi, ... , 'P2n+l) E ~2n+l the following statement 
1 

holds: 
For any f E C (In) there exists a function g E C(I) such that the representation 

(1.1) holds. This is true whenever C (In) and C(I) are simultaneously taken as 
spaces of real- or complex-valued functions. 

Free interpolation in the choice of an outer function. As was observed 
in (71], (74], (95], one has a great deal of freedom in choosing an outer function g 
in the superposition {1.1). For example, g could be chosen among all restrictions to 
[O, 1] of functions g(x) = g (eix), x E [O, 27r], such that g(z) is analytic in the disk 
{z: lzl < 1} and continuous in the closed disk {z: lzl :5 1}. 

We are going to associate this observation with a possibility of so-called free 
interpolation in choosing g. Let Y be a subspace of the space C(K) of functions 
continuous on a compact set K; let E c K be a closed subset. We say that Y 
interpolates freely on E if for each H(x) E C(E) there exists g E Y such that 
g(x) = H(x) for x E E. We say that Y interpolates freely on E with a constant c 
(c ~ 1), if for each H(x) E C(E) there exists g(x) E Y such that 

(1.2) g(x) = H(x), x EE, 

If Y is a closed subspace in C(K) that interpolates freely on E, then free interpo
lation always occurs with a constant c. 

An important example of free interpolation is given by the Rudin-Carleson the
orem (see, e.g., [55]) concerning boundary values of continuous analytic functions. 
In relation to our situation, this theorem can be described as follows. Let Y consist 
of boundary values g(x) = g (e211"ix), 0 :5 x :5 1, of functions g(z) analytic in the 
unit disk {z: lzl :5 1}. Then Y interpolates freely with the constant c = 1 on every 
closed set E c (0, 1) that has measure zero. 

THEOREM 1.2. Let .A; be as in Theorem 1.1, and let Y be a closed subspace 

in C(I) that interpolates freely with a constant c < 2~:: ~) on a nowhere dense 

closed subset E c {O, 1) and on all sets obtained by adding finitely-many points from 
[O, 1] to E. Quasi-all (2n + 1)-tuples {cpi, ... , cp2n+1) E ~2n+l have the following 
property: for any f (xi. ... , Xn) EC (In) and any HE C(E), there exists a function 
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g(x) E Y such that (1.1) holds and 

(1.3) g(x) = H(x), xEE. 

COROLLARY 1.3. In particular, the conclusion of Theorem 1.2 holds for Y = 
{g(x): g(x) = g (eix)}, where g(z) is analytic in {z : lzl < 1} and continuous in 
{z: lzl ~ 1}. 

If f (xi, ... , Xn) satisfies f (0, ... , 0) = f (1, ... , 1), then one can choose Y = 
{g(x) : g(x) = g (e211"ix) }; the reason is that in the proof of Theorem 1.2, one must 
construct a function g that interpolates the value f(O, ... , 0) at the point x = 0 
and the value f(l, ... , 1) at x = 1, while a function continuous on the circle must 
satisfy g(O) = g(27r). 

Lemmas. Consider a map A : Rn -+ R defined by 

(1.4) 
n 

a E Rn i---t A(a) =(A, a)= L Akak, 
i 

where A = (Ai, ... , An) is a vector whose coordinates satisfy the assumptions in 
Theorems 1.1 and 1.2, and a= (ai, ... , an)· 

LEMMA 1.3. (1) Let Q be the set of all points with rational coordinates in Rn. 
The map A is injective on Q. 

(2) A (In)= I, A (I0) =Io (I= [O, 1], Io= (0, 1)). 
(3) A-i(E) is a nowhere dense closed set. 

PROOF. (1) follows from the rational independence of Ai, ... , An· (2) is obvi
ous. If we assume that A -i ( E) is dense somewhere, then it contains a ball S. But 
then E :::> A(S) must contain an interval, since a linear map A is an open map. 

LEMMA 1.4. Let A be a restriction of A onto In. Then: 
(1) A-i(o) = (0, ... ,0), A-i(l) = (1, ... ,1). 
(2) The set U = A-i (Io \E) is open and everywhere dense in In. 
(3) Let Ui1 ••• ik (ii < · · · < ik) be a set of points in U such that their coordinates 

with indices different from ii, ... , ik are fixed. For a point a E Ui1 ... ik, denote by a' 
a point in Rk whose coordinates coincide with free coordinates of the point a (i.e., 
coordinates with the indices ii, ... , ik). The points a' form an open and everywhere 
dense set. in Ik. 

n 

PROOF. (1) follows since all Ap > 0 and LAP= 1. (2) follows from statement 
i 

(3) of the preceding lemma. Let us focus on (3). Let ai1 , ••• , aik be those coordi-
nates of a that are free to vary, and b;, j =I= ii, ... , ik, be fixed coordinates of a. 
Then, 

k 

(1.5) A(a) = (A, a) = L Aitait + L A3b3. 
i=i j~ii, ... ,ik 

It is clear that (1.5) defines an affine map A of Ii1 x · · · x Iik into I: 
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As in (3) of the preceding lemma, we can show that A- 1(E) is closed and nowhere 
dense. Hence, ui1 ... ik = A-1 (Io\E) is open and everywhere dense in Jk. 

LEMMA 1.5. Let 0 = a1 < a2 < · · · < am = 1, m > n + 2. Let a number 
c > 0 be chosen so that 2c < ~in (ai+l - ai)· Set Si = (ai - c, ai + c) for 

l<i<m-1 

i = 2, ... ,m - 1, and S1 = {Of Sm = {1}. There exist intervals O'i C Si, i = 
2, ... , m -1, so that (for the sake of notational symmetry we also define a1 = S1 = 
{O}, O'm =Sm= {1}) the Cartesian product of any n of the intervals ai, ... ,am 
belongs to the set U = A- 1 (10\E). Moreover, at different places in those products 
we can take the same intervals, and the order of the terms in the product need not 
coincide with the order determined by the indices of those intervals. 

PROOF. Consider all possible permutations with repetitions of n numbers taken 
from the numbers 1,. .. ,m. Let (i1,. .. ,in) be such a permutation. The paral
lelepiped si1 x ... x sin c 1n contains a parallelepiped afl x ... x at' afk c sik' 
that is entirely contained in U. If there are no ones or zeros among the numbers 
i 1 , ... , in this follows from (2) of Lemma 1.4, while if there are some ones (or zeros) 
it follows from (3) of Lemma 1.3. The upper index denotes the number of the step 
of the argument. Let us now take another permutation (ji, ... ,jn) with repetitions 
out of the indices 1, ... , m. Taking the product S;i x · · · x Sjn, replace in it factors 
with the indices that have already appeared in the preceding set ( i 1 , ... , in) by a 1. 

For example, if i£ has already been chosen among i1, ... , in. then we replace Sh by 
aJt. Once again, according to (2), (3) of Lemma 1.4 there exists a parallelepiped 
aJ1 x · · · x aJn that entirely belongs to U and, moreover, ah C Sh (.e = 1, ... , n). 
For those numbers from the first collection that are not included in the second, 
we simply change the upper index from 1 to 2 for corresponding intervals a. Take 
the next set of indices (k1, ... , kn) and consider the product Sk1 x · · · x Skn. For 
those indices that have already been chosen in the first or second collection, replace 
the factors in this product by smaller intervals a~. Once again, there exist smaller 
intervals a~k c Sik so that their Cartesian product is contained in U. For those 
indices from the first two collections that do not belong to the third collection, now 
simply replace for the corresponding intervals a the upper index 2 by 3 and pass 
on to the next set of indices. After N = mn steps, when we have considered all 
possible permutations of n indices, we obtain intervals af, ... , a::i satisfying the 
statement of the lemma (and we can remove the upper index). 

The Main Lemma. The following lemma plays the major role in the proof 
of Theorem 1.2. It is a natural extension to a more complicated situation of the 
main step in the proof of the Kahane-Hedberg Theorem 1.1. 

LEMMA 1.6. Let the numbers Ai, ... , An, a set E, a subspace Y C C[O, 1], 
and a constant c satisfy the assumptions of Theorem 1.2. Choose a number co, 

0 < co < 2(n ~ l), (1 - co) c < 1. According to the conditions imposed on c, we 

have 

( 1 1 ) c _ 2n + 1 1 
- 2(n+l) - 2(n+l)' c< · 

So, if co is less than but sufficiently close to 2(n~l}' we shall have (1 - co) c < 1. 
For all F(x1,. .. ,xn) E C(In) and all H(x) E C(E), denote by O.(F,H) the set 
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of all collections (cpi, ... , 'P2n+1) E ~2n+l for which there exists a function h E Y 
with the following properties: 

(1.6) llF (xi. · · · , Xn) - };' h (~ .>.,\P.( Xp)) II < (1 - Eo) c max ( llFll llH ID , 

{1.7) h(x) = 2e:oH(x), x EE, llhll ~ 2eocmax(llFll, llHll). 

Then O(F, H) is an open everywhere dense set in ~2n+l. 

PROOF. The fact that O(F, H) is an open set is obvious, since when condi
tions {1.6) and {1.7) hold for some collection (cpy, ... ,cpgn+i) E ~2n+l with a 
function h E Y, they will also hold for all collections in ~2n+l sufficiently close 
to (cpy, ... ,cpgn+i)· Let us check that O(F,H) is everywhere dense in ~2n+l. Let 
'P be an arbitrary open set in ~2n+l. We have to show that the intersection of 
O(F, H) and 'Pis non-empty. Denote by 8 = o{e:, 'P, F, H) a small positive number 
to be chosen later and consider {2n + 1) intervals 

{1.8) 
Iq = {Iq{j)} = {[qo + (2n + l)jo, qo + (2n + l)jo + 2no]}, 

j = 0,±1, ... ; q = 1, ... , 2n + 1. 

Note the following: 
1°. For a given q, the intervals Iq(j) are disjoint and separated by intervals of 

length 8. 
2°. Every point in I = [O, 1) is covered by intervals of all series I q, except perhaps 

for one value of q. 
Consider now the series of cubes Pq of dimension n: 

{1.9) Pq = {Pq (ji, ... ,jn) = Iq (ji) x Iq (h) x · · · x lq (jn)}, 

where (j1, ... ,jn) is an arbitrary permutation with repetitions of indices j. 
According to 2°, each point of the unit cube In can fail to be covered by cubes 

Pq out of no more than n series, and hence is covered by cubes Pq of at least n + 1 
series. Let !:::.. be a set of collections (cpi, ... , 'P2n+i) E ~2n+l such that cpq are 
constants on intervals of the system Iq and linear on the intervals in-between Iq(j) 
and Iq(j + 1). Now choose 8 > 0 so that the following hold: 

(a) The oscillation of Fon any of the cubes Pq does not exceed ellFll (in the 
case when Fis a complex-valued function, by the oscillation of Fon Pq we 
understand the diameter of the set F ( Pq)). 

{b) Pnt::..=/=0. 
Clearly, (a) and {b) are satisfied if we choose 8 > 0 sufficiently small. Let 

( cpy, . .. , cpgn+l) E ~2n+l belong to 'P n !:::... Denote a constant value of cpg on 
the interval Iq(j) by cpg(j). We can assume that the values of all functions cpg are 
different, i.e., cpq (j1) =I= 'Pr (h), provided that q =I= r, or that q = r but j1 =I= h- This 
holds for all intervals, except for those containing 0 or 1 (if the series Iq contains such 
intervals), because cpg(o) = 0, cpg{l) = 1 always. Apply Lemma 1.5, taking for the 
numbers a; the values cpg(j). Accordingly, we can replace the values cpg(j) on Iq{j) 
by rational values rq(j) that are arbitrarily close to cpg(j) {and hence are different) 
and such that the point (cpq (j1), ... , cpq (jn)) for each permutation (j1, ... ,jn) 
belongs to the set U = A-1 (Io \E) {Lemmas 1.4 and 1.5). Interpolating linearly 
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between the intervals Iq(i), we obtain functions cpq such that (cpi, ... , cp2n+i) E 
P n ~. Now consider the functions 

n 

(1.10) 'l/Jq (xi,. .. , Xn) = L Apcpp (xp) = A ( cpq (xi),. .. , cpq (xn)). 
p=i 

On each of the cubes Pq (ji, ... ,in) the functions 'l/Jq take constant values 

A ( cpq (ii) , ... , cpq (in)) E Io \E, 

provided that the cube Pq (ji,. .. ,in) does not contain (0, ... , 0) and (1,. .. , 1). 
If (0, ... , 0) or (1, ... , 1) belongs to that cube the values of 'l/Jq will be 0 or 1, 
accordingly. 

Finally, consider a map X (q;ii. ... ,in) of all sets (q;ii, ... ,in) into I defined 
as follows: 

X (q;ii. ... , in) = 'l/Jq (xi,. .. , Xn) =A (cpq (xi), ... , cpq (xn)), 

(xi,. .. ,xn) Eiq(ii, ... ,in)· 

If Pq(ii, ... ,in) 3 (0, ... ,0), thenX(q;ii, ... ,in) = 0. If Pq(ii,. .. ,in) 3 
(1, ... , 1), then X (q;ii. ... ,in)= 1. In both cases, then-tuples (ii. ... ,in) clearly 
contain the same numbers. X maps injectively all other selections (q;ii. ... ,in) 
into Io \E (because the values cpq(i) are different rational numbers, while the num
bers >.i, ... , An are rationally independent). 

Taking a cube Pq (ji, ... ,in), define on it the value M (q;ii. ... ,in) of the 
function F (xi, . .. , Xn) as follows: if Pq (ii, ... , in) does not contain (0, ... , 0) 
and (1, ... ,1), then M(q;ii, ... ,in) can be any value of F(xi, ... ,xn) on that 
cube. If Pq (ii. ... ,in) contains (0, ... , 0), then M (q;ii. ... ,in)= F(O, ... , 0). If 
Pq (ji, ... ,in) contains (1, ... , 1), then M (q;ii. ... ,in)= F(l, ... , 1). 

Now we construct a continuous function h on the interval I satisfying the 
following interpolation conditions. At points X(q;ii.· .. ,jn) (the number of such 
points in I\E is finite) 

(1.11) 

and 

(1.12) h(x) = 2c:H(x), xEE. 

According to the assumptions of the lemma such a function can be chosen from the 
subspace Y C C(I); moreover, in view of the choice of M(q;ii, ... ,in), 

(1.13) llhJI $ 2c:ocmax (llFJI, JIHJI). 

Let x =(xi, ... ,xn) E In. If x E Pq (ii. ... ,in), then 

h ('l/Jq (xi, ... , Xn)) =h (X (q;ii. ... ,in)) = 2c:oM (q;ii. ... ,in) 
=2c:F(xi, ... ,xn)+2c:o[M(q;ii, ... ,in)F(xi, ... ,xn)] 

=2c:oF (xi, ... , Xn) + Pq· 

The oscillation of F (xi, ... , Xn) on Pq (ii. ... ,in) is less than c:ollFJI, and hence 

IPql :::; 2c:~llFJI. 
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(M (q;ji, ... ,jn) is the value of Fon Pq (ji, ... ,jn)!) Since every point x in In falls 

into at least (n + 1) cubes of the system Pq, q = 1, ... , 2n + 1, and co < 2(n ~ l), 

we shall have 

2n+i 
F (xi. ... , Xn) - L h (,,Pq (xi, ... , Xn)) 

i 

= F (x1, ... , Xn) - '~\ (t, A,(Pq(x,)) 

:5 IF (xi. ... , Xn) - E' h (,,Pq (xi, ... , Xn))I +IE" h (,,Pq (xi, ... , Xn))j, 

where E' is taken over (n + 1) of the q's for which cubes from the series lq cover 
the point (xi. ... , Xn), and E" contains the n remaining q's. Let us continue the 
above estimate: 

:5 IF (xi. ... , Xn) - 2co(n + l)F (xi, ... , Xn)I + 2c~(n + l)llFll + nllhll 

< (1- 2co(n + 1)) llFll + 2c~(n + l)llFll + 2ncocmax (llFll, llHll) 

:::; (1- 2co(n + 1) + 2c~(n + 1) + 2nco) cmax(llFll, llHll) 

:::; (1 - co) cmax (llFll, llHll) · 

Thus, the set offunctions (<pi, ... , <p2n+i) E cI>2n+l we have constructed belongs to 
O(F, H) and at the same time to 'P. We have proved that O(F, H) is an everywhere 
dense set in cI>2n+i . 

DISCUSSION. Clearly, the crux of the above construction was the possibility 
of guaranteeing that for an arbitrary point from 1n the number of series of cubes 
covering it is larger than the number of those that miss it. According to a well
known theorem of Lebesgue from basic dimension theory (cf. [72a] for the principles 
of the theory), if "small" cubes cover In, then there is a point in In that is covered 
by (n + 1) cubes. So, less than (n + 1) series cannot possibly be enough to cover 
In, although we needed 2n + 1 such series. 

Another important point was the rational independence of Ai, ... , An that pro
vided injectivity of the inner product (A, a) : a E 1n --+ (A, a) E I on a set of vectors 
with rational coordinates. It is plausible that when choosing Ai, ... , An one could 
require only injectivity of (A, a) on vectors a whose coordinates consist exclusively 
of zeros or ones, and then construct an everywhere dense set of real numbers con
taining zero and one such that the inner product (A, a) is injective on vectors a 
with coordinates from that set. 

Finally, let us draw attention to the importance of constructing the values of 
1/Jq (xi. ... , Xn) in such a way that those values did not fall into the set E. This 
required a whole new set of tricks that would not have been necessary for the proof 
of Theorem 1.1. 

COMPLETION OF THE PROOF OF THEOREM 1.2. Now let A = {Fµ}, µ = 
1, 2, ... , be a countable, everywhere dense family of functions in C (In), and let 
B = {H11 }, v = 1,2, ... , be a countable everywhere dense family in C(E). We can 
assume that whenever H 11 , H 111 belong to B, then so do H 11 ± H 111 (e.g., B could be 
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the set of all polynomials with rational coefficients). Set S1 = nn (F,,_, H,,,). Clearly, 
µ,,v 

S1 contains quasi-all collections (cpi, ... , cp2n+1) in c'l>2n+l. For each f (xi, ... , Xn) E 
C (In), each arbitrary set (cpi, ... , cp2n+i) En, and every HE C(E), let us show 
that there exists a function g E Y such that {1.1) holds and 

{l.14) g(x) = 2coH(x). 

Obviously, {1.3) and {l.14) are the same condition. Choose a number c1 so that 
0 < c1 < co, but {1 - c1) c < l. For every f E C (In), it is possible to find a 
function F E A such that 

{l.15) II! - Fii <(co - c1) llfll, llFll $ 11111. 

Taking an arbitrary function HEB, and applying Lemma 1.6 to F and H, we find 
h(x) E Y satisfying the following conditions: 

{l.16) II/ ( "" · · · , •.) -2~1 
h (t, >.,,,,, ( x,,)) I < (1 - •1) c max (II/ 11. llHID , 

h(x) = 2coH(x), x EE, llhll $ 2cocmax(llfll, llHll). 

We shall denote such a function by h = -y(f, H) {there are many such h's for a given 
f and H, so we take any one of them). Finally, let us take an arbitrary function 
H(x) E C(E) and expand it into the series 

{l.17) 
H(x) = Ho(x) + H1(x) + · · · + Hm(x) + · · ·, H; EB, 

llH;ll $ [c{l - c1)]; {3, f3 = max(llfll, llHll). 

This can be done by choosing a sequence of functions {Sm ( x)} C B approximating 
H(x) sufficiently fast and setting Hm(x) = Sm(x)-Bm-1(x), m = 1, 2, ... , Ho(x) = 
So(x). Construct recursively the sequences {!;(xi, ... , Xn)} and h;(x) E Y: 

{l.18)fo (xi, ... ,xn) = f (xi, ... ,xn); h;(x) = 'Y (!;, H;), j = 0, 1, ... 

{l.19) f;+i (xi, ... , Xn) = fj (xi, ... , Xn) -
2f 1 

h; (t Apcpq (xp)) . 
q=l 1 

In view of {l.16)-(1.17), we obtain the estimates: 

llfi II $c {1 - c1) {3; 

llh II $c (1 - c1) max (llfi II , llH1 ID 

$max ( c2 (1 - c1)2 {3, c (1 - c1) llH111) $ c2 {1 - c1)2 {3. 

In general, 

(1.20) j = 1,2, .... 

The norms of the h; can be estimated similarly: 

llholl $ 2cocmax(llfll, llHolD = 2cocf3, 

llhill $ 2cocmax (II fill, llH1 ID $ 2cocf3 (c (1 - c1)), 

llh2ll $ 2cocmax (llf211, llH2ID $ 2cocf3[c2(1 - c1)2]. 
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In general, 

(1.21) j = 1,2, .... 

In view of the estimates (1.20) and (1.21), the series 

(1.22) ho + h1 + .. · + hm + .. · 
converges in norm in C(I), while fm --+ 0 in C (In) when m --+ oo. Let g(x) and 
9m(x) denote the n-th partial sum and the sum of the series (1.22), respectively. 
Adding up the equalities (1.19) for j = 0, ... , m, we obtain 

f m+dxi. · · · • X.) = f 0 (Xi, · • · • Xn) - 't,' Um [t. \,<pq ( Xp)] · 

Taking the limit in the last equality as m--+ oo, we obtain (1.1). Moreover, g E 
Y since 9m E Y, m = 1, 2, ... , and Y is a closed subspace in C(I). Also, the 
interpolating property (1.12) holds according to the construction of the functions 
h;. The proof of the theorem is now complete. 

REMARK. Instead of quasi-all collections (cp1, ... , 'P2n+1) E <.1.>2n+l in Theo
rem 1.1, one could consider quasi-all collections from [ C (I)) 2n+ 1 . The proof remains 
the same. 

A geometric interpretation of Kolmogorov's theorem. Let Ai, ... , An 
be the same as in Theorems 1.1 and 1.2, and let ( cpi, ... , 'P2n+l) be a collection of 
functions from <.1.>2n+i that provides the possibility of representation (1.1). Define 
a continuous embedding of 1n into R2n+l by setting 

n 

(1.23) Xq = L Apcpq (xp), p = 1, ... , 2n + 1. 
p=l 

The image of 1n in R2n+l under this map is a compact set r inside 12n+l. According 
to (1.1), for an arbitrary f E C (In) we have the following representation: 

2n+l 

(1.24) f (xi, ... , Xn) = L g (Xq) . 

This, in particular, implies that the embedding (1.23) is a homeomorphism. Indeed, 
if two different points x1 = ( x~, ... , x;) and x2 = ( x~, ... , x~) correspond to the 
same point (Xi. ... , X2n+i), then, taking a function f so that it assumes different 
values at x1 and x2 , we would have been unable to represent it by (1.24). We can 
interpret (1.1) and (1.24) as formulas that allow us to extend to 12n+l an arbitrary 
(continuous on r) function by the formula 

2n+l 

(1.25) L g(Xq)' g E C(J). 
1 

In other words, the subspace Z c [(I2n+l)) that consists of all functions (1.25) 
interpolates freely on r. Thus, Kolmogorov's Theorem admits the following geo
metric interpretation: there exists a homeomorphic embedding of 1n into 12n+i 
such that the subspaces Z of type (1.25) freely interpolate a compact set r, the 
image of In. 
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Ostrand (114] and Tikhomirov (87] extended Kolmogorov's Theorem to arbi
trary n-dimensional metric compact sets. Namely, if K is an n-dimensional compact 
set, then there exists a homeomorphic embedding cp : K ---+ J 2n+l (Xq = cpq(x), 
x EK, q = 1, ... , 2n + 1, cpq(x) E C(K), cp(x) = (cp1 (x), ... , 'P2n+l (x))) such that 
the subspace of functions (1.25) interpolates freely on the compact r = cp(K) (cf. 
Theorem 2.15 below). 

The fact that any n-dimensional compact set K can be homeomorphically em
bedded into 12n+i had been known much earlier. This is the Menger-Nobeling 
theorem (cf. (72a], p.84). However, the Kolmogorov-Ostrand-Tikhomirov theorem 
gives much more, since the compact set r is shown to possess an important addi
tional property. 

Let us make a remark concerning the geometric structure of r. Consider a 
continuous curve 'Yin JR2n+l defined by the parametric equations 

(1.26) Xq = cpq(t), 0 $ t $ 1, q = 1, ... , 2n + 1. 

Formula (1.23) for coordinates of points of the compact r shows that r is a convex 
combination with coefficients A1, ... , An of n copies of the curve 'Y· 

Fridman's improvement. Quasi-all collections (cp1, •.. , 'P2n+i) E <J?2n+l 

consist of strictly increasing functions. So, we can assume that functions cp1, ..• , 

'P2n+l in Theorem 1.1 are strictly increasing. Consider a curve 'Y given by (1.26) 
with such cpq, so it is in this case a simple arc. Since the functions cpq have bounded 
variation (they are increasing), 'Y is a rectifiable curve. Let s be the arc length 
parameter on 'Y showing the length of the arc corresponding to the segment (0, t] 
of the parameter t, and let 8 denote the total length of 'Y· Setting u = i• we can 

define 'Y by the natural parametric equations 

(1.27) Xq = cpq(u), 0 $ u $ 1, q = 1, ... , 2n + 1. 

s1 s2 1 2 
Let U1 = 81' U2 = 82 be two values of the parameter, and Xq' xq the correspond-

ing values of the coordinate function Xq. Clearly, 

(1.28) 

so the functions cpq satisfy the Lipschitz condition of order one. 
Since r = E~ Ap'Ypi where 'YP are copies of -y, we have for (Xi, ... , X2n+i) E r 

n 

(1.29) Xq = LApC{)q (up). 
p=l 

Therefore, we have the maps 

(xi, ... , Xn) +----+ (ui, ... , Un) 

~ / 
(Xi. ... , X2n+i) 

where the diagonal arrows are homeomorphisms of In onto r, while the horizon
tal one is a homeomorphism of 1n onto itself. The functions f (x1, ..• , xn) E C (In) 
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pass into the function F (ui, ... , un) EC (In), and for any F (ui, ... , un) EC (In) 
we have 

{l.30) F (ui, ... , un) ~ 'f,' g (t,Av\Pq (u,)) . 

Thus, for any F E C (Jn), the functions cpq in the representation {l.30) can be 
chosen to be strictly increasing and to satisfy the Lipschitz condition of order one. 

The possibility of choosing Lipschitz functions for inner functions in Kolmogo
rov superpositions was first established by Fridman (52]. It required a significant 
improvement of Kolmogorov's original construction. An observation showing that in 
fact such a possibility follows automatically from Kolmogorov's original statement 
is due to Kahane (74]. Some deep investigations of Vitushkin (143-146] show that 
if the cpq are continuously differentiable, then the representation {l.30) is impossible 
for certain f E C (In). 

§2. Duality in problems concerning representations by superpositions 

From now on C(T) denotes the Banach space of real-valued continuous func
tions on a compact Hausdorff space T. The space C(T) is equipped with the usual 
uniform norm {if 9 E C(T), then 11911 =max l9(t)I, t ET). By B(T) we denote the 
Banach space of real-valued bounded functions on an arbitrary set T. In that case, 
for 9(t) E B(T), 11911 =sup l9(t)I, t ET. 

In connection with the contents of Section 1, it is natural to consider the fol
lowing problem. Let x, X1, ... 'XN be compact sets, and 'Pi : x---+ xi continuous 
maps. In C(X) let us consider the subspace D consisting of the following functions: 

{2.1) D = {g1 o cp1(x) + · · · + 9N o 'PN(x)}, 9i E C (Xi) , i = 1, ... , N. 

What conditions should be imposed on X, {Xi}, {cpi} in order to guarantee D = 
C(X)? In other words, under what conditions can one claim that for each f(x) E 
C(X) there is a representation 

{2.2) f(x) = 91 o cp1(x) + · · · + 9N o 'PN(x), 

The same question appears when one considers more general subspaces D. Let the 
functions hi(x) E C(X), hi(x) ~ 0, be given, and consider the subspace D given by 
{2.3) 

D = {h1{x)91 o cp1(x) + .. · + hN (x)9N o 'PN(x), 9i EC (XiH = 1, ... , N}. 

Again, we raise the question of what conditions would imply D = C(X). Instead 
of finite sums in the definition of D, one could also use infinite series. 

Let the compact sets X, {Xi}, i = 1, ... , continuous maps 'Pi : X---+ Xi, and 
the functions hi(x) E C{X), hi(x) ~ 0, be given. Consider the subspace DC C(X) 
that consists of functions 

00 

{2.4) f(x) = L hi(x)9i(x) o 'Pi(x), 
i=l 

where 9i E C (Xi) and the series 

{2.5) 
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converges. (In the case when the sequence {Xi} is finite, {2.5) does not impose 
any additional restrictions on the selection of Yi E C (Xi).) Functions (2.3) and 
(2.4) are called linear superpositions. The given functions hi(x) are called basis 
functions, while the functions Yi are called coefficients. Thus, the question that 
interests us can be formulated in the following way: Under what hypotheses does 
a subspace of linear superpositions coincide with C(X)? 

In the case when all basis functions hi(x) = 1, the latter question, in view 
of the well-known Stone theorem (see, e.g., [40]), can be interpreted in terms of 
function algebras: in C ( X) there are given closed subalgebras Ai, ... , AN, each 
one of which contains the constants. Under what conditions does their algebraic 
sum 

{2.6) 

coincide with C(X) {cf. §1 in Chapter 2 for more details)? In this form the question 
readily extends to the case of a countable set of such algebras. 

Subspaces similar to D can be constructed out of merely bounded functions as 
well. Let X, {Xi} be arbitrary sets, 'Pi : X--+ Xi arbitrary maps, hi(x) EB (Xi), 
hi(x) "¢ 0, given functions, i = 1, ... N, or i = 1, 2, .... In the space B(X) consider 
the subspace BD defined by one of the following: 

(2.7) BD = {g1 0 cp1(x) + ... + YN 0 'PN(x)}' Yi E B (Xi), i = 1, ... , N; 

(2.8) 

{2.9) 

BD = {h1{x)y1 o cp1{x) + .. · + hN (x)yN o 'PN(x)}, 

Yi EB (Xi), i = 1, ... , N; 

Yi E B (Xi) , i = 1, 2, ... , 

where the Yi satisfy {2.5). The question that interests us then is, under what 
conditions do we have BD = B(X)? 

The above questions turn out to be dual to the problem of distortion of certain 
classes of measures under the mappings 'Pi· On X, let there be given a real, finitely 
additive measure µ defined on an algebra M of subsets of X and having total 
variation Jlµll· {In the sequel we only consider measures with finite total variation, 
and for such a measureµ, 11µ11 denotes its total variation.) Let q> : X --+ Y be a 
mapping of the set X into a set Y. Let v = q> o µ denote the measure defined on 
the algebra N of subsets of Y such that EE N if q;-1{E) E M, while 

{2.10) v(E) = µ (q>- 1(E)). 

Clearly, 

{2.11) 

since under the mapping q> there is a possibility of mixing up the images of those 
sets on which µ is positive with those where it is negative. 

It turns out that the answers to the questions raised above concerning coinci
dence of D with C(X) or BD with B(X) are associated with whether the maps 
{'Pi} provide, for an arbitrary measureµ in a certain class, not too large a damage 
from such mixing for at least one 'Pi· Note that if a bounded function y(y) defined 
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on Y is measurable with respect to the algebraN, then g [il>{x)] is measurable with 
respect to M and 

(2.12) Lg [il>{x)] dµ = [ g(y)d [<I> o µ]. 

THEOREM 2.1. In order that the subspace D of functions {2.4) satisfying {2.5) 
coincide with C(X), it is necessary and sufficient that there exists a number >., 
0 < >.::; 1, such that for an arbitrary, regular Borel measureµ on X, 

(2.13) 

PROOF. First, recall that the dual space C(T)* of the space C(T) (Tis com
pact) can be identified with the space of regular Borel measures on T with the 
norm equal to the total variation of measures. {This is the well-known theorem of 
F. Riesz, see, e.g., [40, Chapter IV].) Another important needed fact from func
tional analysis is the following. Let V and W be Banach spaces, V* and W* their 
duals, A: V--+ W a continuous linear operator, and A* : W*--+ V* its adjoint. In 
order that the operator A be surjective, it is necessary and sufficient that there ex
ists a positive number>. such that llA*µll ~ >.iiµll for allµ E W*. In order that the 
operator A* be surjective, it is necessary and sufficient that there exists a number 
>. > 0 such that llAvll ~ >.iivll for all v E V. {The latter part of this criterion is not 
needed here, but will be used later on in this section.) 

To prove Theorem 2.1, we argue as follows. Let G1, ... , Gi, ... be a sequence of 
Banach spaces, and let { T/i} be a sequence of positive numbers. Consider a subspace 
G, whose elements g are sequences {gi}, Yi E Gi, i = 1, ... , such that 

00 

{2.14) llYll ~r L T/illYill < +oo. 

With the norm (2.14) G becomes a Banach space. The dual space G* of G can 
be identified with the space of sequences L = {Li} of linear functions Li E Gf, 
i = 1, ... , and 

{2.15) llLll =sup llLill. 
i T/i 

{Obviously, only those sequences L are included in G* for which llLll in (2.15) is 
finite.) A functional L acts on elements g = {gi} as follows: 

{2.16) 

The series {2.16) converges absolutely in view of {2.14) and {2.15). 
In the context of Theorem 2.1 we take Gi = C (Xi), i = 1, ... , T/i = llhill, 

and construct the space G as above. Define a continuous linear operator A : G --+ 

C(X) by associating to each g E G, g = (gi, ... ,gi, ... ), Yi EC (Xi), a function 
Ag = f(x) defined by {2.4). In view of our construction and {2.14), the series 
{2.4) converges in C(X) and llAll ::; 1. Find the adjoint A* : C{X)* --+ G*. For 
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an arbitrary regular Borel measure µ on X (defining a continuous functional µ on 
C(X)) and any g E G we must have 

(Ag,µ)= (g,A*µ). 

From {2.4), (2.12), and {2.16) it follows that 

(Ag,µ)= l ( ~hi(x)gi ocpi(x)) dµ = ~ li Yid [cpi o hiµ]. 

Hence, 

{2.17) 

Since by {2.15) with 'fli = JJhiJJ we have 

{2.18) llA* 11- llcpio(hiµ)JI 
µ -s~p llhill ' 

the criterion for surjectivity of the operator A has the form {2.13). Since 

we obtain for>. in {2.13) the estimate 0 < >. ~ 1. Theorem 2.1 is proved. 

The space B(T)*, dual to B(T) (T is an arbitrary set), consists of finitely 
additive measures of bounded variation defined on the algebra of all subsets {[40, 
Chapter IV]). So, introducing some obvious changes in the above arguments we 
obtain the following result. 

THEOREM 2.2. In order that the subspace BD of functions {2.9) satisfying 
{2.5) coincide with B(X), it is necessary and sufficient that there exists a number 
>., 0 < >. ~ 1, such that {2.13) holds for any measure µ E B(X)*. 

Finitely additive measures that are elements of B(X)* do not represent a con
venient object. Hence, Theorem 2.2 is not very useful. There is a more convenient 
result in this direction that deals with a significantly simpler class of measures 
i 1(T), the subspace of discrete measures on T. So,µ E i 1(T) means that 

00 

{2.19) 11µ11 =LI.Bil< +oo, 

where {ti} is a (countable) sequence of points in T, {,Bi} is a sequence of real 
numbers, and Dt is a delta-mass at point t. It is known that B(T) = i 1(T)* {cf. 
[40, Chapter IV]). 

THEOREM 2.3. Let the assumptions of Theorem 2.2 regarding X, {Xi}, {cpi} 
hold, let 

{2.20) 

and let BD consist of the functions (2.9) for which instead of {2.5) the condition 

{2.21) 
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holds. In order that BD = B(X), it is necessary and sufficient that there exists a 
number>., 0 < >. $ d, such that for anyµ E f 1(X) the following inequality holds: 

00 

(2.22) E ll<pi 0 (hiµ)11 ~ >.11µ11· 

PROOF. First, note that the series (2.22) converges. Indeed, 

00 00 00 

(2.23) E ll<pi 0 (hiµ) II$ E llhiµll $ 11µ11 E llhill = dllµll, 
1 1 

and we obtain an estimate for the number >.. 
Now consider a Banach space E of sequences v = (vi, ... , vi, ... ), where Vi E 

f 1 (Xi), i = 1, ... , such that 

00 

(2.24) llvll ~f L llvill < +oo. 
1 

Then the dual space E* consists of all sequences g = (gi, ... , gi, ... ), where Oi E 
B (Xi) and 

(2.25) !loll = sup llOi II < +oo. 
i 

A functional g E E* acts on an element v E E according to the formula 

(2.26) 

In view of (2.24) and (2.25), the series in (2.26) converges absolutely. 
Further, consider a continuous linear operator U: f 1(X)--+ E: 

(2.27) µ E f 1(X)--+ Uµ = v = (vi= <pi o (h1µ), ... , vi= <pi o (hiµ),. .. ). 

It indeed follows from the estimate (2.23) that U maps f 1(X) into E (and, moreover, 
llUll $ d). Let us calculate the adjoint U* : E* --+ f 1(X)*. For an arbitrary 
µ E f 1 (X) and an arbitrary g E E*, we must have 

So, 

(2.28) 

(µ, U*,g) =(Uµ,g) = f f gid [<p1 o (hiµ)] 
1 lx1 

= ~ l Oi o <pi(x) · hi(x)dµ = l ( ~gi o <pi(x) · hi(x)) dµ. 

00 

U* g = L hi(x) [gi o <pi(x)] E BD. 
1 

In view of (2.24) and the definition of the norm in E* in (2.25), the series (2.28) 
converges absolutely and converges in norm in B(X), and its sum indeed belongs to 
BD. Now the questions we are interested in, namely when BD = B(X) and when 
U* (E*) = B(X), are identical. In other words, they both reduce to the question: 
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When is the operator U* surjective? According to the general functional-analytic 
criterion cited in the proof of Theorem 2.1, this holds if and only if 

(2.29) 

for some >. > 0. But in view of {2.27) and (2.24), (2.29) coincides with {2.22). 

Consider one more space. Let c0 (T) denote the class of bounded real-valued 
functions x(t) defined on an {arbitrary) set T such that for any c > 0 the set 
{t ET: lx(t)I > c} is finite. c0 (T) is a closed subspace in B(T), and c0 (T)* = £1{T) 
{[35, Chapter II, Section 2]). We say that a map cp : X ---+ Y has finite rank if 
the full preimage of any point y E Y is a finite set. The system of mappings 
cpi : x---+ xi. i = 1, ... , has finite rank if each mapping cpi has finite rank. 

Let the assumptions of Theorem 2.2 hold in relation to X, {Xi}, {cpi}, {hi}, 
and let the system of mappings { cpi} have finite rank. Form a subspace coD inside 
B(X) that consists of functions 

{2.30) 
00 

L hi(x)gi o cpi(x), 
1 

9i E co (Xi) , i = 1, ... , 

such that (2.5) holds. According to those assumptions, coD c c0 (X). 

THEOREM 2.4. Under the above assumptions, coD = co(X) if and only if one 
can find a number>.> 0 such that (2.13) holds for allµ E £1(X). 

If hi(x) E c0(X), i = 1, ... , then in the definition of c0D take an arbitrary 
9i E B (Xi) so that {2.5) holds and the statement of Theorem 2.4 is true even 
without the assumption concerning the finiteness of the rank of the system { cpi}· 

For the proof one has to repeat the arguments in Theorem 2.1, letting in this 
case Gi = eo (Xi)· (In Theorem 2.1 we took Gi = C (Xi), while in Theorem 2.2 we 
had to take Gi = B (Xi)). In the case when the subspaces Dor BD consist offinite 
sums, Theorems 2.1-2.4 can be stated in a more unified fashion. It is convenient 
to separate those results. 

THEOREM 2.5. Let X, Xi, i = 1, ... , N, be compact sets, cpi : X ---+ Xi 
continuous mappings, hi(x) E C (Xi)· For the subspace D of functions {2.3) to 
coincide with C(X) it is necessary and sufficient that there exists a number>. > 0 
such that for allµ E C{X)* the following holds: 

(2.31) s~p llcpi 0 (hiµ)11 ~ >.iiµll· 
i 

If a subspace D has form {2.1) (i.e., all hi(x) = 1), then for the equality D = C(X) 
it is necessary and sufficient that there exists>., 0 < >. ~ 1, such that 

(2.32) sup llcpi 0 µII ~ >.11µ11. 
i 

THEOREM 2.6. Let X, Xi, i = 1, ... , N, be arbitrary sets, cpi : X---+ Xi arbi
trary maps, hi(x) E B (Xi), hi(x) '¥:- O. For the space {2.8) the following statements 
are equivalent: 

1. BD = B(X). 
2. There exists>. > 0 such that {2.31) holds for allµ E B{X)*. 
3. There exists>.> 0 such that {2.31) holds for allµ E £1(X). 
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In the case when the subspace BD has the form (2.7), condition (2.31) becomes 
(2.32) with 0 < A ~ 1. 

Comparing Theorems 2.5 and 2.6, we obtain an interesting corollary. 

COROLLARY 2.7. Let x, xi, i = 1, ... ,N, be compact sets, let <pi: x --t xi 
be continuous mappings, let hi(x) E C (Xi), and let the subspaces D and BD be 
defined by (2.3) and (2.8), respectively. If D = C(X), then BD = B(X). 

PROOF. According to Theorem 2.5, D = C(X), provided that (2.31) holds for 
allµ E C(X)*. But this implies, of course, that the inequality (2.31) holds for all 
µ E i 1(X). Then, Theorem 2.6 states that BD = B(X). 

In particular, we obtain free-of-charge the following analogue of Kolmogorov's 
theorem (Theorem 1.1) for bounded functions. 

COROLLARY 2.8. Let A1 > 0, ... , An > 0 be rationally independent numbers, 
n 

L Ai = 1. For quasi-all collections ( <p1 , . . . , <p2n+ 1) E q;2n+ 1, the following state-
1 

ment holds: an arbitrary function f(xi. ... , Xn), bounded on In, can be represented 
in the following form: 

(2.33) I (x,, . .. ,x,) ~ ~1 
g; (t,A;\O;(x;)), 9i E B(I). 

Yet, we are unable to guarantee that all the Yi in (2.33) can be replaced by one 
and the same function g similarly to (1.1). However, the possibility of doing this 
will be established later (cf. §6 of this chapter). 

Naturally, one poses a question converse to Corollary 2.7. Namely, does coinci
dence of BD and B(X) (under the assumptions of Corollary 2. 7) imply coincidence 
of D and C(X)? The answer turns out to be negative. An example will be pre
sented in §8. One may think that if (2.31) holds for all µ E B(X)*, which is 
necessary for the equality BD = B(X), all the more so should (2.31) follow for all 
µ E C(X)*, which is equivalent to D = C(X). However, the heart of the matter is 
that variations for measures in B(X)* and those in C(X)* are defined differently: 
in the former case, for arbitrary partitions of X; in the latter, for partitions of X 
into Borel subsets. Nevertheless, in the direction opposite to Corollary 2.7, one can 
establish the following result. 

THEOREM 2.9. Under the assumptions of Theorem 2.1, let each f(x) E C(X) 
admit the representation 

00 

(2.34) f(x) = L hi(x)gi o cpi(x), 

where the Yi are bounded Borel-measurable functions on Xi, and (2.5) holds. Then 
D = C(X), i.e, for all f(x) E C(X) (2.34) holds with continuous 9i (gi EC (Xi)). 

PROOF. First of all, note that the set b(T) of bounded Borel-measurable func
tions on a compact space Tis a closed subspace in B(T). Let G be the subspace 
constructed in the proof of Theorem 2.2. Construct a subspace bin G by defining 
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g = (gi, ... , 9i, ... ) E b if and only if 9i E b (Xi), i = 1,.... The space b is a 
Banach space. Consider an operator A: b--+ b(X) defined by 

(2.35) 
00 

g ~ L hi(x)gi o cpi(x), 
1 

By the assumptions, A(b) c C(X). Let b = A-1 (C(X)). Then, bis a closed 
subspace of b, and so it is a Banach space. Consider the restriction A of A onto b: 
A: b--+ C(X). The adjoint operator A*: C(X)*--+ b* is defined by formulae (2.17) 
that were used to define the operator A* in Theorem 2.1, since the calculations we 
made to establish (2.17) also hold for bounded Borel functions gi, not merely for 
continuous functions. In addition, 

(2.36) 

is a continuous linear functional on b (Xi) having there the same norm as on the 
entire C (Xi), i.e., the total variation llvil!- Let c be a subspace in b generated 
by the sequences g = (gi, ... , gi, ... ), where 9i E C (Xi)· Clearly, b :::> c. If 
b (Xi) is a natural projection of b onto b (Xi), then it is obvious that C (Xi) C 

b (Xi) C b (Xi)· Therefore, the norm of the functional (2.36) remains the same 
on C(Xi) as on b(Xi) and equals the total variation llvill· Thus, for v =A*µ= 

( ( · ) ) II vi II . - (-) vi, ... , Vi= cpi o h'µ , . . . we have llvll = s~p II hill" The equality A b = C(X) 

holds provided that there exists a number >. > 0 such that llA*µll = llvll = 

s~p II~!\\ ~ >.11µ11· So, for all µ E C(X)* condition (2.13) holds, and hence, ac

cording to Theorem 2.1, D = C(X). 

The contents of this section are based on the work of Sternfeld (133, 134). 
(1),(3) of Theorem 2.6 when hi = 1, i = 1, ... , N, and Corollary 2.7 are proved 
in (133). Theorem 2.5 (also, for hi = 1) is proved in (134). The more general 
formulations presented here did not require any new ideas. 

Theorem 2.9 with finitely many terms and hi = 1 is Theorem 4 from (131). 
However, its proof there is based on the erroneous Theorem 3 in that paper. A 
counterexample to Theorem 3 from (131) is due to V. A. Medvedev (cf. §8). 

§3. Separation of points and measures 

Various types of point separation. We have already noted in the previous 
section that the criteria obtained there are associated with a certain separation 
under mappings cpi of images of sets on which a measure (from some class C(X)*, 
B(X)*, i 1(X)) is positive from those where it is negative. In this section we are 
going to study this phenomenon in detail. 

Let X be a set and F = { cp} be a family of functions defined on X. In general, 
each one of these functions may have its own range, and the precise nature of those 
ranges is unimportant for now. The family F = {cp} separates points in X if for any 
two points X1 EX, x2 EX, x1 =I x2, there exists cp in F such that cp (x1) =I cp (x2). 
If F consists of scalar-valued functions, then we say that F strictly separates points 
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in X if F separates points in X; and for each x E X, there exists <p E F such that 
cp(x) =f:. 0 {the latter condition appears in the theory of function algebras). 

Again, let elements of F be arbitrary {not necessarily scalar-valued) functions 
on X. F strongly separates points in X if for any two disjoint finite sets with the 
same cardinality A= {xi, ... , xm} and B = {yi, ... , Ym} (for all m) there exists 
<p in F so that cp(A) =f:. cp(B). Obviously, strong separation implies separation: it 
suffices to take A= {x1}, B = {x2}. 

Uniform separation of points. For our theme, however, an even stronger 
type of separation will be the most important. We say that a family F = { <p} 
uniformly separates points in X, if there exists a number .>., 0 < ), ::; 1, such that 
for any two disjoint sequences X1, ... , Xm and Y1, ... , Ym ('rim E N) of elements 
of X there exists <p E F satisfying the following property: if we drop from the 
sequence <p {x1), ... , <p (xm), <p (Y1), ... , <p (Ym) in cp(X) the maximal number of 
pairs (cp(xi),cp(y;)) for which cp(xi) = cp(y;), there will remain at least .>.2m 
members of that Uoint) sequence of images, and hence the number of pairs removed 
does not exceed {1- .>.)2m. {Thus, in each of the sequences <p (x1), ... , <p (xm) and 
<p (y1), ... , <p (Ym) there will remain at least >.m members, i.e., the number of terms 
removed is at most {1 - >.)m.) Of course, the number of terms in the sequences 
"thinned out" according to these rules remains the same. 

Let us illustrate the removal procedure. Let <p {x1) = <p (x2) = a, <p {x3) = 
<p (x1) = /3, /3 =f:. a; <p (y1) = <p (y4) = a, <p (y2) = /3, <p (y3) = "{, 'Y =f:. a, 'Y =f:. (3. 
After removing the coinciding pairs, we have left <p (x3) {or <p (x4)) from the first 
sequence and <p (y3) from the second. 

EXAMPLES. 1. Let X = {(u, t), 0::; u, t::; 1} be the unit square and let F = 
{cp1,cp2}, where cp1(u,t) = u, cp2(u,t) = t, be coordinate functions. Clearly, F 
separates points, but not strongly: taking A = {{O, 0), {1, 1)}, B = {{O, 1), {1, O)}, 
we have cp1 (A) = {O, 1 }, <p1 (B) = {O, 1 }, <p2(A) = {O, 1 }, <p2(B) = {O, 1 }. 

2. Let X be the boundary of the triangle in IR2 with vertices {O, 0), {1/2, 0), 
and {1, 1), while Fis the same as in Example 1. Then F strongly separates points 
in X, but does not separate them uniformly. 

Examples for which uniform separation holds will be given later. 

It is probably worth pointing out that we had to distinguish between the con
cepts of a set and a sequence, in order to cover in the case of the latter the possibility 
of identical elements. At the same time, the order of elements in a sequence (usually 
quite important) makes no difference to us. In view of this, it is convenient to use 
the concept of a multi-set. 

Multi-sets. A multi-set is a pair {A, a) that consists of a set A and a function 
a(x) defined on A and taking values in the set of non-negative integers. (Intuitively, 
a(x) shows how many times the point x appears in A, i.e., the multiplicity of x in 
A.) The cardinality l{A, a)I of a multi-set (A, a) is defined by 

{3.1) l{A, a)I = L a(x). 
xEA 

The intersection of multi-sets (A, a) and ( B, b) is the multi-set (A n B, a I\ b), where 

{3.2) (a I\ b)(x) =min {a(x), b(x)}. 
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If (A, a) is a multi-set and cp is a function defined on A, then cp [(A, a)] is the 
multi-set <p [(A, a)] = (cp(A), <po a), where 

(3.3) cp o a(y) = L a(x), for y E cp(A). 
xE<p- 1 (y) 

LEMMA 3.1. A family F = { <p} uniformly separates points in X if and only if 
there exists A, 0 < A :=.:; 1, satisfying the following condition. Let (A, a) and (B, b) 
be two disjoint multi-sets, l(A,a)I = l(B,b)I = m < oo. Then, there exists <p E F 
satisfying the inequality 

{3.4) l'P [(A, a)] n cp [(B, b)]I :=.:; {1 - A)m. 

PROOF. Write down the multi-set (A,a) as a sequence xi, ... ,xm, where 
each term is repeated as many times as the value of the function a(x). Simi
larly, represent the set (B, b) by Yi. ... , Ym· Then, the set <p [(A, a)] n <p [(B, b)] = 
(cp(A) n cp(B), cp o a/\ cp ob) is precisely the set that is removed from cp (xi), ... , 
<p (xm) and <p (Yi), ... , <p (Ym) according to the process described in the definition 
of uniform separation of points. So, if {3.4) holds, then after the removal, each one 
of the sequences <p {xi) , ... , <p (xm) and <p (yi), ... , <p (Ym) will contain at least Am 
terms. Conversely, if there are Am or more terms left, then for the number of terms 
removed {3.4) must hold. 

Separation of measures. Let X be a set, M an algebra of subsets of X, 
(X, M) a measure space. For a real-valued {finitely additive) measureµ on {X, M), 
11µ11 will denote the total variation ofµ. We shall only consider measures with finite 
variations. If <p: X---+ Y and N = {EC Y: <p-i{E) EM}, then the measure cpoµ 
on (Y, N) is defined by 

{3.5) cp o µ(E) = µ (cp-i(E)), EE N. 

Clearly, ll'P o µII $ 11µ11· Formulas {3.4) and {3.5) show that under a mapping <p 
multiplicities in multi-sets and measures are transformed according to one and the 
same rule. 

Let S be a class of measures µ defined on X and F = { cp} be a family of 
functions defined in X. We shall say that F uniformly separates measures of class 
S if there exists A, 0 < A :=.:; 1, such that for each µ in S one can find <p E F so that 

{3.6) 

The fact that {3.6) does define some sort of "separation" is intuitively obvious. 
Indeed, in forming the values of cp o µ, the values of µ are "mixed", and to the value 
of cp o µ on a set E there may be contributions from values of µ on disjoint sets 
<p-i{E), on some of whichµ is positive, on others, negative. Hence, the decreasing 
of ll'P o µII in comparison with 11µ11· The inequality {3.6), on the other hand, states 
that such "mixing" is not very significant. More precisely, this is seen from the 
following. Let A and B be two disjoint sets in M such that µ takes positive values 
on subsets of A and negative values on subsets of B: µ(Ai) ~ 0 for all Ai C A, 
Ai E M; µ(Bi) $ 0 for all Bi c B, Bi E M; µ(H) = 0 for all H E M, 
H n (Au B) = 0. Set c = cp(A) n cp{B), D = 'P-i(c) n A, E = 'P-i(c) n B, 
Ai = A\D, A' = cp {Ai) = cp(A)\C, Bi = B\E, B' = cp {Bi) = cp(B)\C. The 
term "separation" will be justified if we show that some characteristic of the set 
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C in terms of the measure µ is small. Naturally, we assume that all of the sets 
introduced above belong to M or N, accordingly. In particular, this imposes certain 
restrictions on the properties of X, M, cp, andµ. For Pc C, let P' = cp-i(P) nD, 
P" = cp-i(P) n E, and 

(3.7) 8(P) ~r min(µ (P'), -µ (P")). 

Consider a partition of C into subsets Pi, i = 1, ... , m, such that Pin P; = 0, 
m 

i I- j' u pi = c' and define the number 8 by 
j=i 

m 

{3.8) 

where the infimum is taken over all partitions of set C. Clearly, 8 represents a 
certain characteristic in terms of the measureµ of the quantity cp(A) n cp(B). 

LEMMA 3.2. With cp,µ and 8 as above, 

{3.9) llcp 0 µII = 11µ11 - 20. 

PROOF. We have 

llcp 0 µII = llcp 0 µllA' + llcp 0 µlie+ llcp 0 µllB 1 

= cp o µ(A') + llcp o µlie - cp o µ (B') = µ(Ai) - µ(Bi) + llcp o µlie, 
m m 

llcp o µlie= sup L lcp o µ (Ji)I =sup LIµ (Pf)+µ (P" µ)I 
i i 

(sup is taken over all partitions of the set C, Pf = cp-i (Pi) nD, Pf' = cp-i (Pi) n E. 
The Pf give a partition of D, while the Pf' give a partition of E). Continuing the 
above equality, we have 

llcp o µlie = supt(µ (Pf) - µ(Pi') - 28 (Ji)) sup [µ (D) - µ(E) - 2 t 8 (Pi)] 

m 

= µ(D) - µ(E) - 2infL 8 (Pi)=µ (D) - µ(E) - 28. 
i 

From the latter equality we obtain 

llcp o µII =µ(Ai)+µ (D) - (µ(Bi)+ µ(E)) - 28 

=µ(A) - µ(B) - 28 = 11µ11 - 28. 

From this we immediately deduce the following analogue of Lemma 3.1. 

LEMMA 3. 3. If a family F uniformly separates measures in the class S, µ E S, 
and the assumptions of Lemma 3.2 hold, then there exists cp E F such that 

{3.10) 

If S consists of countably additive measures, then in order for a family of func
tions F to uniformly separate measures in S, it is necessary and sufficient that there 
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exists A, 0 <A~ 1, such that under the assumptions of Lemma 3.3 the inequality 
(3.10) holds. Indeed, in the latter case we can use the Hahn decomposition of the 
measureµ: 

X=AUB, AnB=0, 

In addition to the classes of measures C(X)*, B(X)*, l 1(X) introduced in §2, we 
consider several other classes. By ik-(X) we denote the class of those measures in 
l 1 (X) that are supported on finite sets. If S is a class of measures, then by So we 
denote the subclass of S consisting of those measuresµ ES for which µ(X) = 0. 

LEMMA 3.4. Let S, S' be two families of measures on a measurable space 
(X,M), with S' dense in S (with respect to the norm). If a family of functions 
F = { cp} uniformly separates measures in S', then it uniformly separates measures 
in Sas well. 

Note that no continuity assumptions are imposed on functions in F. 

PROOF. Let µ E S. For any e > 0 there existsµ' ES' such that IIµ - µ'II < f. 
Also, there exists cp E F such that llcp o µ'II ~A 11µ'11· We have llcp o µ - cp o µ'II = 
llcp 0 (µ - µ')II ~ IIµ - µ'II < e. Hence, llcp 0 µII ~ llcp 0 µ'II - e > A 11µ'11 - e > 
Allµll - (1 + A)e. Since e is arbitrary, there exists cp E F satisfying llcp o µii ~ A'llµll 
for any A1 < A. 

Comparison of uniform separation of points and measures. Let X be 
an arbitrary set and F = { cp} be a family of functions on X. 

LEMMA 3.5. The following statements are equivalent. 
1. F uniformly separates points in X. 
2. F uniformly separates measures of class lk 0 • 

3. F uniformly separates measures of class tfi{X). 

PROOF. Let us show that 1 => 2. Letµ E lk,0 , and let xi, ... ,xK be those 
points at which atoms µi of the measure µ are positive while y1, ... , Ye are the points 
where µi < 0. In the latter case, set Vi = -µi. Obviously, in view of Lemma 3.4 
it suffices to prove the inequality required in the definition of the separation of 
measures for the case when all numbers µi and Vi are rational. Find the common 

denominator D for all those numbers, so µi = ~, i = 1, ... , k, Vi = ~, i = 
1, ... ,l, where ri, Ri, are positive integers. Sinceµ E lb,K(X), 

k e 
(3.11) :~:::>i -LRi = o. 

1 

k e 
Denote the common value of LTi = LRi by m and consider the multi-sets (A, a) 

1 1 
and (B,b), where A= {xi, ... ,xk}, a(xi) = ri, i = 1, ... ,k; B = {yi, ... ,ye}, 
b(yi) = Ri, i = 1, ... ,l, so l(A,a)I = l(B,b)I = m. Since family F uniformly 
separates points, there exists a function cp E F satisfying (3.4). 

Let us study the measure a = Dµ and its image f3 = cp o a. Atoms of a 
at points of the set A coincide with the multiplicities Ti of those points, while 
at points of B they coincide with the multiplicites Ri taken with the minus sign: 
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k e 
llall = LTi + LRi = 2m. Consider a measure /3. According to the choice of cp, 

i 1 

{3.4) holds. If z E cp(A)\cp(A) n cp(B), then the atom of /3 at a is given by 

{3.12) f3(z) = cp o a(z) = L Ti· 
XiErp- 1 (z) 

Similarly, if z E cp(B)\(A) n cp(B), then 

{3.13) /3(z) = cp o a(z) = - L ~. 
YiErp- 1 (z) 

Now, let z E cp(A) n cp(B) and 

def { ) M=cpoaz = def { ) N=cpobz = 

Consider the multi-set 

{3.14) C = cp [{A, a)] n cp [(B, b)] = (cp(A) n cp(B), cp o a A cp ob). 

{3.4) implies that ICI ~ {1->.)m. An atom of measure /3 at point z equals ±IM-NI 
{"+"if M > N and"-" otherwise). The contribution of that atom to the variation 
of /3 is given by 

{3.15) IM - NI = M + N - 2cp o a(z) A cp o b(z). 

Indeed, if M > N, then cpoa(z)Acpob(z) = N, and IM-NI= M-N = M+N-2N. 
The other case can be treated similarly. Using (3.12)-(3.15), we obtain 

k e 
(3.16) 111311 = L:Ti + L::~ -2 cp o a(z) A cp o b(z) = 2m - 2ICI. 

zErp(A)nrp(B) 

(In fact, the argument shows that the number e in {3.8) for the measure a coincides 
with ICI.) From {3.4) it now follows that 11/311 = llcp o all ~ >.2m = >.llall· Since 

measureµ= ; , the required inequality llcp o µII ~ >.ilµll follows as well. 

Let us show that 2 => 1. Indeed, if there are given two multi-sets (A, a) and 
(B,b) with l{A,a)I = l{B,b)I = m, define measure a by assigning to each point 
Xi E A the atom a (xi) =Ti, and at each point Yi E B the atom b (Yi) = -~. If 
cp is a function in F such that 11/311 = llcp o all ~ >.llall, then from {3.10) we obtain 
ICI ~ {1 - >.)m, i.e., {3.4). 

The equivalence 2 # 3 follows from Lemma 3.4. Since all of the above classes 
S of measures contain the class fA,K• uniform separation of measures of any such 
class 5' implies uniform separation of points, and, all the more so, strong separation 
of points. Now we can somewhat refine Theorems 2.5 and 2.6. 

Uniform separation of points and discrete measures and superposi
tions of bounded functions. Let x, X1 ... , XN be sets, and let 'Pi : x---+ xi, 
i = 1, ... , N, be mappings. The following theorem is a refinement of Theorem 2.6. 
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THEOREM 3.6. The following conditions are equivalent. 
1. An arbitrary function f(x) E B(X) can be represented in the form 

(3.17) f(x)=g1o<p1(x)+···+gNo<pN(X), giEB(Xi), i=l, ... ,N. 

2. The family F = { <p1, ... , <p N} uniformly separates points in X. 
3. The family F uniformly separates measures of class i 1 (X). 
4. The family F uniformly separates measures of class ifi(X). 
5. The family F uniformly separates measures of class ik-(X). 
6. The family F uniformly separates measures of class ik,0 (X). 
7. The family F uniformly separates measures of class B(X)*. 
8. The family F uniformly separates measures of class Bo(X)*. 

PROOF. The equivalences 1 <=> 3 <=> 7 are contained in Theorem 2.6. The 
equivalence 3 <=> 5 follows from Lemma 3.4. Let us show that 1 <=> 8. Let JR.1 be, as 
usual, the set of real numbers interpreted as a closed subspace in B(X) or B (Xi)· 
Consider the quotient spaces 

B(X) = B(X)/JR.1, 

Clearly, (3.17) is equivalent to the same equality understood in terms of equivalence 
classes from B(X) and B (Xi)· As in Theorem 2.2 (and also 2.1), construct the 
space G only using B (Xi) instead of B (Xi)· The dual space of G is G* = B5 (Xi) x 
· · · x B5(XN ), where for v = (vi. ... , VN ), Vi E B5 (Xi), we have llvll = max llvill · 

l~v~N 

Then, following the scheme of the proof of Theorem 2.2, we find that (3.17) for 
equivalence classes is equivalent to existence of >. > 0 such that for an arbitrary 
µ E B5(X) 

max ll'Pi o µII 2:: >.11µ11, 
l~i~N 

i.e., 1 <=> 8. Similarly, arguing as in the proof of Theorem 2.3 for spaces iJ (Xi) 
we show that 1 <=> 4. But from Lemma 3.4 it follows that 4 <=> 6, whereas from 
Lemma 3.5 4 <=> 2. The proof is now complete. 

Uniform separation of regular Borel measures and superpositions of 
continuous functions. In the case when X, Xi, i = 1, ... , N, are compact spaces 
and </'i : X --t Xi are continuous, we can slightly extend Theorem 2.5. 

THEOREM 3.7. The following are equivalent. 
1. For all f E C(X) the following representation holds: 

(3.18) f(x) = gi 0 <pi(x) +. + gN 0 <t'N(X), 

2. The family F = { <p1, ... , <p N} uniformly separates regular Borel measures 
(i.e., measures of class C(X)*). 

3. The family F uniformly separates measures of class C(X)0. 
PROOF. 1 <=> 2 follows from Theorem 2.5. 1 <=> 3 is seen by applying quotient 

spaces as in the previous theorem. One has to consider spaces 6 (Xi)= C (Xi) /JR.1 

and argue according to the scheme in the proof of Theorem 2.1. 

All the notions and results in this section are taken from Y. Sternfeld's papers 
(133] and (134]. 
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§4. Constructing function families separating Borel measures 

Let us first agree on some convenient terminology and notation. 
(a) A family of subsets U of a topological space X is called discrete if all the 

closures of sets in U are pairwise disjoint. 
{b) A function <p separates a family U of subsets of a topological space if for 

any two sets V1 EU and V2 EU, <p [Vi] n <p [V2] = 0 {here, we are dealing with 
yet another type of separation). 

(c) If Ui, ... ,Uk are k families of subsets of a set X, we say that they cover 
X n times ( n ~ k) if all x E X belong to some sets from families Ui for at least n 
indices i. 

( d) If U is a family of subsets of a metric space X, then 6 (U) denotes the least 
upper bound of diameters of sets in U. 

The following lemma is obvious. 

LEMMA 4.1. Let X be a set and {Ui}f=1 be k families of subsets of X. The 
following statements {a), {b), (c), {d) are equivalent, and all of them imply (e). 

(a) {Ui}:=l covers X n times. 
{b) Any k - n + 1 families out of {Ui}:=l cover X one (sic.0 time. 

k 
"" { 1, x EE, {c) L.}u.(x) ~ n for all x EX, where lE(x) = \ is the char-
i=l 0, x EX E, 
acteristic function of a set E. 

(Prom now on, we often shall not distinguish between a system Ui and a set of 
points from the union of all sets in Ui.) 

{d) If all Ui belong to an algebra on which there is defined a probability measure 
µ,then 

k 

Lµ(Ui) ~ n. 
i=l 

(e) Under the assumptions of (d), for any probability measure µ on X there 
exists io, 1 ~ io ~ k, such thatµ (Ui0 ) ~ n/k. 

The following lemma sheds some light on constructing systems of functions 
separating Borel measures. 

LEMMA 4.2. Let X be a compact metric space, and let F = {ipi}~ be a family 
of continuous functions on X. If for each e > 0 there exist k finite discrete families 
U1, ... , Uk of subsets of X such that 

(4.1) {Ui}f=1 covers X [~] + 1 times, 

(4.2) o(Ui) < e, 1 ~ i ~ k; 

(4.3) the 'Pi separate sets of the system ui, 1 ~ i ~ k, 

then the family F uniformly separates regular Borel measures on X {with constant 
), = 1/k). 

PROOF. We must show that for anyµ E C(X)* there exists an index i, 1 ~ i ~ 
k, such that ll'Pi o µII ~ {1/k)llµll. Letµ=µ+ - µ- be the Jordan decomposition 
of the measureµ E C(X)*. Since measures in C(X)* are regular, those measures 
for which the closed supports S(µ+) and S(µ-) ofµ+ andµ- do not intersect form 
a dense {with respect to the norm) set in C(X)*. In view of Lemma 3.4 it suffices 
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to check our condition for those measures. Let µ be such a measure, and e > 0 
be the distance between S (µ+) and S (µ-). Assume 11µ11 = 1, and hence jµj (the 
variation of µ) is a probability measure. Consider the families Ui, i = 1, ... , k, 
that form the covering guaranteed by the assumptions of the lemma with the given 
e. Since 8 (Ui) < e, none of the sets in the system Ui can simultaneously intersect 
S (µ+) and S (µ-). In view of (4.1) and (e) of the previous lemma, there exists io, 
1 ::; i 0 ::; k, such that 

(4.4) 

Since each of the sets in Uio can only intersect one of the sets S (µ+) and S (µ-) 
while 'Pio separates sets in uio, we have 

(4.5) 

(Here, 'Pio lu;0 is the restriction of 'Pio to Ui0 .) By (4.4), 

(4.6) 
1 1 

'µ' (X\U ) < - - -
' 0 - 2 2k · 

Therefore, in view of (4.5) and (4.6) we obtain 

and thus F uniformly separates Borel measures with constant>.= l/k. 

Ties to dimension. In view of Lemma 4.1(forn=m+1) each of k- [~] = 
[~] families Ui, 1 ::; i ::; k, forms a covering of X. Naturally, for each of those 
coverings no more than [ ~] ::; [ ~] + 1 of the covering sets have a non-empty 

intersection (one from each family Ui)· So, the presence of the systems {Ui}~ with 
properties (4.1) and (4.2) implies that dimX::; [~] (cf. [72a]). We shall make use 
of the following converse statement from dimension theory (Ostrand [114]). 

LEMMA 4.3. Let X be a compact metric space, dimX = n and k ~ n + 1, 
while e > 0. There exist k finite discrete families {Ui}~ of subsets of X covering X 
k-n times such that 8(Ui) < e, i = 1, ... ,k. 

Constructing separating families (continued). 

THEOREM 4.4. Let X be a compact metric space of dimension n. Quasi-all 
collections ('Pl, ... , 'P2n+l) E C(X)2n+l uniformly separate Borel measures on X. 

PROOF. According to Lemma 4.3 construct the systems {Ui.m}, i = 1, ... , 
2n + 1, m = 1, 2, ... , satisfying the following properties: 

(a) Each Ui,m is a finite discrete family. 

(b) For each m, the families {Ui,m}~,:t1 cover X n + 1 = [2n: 1] + 1 times. 

(c) As m--+ oo, 8 (Ui,m)--+ 0, i = 1, ... , 2n + 1. 
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Denote by AN a subset in C(X)2n+l consisting of the collections (<p1, ... , <p2n+i) 
for which there exists m ;?: N such that {'Pi} separate sets in the system Ui,m• 
i = 1, ... , 2n + 1. Let us show that AN is an open and everywhere dense set in 
C(X)2n+1. Let (<pi, ... ,<p2n+i) E AN. For some m;?: N the functions 'Pi separate 
sets Ui,m• i = 1, ... , 2n + 1. If ci is the minimal distance between 'Pi (U) and 
'Pi (V), where U "# V run over Ui,m• then in view of the discreteness of the system 
Ui,m we have ci > 0, and hence c = mini ci > 0. If a collection ('I/Ji. ... , 'l/J2n+1) 

from C(X)2n+l satisfies 111/Ji - 'Pill < ~'it is easily seen that the 'I/Ji separate Ui,m· 

This proves that AN is open in C(X)2n+l. 
Now, let (T1, ... , T2n+1) be an arbitrary collection in C(X)2n+1. We must show 

that arbitrarily close to it there exist collections from AN. Since 8 (Ui,m) ---+ 0, for 
all c > 0 we can find m ;?: N such that the oscillations of functions Ti on sets from 
Ui,m do not exceed c/2. 

Consider all the sets Uf that form the system Ui,m• and for each of them define 
a rational number rf such that llTi - rf llu1 < c. Take all the numbers rf to be 

different. By the Tietze-Urysohn theore~ construct a function 'Pi E C(X) for 
which ll'Pi - Till < c, while 'Pilu1 = r( Since all the numbers rf are different, the 
function 'Pi separates sets of the' system Ui,m· Repeating this construction for all i, 
we obtain a collection ( <p1, ... , 'P2n+l) E AN whose distance from (Ti, ... , T2n+l) 

00 

is smaller than c. The set A := n AN consists of quasi-all vectors in the space 
N=l 

C(X)2n+l. Each collection ( <p1, ... , 'P2n+i) E A separates sets of systems Ui,m for 
an infinite set of indices m. Since 8 (Ui,m) ---+ 0, according to Lemma 4.2 such a 
family F = ( <p1, ... , <p2n+i) uniformly separates Borel measures on X, and the 
theorem is proved. 

A generalization of Kolmogorov's theorem. The Ostrand-Tikhomi
rov theorem. From the previous theorem and Theorem 3. 7 there follows the fol
lowing generalization of Kolmogorov's theorem, due to Tikhomirov (87] and Os
trand (114]. 

THEOREM 4.5. Let X be a compact metric space of dimension n. For quasi-all 
collections (<pi, ... , <p2n+1) E C(X)2n+l the following holds: For any f(x) E C(X) 
there exist functions gi, ... , 92n+l • Ui E C [<pi ( X)], such that 

(4.7) f(x) = 9i (<p1(X)) + · · · + 92n+l (<p2n+i(x)) · 

COROLLARY 4.6. Under the assumptions of Theorem 4.5, for each f(x) E 

B(X) there exist junctions 91, ... ,g2n+i• Ui E B[<pi(X)], so that (4.7) holds. 

Further generalizations. Combining the above arguments, together with 
certain considerations used in the proof of Kolmogorov's theorem, one can obtain 
even more general results (Ostrand [114]). 

LEMMA 4.7. Let X = X 1 x ··· x XL, where X;, j = 1, ... ,L, are compact 
metric spaces. For each j, 1 ::; j ::; L, let {Uk}, m = 1, 2, ... , be a sequence 
of finite discrete families of subsets of X; and 8 (Uk) ---+ 0 as m ---+ oo. Let Um, 
m = 1, 2, ... , be a family of subsets of X defined by 

Um= {U1 x ... x UL, Ui EU~}. 
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Finally, let )q, ... , AL be real, rationally independent numbers. Quasi-all collections 
(r1, ... , rL) in C (X1) x · · · x C (XL) satisfy the following property: the functions 

L 

cp (x1, ... ,xL) = L A;r; (x;) 
j=l 

separate sets of the system Um for infinitely many indices m. If X1 = · · · = XL 
and Ufn = · · · = U~, then for quasi-all functions r EC (X1)L the functions 

L 

cp(xi, ... ,xL) = LA;r(x;) 
j=l 

separate sets Um for infinitely many indices m. 

THEOREM 4.8. Let X = X1 x · · · x XL, where X; are compact metric spaces 
L 

of dimension n;, j = 1, ... , L. Set n = L:n;. There exist functions 'l/Ji,j EC (X;), 
1 

i = 1, ... , 2n + 1, j = 1, ... , L, so that any function f E C(X) can be represented 
in the form 

(4.8) f (xi. ... , XL)~ 't,' g; (t, .p., (x;)) , where 9i E C(IR). 

If X1 = X2 = · · · =XL and Ai,··· , AL are rationally-independent numbers, then 
'l/Ji,j can be chosen to be A;cpi, 'Pi E C (X1), and n = niL. For f (xi, ... , XL) E 
C ( X f), we then have the representation 

(4.9) 

Setting X1 = I, ni = 1, n = L, we obtain from (4.9) Kolmogorov's formula 
(1.1), although, generally speaking, all the 9i may now be different. 

To prove Theorem 4.8, one has to combine Lemma 4.3 and Theorem 4.4 (the 
latter must be applied several times). We omit the details. 

COROLLARY 4.9. The last theorem holds if we consider f (xi, ... , XL) E B(X) 
and 9i E B(IR). 

The entire contents of this section is taken from Sternfeld's paper [134). 

§5. Dimension and the number of terms 
in the Kolmogorov representation 

The following natural question arises in connection with the theorems of Kol
mogorov, Ostrand, and Tikhomirov. Is it possible in the representation of an arbi
trary function f(x) E C(X) on an n-dimensional compact space X by the formula 

N 

(5.1) f(x) = L9i (cpi(x)), 
1 
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where 'Pi(x) E C(X) and 9i E C (ipi(X)), to have the number of terms N < 
2n + 1? For a long time only two partial results have been known, relating to 
functions of two variables on the square I 2 • In [39], Doss proved that for arbitrary 
monotone continuous functions <ppq ( x), p = 1, 2, q = 1, ... , 4, there exists a function 
f (xi. x2) E C (I2) that cannot be represented in the form 

4 

f (xi, x2) = L 9q [<p1q (x1) + <p2q (x2)] , 9q E C(JR). 
q=l 

Bassalygo [22] showed that for every collection {'Pi (xi. x2)} C C (I2), i = 1, 2, 3, 
there exists f (x1,x2) EC (I2) that cannot be represented by (5.1) with N = 3. 

The possibility of representation (5.1) implies, in particular, that the collec
tion of functions (<p1(x), ... , <pN(x)) defines a homeomorphic embedding of the 
n-dimensional compact space X into RN. The possibility of such an embedding of 
an n-dimensional X into IR2n+l is an old result of dimension theory: the Menger
Nobeling theorem ([72a, p.89]). However, for a particular compact space, the 
dimension 2n + 1 can sometimes be lowered. For example, In can be embedded 
into Rn by the identity map. At the same time, functions 'Pi(x) providing the 
representation (5.1) not only separate points on X (which is necessary for the em
bedding to be a homeomorphism), but also, according to Theorem 3.7, uniformly 
separate Borel measures. As it turns out, for such systems the number 2n + 1 
clearly becomes a rigid characteristic of the dimension n. 

THEOREM 5.1. IfdimX = n (n ~ 1) and a system of functions 'Pi(x) E C(X), 
i = 1, ... , N, uniformly separates Borel measures on X, then N ~ 2n+l, and there 
exists a system of (2n + 1) functions that does so. 

Thus, for the representation (5.1) to hold for all f(x) E C(X) when dimX = n, 
it is necessary that N ~ 2n + 1. Theorem 5.1 (its first part-the second part is 
the theorem of Ostrand and Tikhomirov) was proved by Sternfeld. First, in (132], 
Bassalygo's result was improved to N = 4; later in (132] the theorem was proved 
for n = 2, 3, 4; and finally, in (135] it was established in full generality by a rather 
tedious argument. 

Even a stronger result holds: 

THEOREM 5.2. IfdimX = n ~ 2, then any system of functions 'Pi(x) E C(X), 
i = 1, ... , N, uniformly separating points in X contains at least 2n + 1 functions: 
N~2n+l. 

Thus, the condition dimX = n is characterized by the fact that in (5.1), or in 
a similar representation for an arbitrary function f(x) E B(X) and with Yi E B(JR), 
there are at least 2n + 1 terms. This is a complete solution of the questions about 
the possibility of decreasing the number of terms in the Kolmogorov-Ostrand
Tikhomirov representation (and, moreover, obtained without appealing to any spe
cial structure of inner functions in Kolmogorov's theorem for X =In). 

The dimension of X and the structure of C(X). For a fixed <p(x) E C(X), 
consider the set A= {g(ip(x)),g E C(IR)}. A is a closed subalgebra of C(X) that 
contains constants and is generated by one element <p(x). Conversely, any closed 
subalgebra of C(X) generated by one element ip(x) and containing constants is of 
the form {g (ip(x)) ,g E C(IR)}. Theorem 5.1 can be reformulated in the following 
way. 
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THEOREM 5.3. dimX = n if and only if C(X) can be represented by an alge
braic sum of 2n + 1 closed subalgebras, each of which is generated by one element 
and cannot be represented by such a sum with less than 2n + 1 subalgebras. 

§6. Other types of separation 

Which notion of separation of measures or points corresponds to those theorems 
on representations by superpositions in which, as in Theorems 1.1and1.2, the outer 
function is the same for all terms? Let X, Xi, i = 1, ... , N, be compact spaces, 
let 'Pi : X -+ Xi be continuous mappings. Suppose that the topologies in Xi are 
coordinated in the following sense: If Xi n Xi =F 0, then the topologies induced in 

N 

Xi n Xi by those in Xi and Xi coincide. Set Z = LJ Xi with the natural topology 
j=l 

on Z defined by taking the union of the topologies on the Xi. To each g E C(Z) 
we relate a function f E C(X) by the formula 

N 

(6.1) f(x) = L9 (cpi(x)). 

THEOREM 6.1. In order that for all f E C(X) representation (6.1) hold with 
some g E C(Z), it is necessary and sufficient that there exists a constant >., 0 < 
>. $ N, such that for anyµ E C(X)* 

N 

(6.2) llvJI ~ >.11µ11, where v = L 'Pioµ (v E C(Z)*). 
1 

PROOF. Consider an operator A: C(Z) -+ C(X) that associates to each g(z) E 
C(Z) the function f(x) E C(X) by formula (6.1). The adjoint operator A* : 

N 

C(X)* -+ C(Z)* acts by the formula µ E C(X)* 1--+ v = L'Pi o µ. This can be 
1 

checked by direct arguments similar to those in Theorems 3.6 and 3.7. Thus, the 
inequality (6.2) is a sufficient condition for surjectivity of the operator A. That >. 
cannot be larger than N follows directly from the inequality ll'Pi o µII $ 11µ11 · 

REMARK. The reader may be somewhat puzzled by the fact that now>.$ N, 
whereas in Theorems 3.6 and 3. 7 it was >. $ 1. Here is a simple explanation. For 
the sake of clarity, let X1 = · · · = XN = Z. In Theorems 3.6 and 3.7 we took 

N 

C = C(X1) x ... x C(XN), while for g = (g1 1 ... ,gN) EC, JlgJI means LllgiJI, 
1 

and accordingly, in C* for v = (v1 1 ... ,vN) we had llvll = max Jlvill· So, for 
l::E;i::E;N 

µ E C(X)* and v = A*µ = (cp1 o µ, ... ,cpN o µ) E C* we had the inequality 
JlvJI = m~ Jlcpi o µJI $ Jlµll, and hence >. could not exceed 1. This also meant that 

i 

N 

for 9 EC, 11911=Lllgill$1, we had 
1 
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Now, if all 9i = g, i = 1, ... , N, and still 11911 = Nllgll $ 1, the latter inequality 
implies 1(.9, v)I $ 11µ11. However, if 11911 $ 1, as in Theorem 6.1, this last estimate 
increases by a factor of N. 

Of course, inequality (6.2) implies to some extent a condition of separation 
of measures that is naturally stronger than uniform separation. This separation 
can be characterized in a way similar to Lemmas 3.1-3.3. For a measure µ let 
X = s+ Us-, s+ n s- = 0, and for each E c s+ let µ(E) > 0, while µ(E) < 0 for 
each E c s- ( s+, s- is the Hahn decomposition for the measure µ). Let P c Z 

N' 

and Et= 'Pi1(P) n s+, Ei- = 'Pi 1(P) n s-. For the measure v = L'Pi o ,J, we 
1 

have 
N 

v(P) = Lµ (Et)+µ (Ei). 
1 

Set 

(6.3) 

Then, 

N N 

(6.4) lv(P)I = Lµ(Et) + L::lµ(Ei-)l-20(P). 
j=l j=l 

Consider a partition of Z : Z = LJPi, and let 
j 

(6.5) 

Then for a fixed i, the sets Ef + form a partition of s+, while the E{- form one for 
s-. Finally, define the number 0 by 

(6.6) 0 = 0(µ) =inf L::0 (Pi), 
j 

where the infimum is taken over all partitions of Z. The next statement follows 
immediately. 

N 

LEMMA 6.2. If a measure v = L'Pi o µ, then 
1 

(6.7) llvll = Nllµll - 20(µ). 
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PROOF. Indeed, for a given partition Z into sets pi we have 

~Iv (1")1 ~ ~ [t,µ (EJ!+) + t, Iµ (Et) 1-20 (1")] 

N 

=LL[µ (Ef+) + jµ (Ef-)j]-2Le(Pi) 
i=l j j 

j j 

Taking the supremum over all portions of Z, we obtain (6.7). 

An immediate corollary is the following lemma. 

LEMMA 6.3. The separation condition (6.2) is equivalent to the following in
equality holding for allµ E C(X)*: 

20(µ) :5 (N - .X)llµll. 

Now, let X, Xi, i = 1, ... , N, be arbitrary sets, and let 'Pi : X -+ Xi be 
N 

mappings. Let Z = LJxi. Arguing as above, we obtain the following result. 
i=l 

THEOREM 6.4. In order that for all f E B(X) the representation (2.39) hold 
with some g E B(Z), it is necessary and sufficient that there exists a constant.>., 
0 < .>. :5 N, such that for allµ E £1 (X) 

(6.8) 
N 

llvll 2:: .Xllµll, where v = L 'Pioµ 
1 

(v E B(Z)*). 

The inequality (6.8) is equivalent to (6.2) forµ E £1(X). 

COROLLARY 6.5. If, under the assumptions of Theorem 6.1, for each f(x) E 

C(X) the representation (6.1) holds with some g E C(Z), then/or any f(x) E B(X) 
the representation (6.1) also holds with some g E B(Z). 

COROLLARY 6.6. Under the assumptions of Kolmogorov's theorem, for each 
f(x) E B(In) the representation (1.1) holds with some g E B(I). 

(Corollary 6.6 slightly sharpens Corollary 2.8.) 

More on separation. Again, let X, Xi be compact spaces, 'Pi : X -+ Xi, 
i = 1, ... , N, continuous mappings. Let Di be a Banach space, Di C C (Xi) (the 
inclusion is understood in the set-theoretic sense only). We also assume that there 
exist constants di > 0 such that for g E Di we have the inequality llYllc(x;) :5 
~llYllD;· This implies, in particular, that any linear functional continuous on Di 
with respect to the norm on C (Xi) is also continuous on Di with respect to its own 
norm. Thus, a regular Borel measure v on Xi defines on Di a continuous functional, 
whose norm on Di we shall denote by llvlln;· Clearly, it is possible that llvll > 0 
while llvlln; = O. 
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Consider the natural question of whether it is possible to represent an arbitrary 
f(x) E C(X) in the form 

N 

(6.9) f(x) = L9i (cpi(x)), 

THEOREM 6.7. In order that an arbitrary f(x) E C(X) be representable by 
(6.9), it is necessary and sufficient that there exists A > 0 such that for anyµ E 
C(X)* and some index i, 1 :5 i :5 N, 

(6.10) 

Now consider the situation in Theorem 6.1, let DC C(Z) be a Banach space, 
and let there exist d > 0 such that for 9 E D, ll9llccz) :5 dll9llD· A regular Borel 
measure 11 on Z defines a continuous linear functional on D, whose norm we denote 
by ll11llv. 

THEOREM 6.8. In order that in the situation of Theorem 6.1 the representation 
(6.1) for arbitrary f E C(X) hold with 9 E D, it is necessary and sufficient that 
there exists A> 0 such that for anyµ E C(X)*, 

(6.lf) ~ cpi 0 µII ~ Allµll. 

Consider, as in Theorem 1.2, the subspace Din the space C(I) that consists of 
boundary values 9 (eix), x EI, of functions 9(z) analytic for jzj < 1 and continuous 
for jzj :5 1. We shall not specify here the precise form of the condition (6.11) in 
these circumstances, but simply note that calculation of the norm of the functional 
11 on such D is itself a popular extremal problem in the theory of analytic functions. 
(Note that the results 6.1-6.8 appear here for the first time.) 

Superpositions of functions of one variable. Theorems 6. 7 and 6.8 are 
not only associated with superpositions of functions of several variables, but can 
also be useful for functions of one variable when the question concerns represen
tation of functions by superpositions of functions having some "good" additional 
properties. Let us give here a well-known example. Let X = T be the unit circle 
and D = A(T) c C(T) be the Banach space of absolutely convergent Fourier series. 
According to a theorem of Kahane ([73, p.122]) an arbitrary f c C(T) can be 
represented in the form 

(6.12) 

where 9 E A(T) and cp1, cp2, cp3 are self-homeomorphisms of T satisfying some 
additional continuity properties. 

Thus such triples (cpi, cp2, cp3) provide some kind of separation as in (6.11). 
If we take pairs (cp1, cp2) of conjugate homeomorphisms, then they only provide 
representations 

f = 91 0 <p1 + 92 0 cp2 
of an arbitrary f E C(T), and therefore such pairs ( cp1, cp2) only provide separation 
(6.10). In addition, since the set offunctions 9 o cp1 +9 o cp2 does not coincide with 
C(T) (cf. [73, p.124]), the pair (cpi, cp2) does not provide separation as in (6.11). 

·Hence, conditions (6.10) and (6.11) are indeed different. 
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§7. Study of the original notion of separation (continued) 

Let us go back to the original definition of uniform separation of measures. 
Let X, Xi, i = 1, ... , N, be arbitrary sets and 'Pi : X --+ Xi be mappings. We 
continue the study of separating properties of the family F = {'Pi}~. Let (X, M) 
be a measurable space, and let S be a class of real-valued measures defined on M. 
Let IZI denote the cardinality of a set Z, and for sets Z c X define the following 
derivatives: 

(7.1) 

(7.2) 

zi = {x E z: 1zncp;1 (cpi(x))I;?: 2}; 
N 

r(Z) = n zi. 
i=l 

Thus, zi is the set of all points in Z for each of which there is at least one more 
point where the function 'Pi assumes the same value. Operator r : Z--+ r(Z) acts in 
the space of all subsets of the set X. The following sufficient condition for uniform 
separation of measures then holds. 

LEMMA 7.1 ([133]). Let mappings 'Pi E F be such that for Z EM the sets zi 
(as in (7.1)) also belong to M, i = 1, ... ,N. If rn(X) = 0 for some n;?: 1, then 
F uniformly separates measures in S. 

PROOF. Use induction on n. Clearly, for n = 0 we can assume that the state
ment holds. Suppose it holds for n - 1 for measures supported on arbitrary subsets 
in M. Let rn(X) = 0 and set Z = r(X). Then rn-1(Z) = rn(X) = 0. Hence, mea
sures in S concentrated on Z are uniformly separated by the family F. Suppose this 

separation occurs with a constant >., 0 < >. :5 1. Take a number a, 1 ~ >. <a < 1, 

and let the measureµ ES, 11µ11 = 1. Byµ lz we denote the restriction ofµ to the 
set Z, and by lµI the total variation ofµ. Consider two cases. 

1. lµl(Z) ;?: a. So, IIµ lz II ;?: a and there exists i such that ll'Pi o µlzll ;?: a>.. 
Since lµl(X\Z) :5 1 - a, 

ll'Pi o µII ;?: ll'Pi o µ lz 11-1µ1 (X\Z) ;?: >.a - (1 - a) = (>. + l)a - 1 > 0. 

2. lµl(Z) <a. Then, lµI (X\Z) > 1 - a. Recalling that Z = r(X), we have 

N N 

X\Z= X\ nxi = LJ (X\Xi). 
i=l i=l 

. 1- O! 
Therefore, for some i we must have lµI (X\X') > ~· Now, note that 

'Pi (Xi) n 'Pi (X\Xi) = 0. Indeed, if y E 'Pi (Xi), then y has at least two preim
ages, while y E 'Pi (X\Xi) has only one preimage. So, on X\Si the mapping is a 
bijection. Hence, 

. 1- O! 

ll'Pi 0 µII ;?: ll'Pi 0 µllrp,(X\X') = llµllx\x• = lµI (X\X') > ~· 

So, if >.' = min((l +>.)a - 1, (1 - a)/N), then, given that 11µ11 = 1, we obtain 
that there exists an index i for which ll'Pi o µII ;?: >.'. Thus, F uniformly separates 
measures on S (with constant >.'). 
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THEOREM 7.2 ([133]). If F = {cpi,cp2} consists of two functions, then this 
family uniformly separates points in X if and only if rn(X) = 0 for some n. 

PROOF. We can assume now that M consists of all subsets of X while S = 
.e1 (X). Sufficiency of the condition rn(X) =/:- 0 has been established in the above 
lemma. It remains to show necessity. Thus, let rn(X) =/:- 0 for all n. Let 
x1 E rn(X) = [rn-1(X)] 1 n [rn-1(X)] 2. Since x1 E [rn-1(X)], according 
to (7.1) there exists X2 E rn- 1(X) for which 'Pl (x2) = <p1 (xi). Since x2 E 
rn- 1(X) = [rn-2(X)] 1 n [rn-2(X)]2, there exists an element X3 E rn-2(X) such 

that 'P2 (xa) = 'P2 (x2). Since X3 E Tn- 2 (X) = [rn-3 (X)] 1 n [rn-3 (X)] 2, there 
exists X4 E rn-3(X) such that cp1 (x4) = cp1 (xa). Continuing, we obtain a se
quence xi, ... ,xn, Xj E rn-i+l(X), and cpi(xj) = cpi(Xj+i) for odd j, while 
<p2 (xJ) = cp2 (XJ+i) for even j. Set 

1 n 
µ = - '°'(-l)iox· 

n L....J ' 
1 

(ox denotes the delta-mass at a point x). Then 11µ11 = n, and at the same time 

ll'Pi o µII :::;: 2/n, i = 1, 2. Thus, ll'Pi o µII :::;: ~ 11µ!1, and since n can be arbitrarily 
n 

large, it follows that the family { cpi, <p2} does not uniformly separate points in X. 

We mention in passing that sequences of points similar to that constructed in 
the proof of Theorem 7.2 will play quite an important role in the sequel. 

Theorem 7.2 together with Theorem 3.6 provides a complete characterization 
of sets on which an arbitrary bounded function is representable by a sum of two 
superpositions. 

THEOREM 7.3. Let x, X1, X2 be sets, and 'Pi: x-+ xi mappings. In order 
that any function in B(X) be representable in the form 

(7.3) f(x) = 91 o <p1(x) + 92 o <p2(x), Yi EB (Xi), i = 1, 2, 

it is necessary and sufficient that rn(X) = 0 for some n. 

A question and a theorem of Sternfeld. Now we are able to give a com
plete answer to the earlier question on equivalence of representability of continuous 
functions by superpositions of continuous functions and its analogue for bounded 
functions (the question was raised in [133]). 

THEOREM 7.4 ([133]). Let X, Xi be compact metric spaces, and 'Pi: X-+ Xi 
be continuous mappings, i = 1, 2. The following statements are equivalent. 

1. For any f E C(X) the following representation holds: 

(7.4) f(x) = 91 o <p1 (x) + 92 o <p2(x), Yi EC (Xi), i = 1, 2. 

2. For any f(x) E B(X), (7.3) holds. 
3. The system F = {cpi,<p2} uniformly separates Borel measures on X. 
4. The system F = {'Pl, <p2} uniformly separates points in X. 
5. The equality rn(X) = 0 holds for some n. 

PROOF. First, we shall need the following technical lemma. Here M is an 
algebra of Borel sets. 
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LEMMA 7.5. If Z E M, then zi, i = 1, 2, and r(Z), defined by (7.1)-(7.2), 
also belong to M. 

PROOF OF THE LEMMA. Let d(U) denote the diameter of a set U. We have 

zi = { x E z: IZ n cpi1 (cpi(x))I ~ 2} 

= {x E z: d (Z ncpi1 (cpi(x))) > o} 

=Q
1 
{xEZ:d(Zncpi 1 (cpi(x))) ~~}· 

Since cpi1(cpi(x)) is compact, {x E Z : d(Z n cpi1(cpi(x)) ~ 1/n) is closed, and 
hence zi is an Fu set in Z. Therefore, zi is a Borel set. 

PROOF OF THEOREM 7.4. We already know from the preceding sections that 
1 <=? 3, 2 <=? 4 <=? 5, and also 1 ::::} 2. Now suppose 2 holds. Then 5 also holds. But 
from Lemma 7.1, together with the above Lemma 7.5, it follows that 3 holds. The 
theorem is proved. 

Theorem 7.4 was independently (and in a different form) proved by Khavinson 
[80] using different arguments that allow us to remove the assumption that the 
compact sets are metric. We shall present that argument later on. 

§8. A counterexample 

It is very surprising that for N > 2 Theorem 7.4 is false. Examples were given 
in [136] and [103]. Here, we follow [103]. Yet, we have to start out from afar. 

A free group. Let us be given a countable set of symbols v1, ... , Vn, • • . . Add 
to them the symbols v:[ 1, ... , v;;: 1 , . . • and a symbol e0 that will play the role of the 
identity. From this alphabet we look for words, i.e., symbols, that have the form 

(8.1) F = fmfm-1 ···Ji, 
where the /i are arbitrary symbols from the alphabet, and m E N is arbitrary. 
Moreover, nowhere in (8.1) do symbols Vn and v; 1, for any n E N, stand near each 
other. We postulate Vnv;;: 1 = v;;: 1vn = eo (vnv;;: 1 or v;;: 1vn are "empty" words). 
Multiplication of words that is defined accordingly (by writing them in order with 
the possible omission of "empty" words) makes the set of all words G0 into a group 
with eo serving as its identity. If in the word (8.1) several consecutive symbols 
coincide, we replace them by a power, as usual. The group Go is called a free group 
with generators V1, ••• , Vn, .... The subgroup of Go with generators v1 , ... , Vn will 
be denoted by Gni it is a free group with a finite alphabet { v1, v:[1, ... , Vn, v;;: 1 , eo}. 

An isomorphism of a free group into a group of analytic homeomor
phism of the semi-axis [O, +oo). Denote by G the set of functions v(x) mapping 
the semi-axis [O, +oo) onto itself and satisfying the following properties: 

v(O) = 0, v'(x) > 0 for all x > 0, v'(O) = 1, 
(8.2) 

v(x) is an analytic function on [O, +oo). 

Clearly, for v(x) E G, v-1(x) E G. The set G becomes a group if for group 
multiplication of u E G and v E G we take the superposition u o v. The identity 
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map e: e(x) = x plays the role of the identity. Right away, let us note an important 
(for us) example of functions in G. Let [a, b] ~ [O, +oo), and letµ 2:: 0 be a regular 
Borel measure on [a, b] satisfying 

(8.3) 

The function 

(8.4) 

is an entire analytic function and belongs to G. 
Choose in G certain functions v1 ( x), ... , Vn ( x), and define a homomorphism cp 

of a free group Go into the group G by setting 

(8.5) cp (eo) = e. 

Clearly, cp extends naturally to all words (8.1) and is indeed a homomorphism of a 
free group Go into G. If Fis a word (8.1) and cpF its image, we shall often write 
F(x) instead of (cpF)(x), since the presence of the variable x already distinguishes 
a function (an element of G) from a word. 

The following fact, also established by Medvedev, plays an important role in 
his construction. 

THEOREM 8.1. Functions vi (x), ... , vn(x) in the group G can be chosen so that 
the mapping (8.5) is an isomorphism of Go onto cp (Go). Moreover, the functions 
vn(x) also satisfy the following additional properties: 

(8.6) 0 < v(k) (x) < v(k) (x) 
n+l n ' 

for all k = 0, 1, . . . and all n. 

Auxiliary facts from the problem of moments. The proof of Theorem 8.1 
is based on some facts from the problem of moments which we gather in the following 
lemma. Let 0 < xi < X2 < · · · < Xn be certain points, and ci, ... , Cn real numbers. 
Let 

n(Xi, ... , Xn) 
Ci, .. · , Cn 

denote the class of functions v(x) of the type (8.4) for which the measure µ 2:: 0 
has infinitely many points of growth, and the interpolation conditions v (xi) = Ci, 

i = 1, ... n, are satisfied. (We denote by P the class of measures µ 2:: 0 on [a, b] 
having infinitely many points of growth and normalized by (8.3).) 

LEMMA 8.2. Let the class 0 be non-empty. If a point x is different from 
xi, ... ,xn, then the set S(x) = {v(x): v En} is a non-degenerate open interval. 
If { E S(x), then { E S(y) for ally sufficiently close to x. 

Both statements of the lemma follow easily from standard facts of the theory of 
moments. In particular, one could, with this goal in mind, compare Theorems 3.5, 
6.1, and 4.1 in [89]. 
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PROOF OF THEOREM 8.1. First, let v1(x), ... ,vn(x), ... be an arbitrary se
quence of functions in G. Let us sort out the structure of words F inside the kernel 
of the homomorphism cp. If for a word F = fm ... Ji we have cpF = e, then for the 
word F1 = film ... h we have cp (F1) = cp (!1) cp(F)cp (!11) = cp (!1) ecp (!11) = 
cp (fif11) = e. Hence, if cp(F) = e, then for all words F1 obtained from F by a 
circular permutation of the symbols we have cp (F1) = e. Thus, if the end-terms Ji 
and fm of a word are reciprocal of one another, they can be deleted. If the new 
end-terms of the word are reciprocal, we again can delete them, etc. All the terms 
in F will not be deleted; otherwise, the neighboring terms in the middle would be 
mutually reciprocal, and this is not allowed for words. 

Mark some n E N. By circular permutations and cancellations, the equality 
cp(F) = e can be reduced to t4e equivalent equality cp (Fo) = e, where F0 has one 
of the following forms: 

(8.7) Fo=u, Fo = v::1 , 

where u, ui, ... , Up are words that do not contain Vn and v; 1 and are different 
from eo, while ni, ... , np are integers. Construct the required functions and the 
isomorphism cp by induction. Set, for example, v1(x) = xex. Then cp, defined on G1, 
maps e only into eo. Assume that for some n > 1 we have already defined functions 
v1(x), ... , Vn-1(x) in G and hence cp on Gn-1 so that cp is an isomorphism on Gn-1· 
First, show that for each word FE Gn \Gn-1 there exists a function v(x, F) = v(x) 
of the form (8.4), depending on F, so that together with already-defined functions 
v1(x), ... ,Vn-1(x), it satisfies cp(F) "I- e. It suffices (in view of (8.7)) to consider 
words F like 

(8.8) 

where Ui E Gn-1 \eo, i = 1, ... ,p; ni, ... , np are non-zero integers. 
To shorten the arguments, we can assume that nl > 0. (If all the exponents 

nk < 0, then in the word p-l all exponents were positive, and hence cp (F-1) "I- e 
implies cp(F) "I- e.) We can move this positive exponent in the word F to the ex
treme right position by circular permutations. Now take an arbitrary (8.4) function 
w(x) for which the measureµ E 'P. Consider a set of functions (8.4): 

(8.9) fl_ fl (Xo W (xo) 
- w (xo) w2 (xo) 

It is non-empty (it contains w). Therefore, the set of values taken at wni-l (x0) 

by functions v from that set is a non-degenerate interval. Take a value e from 
that interval satisfying the following requirements: e is different from the numbers 
Xo, W (xo), ... , wni -l (xo); e fl_ u11 (xo, ... , wni -l (xo)) j U1 (e) i:- e. (The latter 
can be achieved, since the set of roots of an analytic function u1 ( x) is discrete.) 
Let wo(x) be one of the functions in fl for which the value at wn1 - 1 (x0) equals e. 
Thus, W~1 (xo) = Wo (w~i-l (xo)) = Wo (wni-l (xo)) = e. Consider a non-empty 
set of functions 

(8.10) n -'"'(xo wo(xo) 
uo-u 2 

wo (xo) Wo (xo) 
w~1 - 2 (xo) w~1 - 1 (xo)) 
w~1 - 1 (xo) w~1 (xo) 
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(all columns in no, except for the last "extra" one, coincide with those inn) and a 
point 

(8.11) 

According to our construction, we have a non-empty set no (8.10) and a point x1 
that differs from all the values used in n 0 • Now apply induction. Assume that we 
have already constructed a function Wi(x) of the form (8.4) withµ E 'P, a set 

(8.12) 

where Mk is an abbreviation for 

(8.13) Mk= ( ~~ (xk) 

for 0 :5 k :5 i when nk > 0 and 

Mk = (w;1 (xk) 
Xk 

for 0 :5 k :5 i when nk < 0, while 

(8.14) 

and in the matrices ni all entries are different, so, in particular, all the numbers 
xo, xi, ... , Xi are distinct. Also, if we set 

(8.15) 

then the number Xi+i differs from all the entries of the matrix ni. Now let us 
describe the inductive step. 

Consider case (a): ni+l > 0. Take a function 1Wi(x) from ni for which the 
value 1Wi (Xi+i) differs from all the entries in ni. Set 

(8.16) nt = n (Mo, ... ,Mi, xi+i( )) . 
1Wi Xi+l 

Take a function 2Wi(x) Ent for which the value at 1Wi+i (Xi+i) differs from all the 
entries in nf. This generates a new sets of functions: 

(8.17) n~ = n (M M· xi+1 2wi (xi+i)) 
t Oi • •. 1 ti 2Wi+l (XH1) 2Wi (Xi+i) . 

Similarly, we construct a function 3wi ( x) E n; and a non-empty set 

(8.18) n~ = n (M M· Xi+i 3Wi (xH1) 3Wf (xH1)) 
t 0 • ••• ' ti 3Wi (xH1) 3Wf (xH1) awl (Xi+i) 

so that all entries in nr are distinct, etc. At the end of the chain we form a function 

ni+iwi(x) ~f Wi+1(x) such that all entries in the matrix 

(8.19) 
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are distinct. Moreover, the value w~~t1 (xi+i) =tis chosen so that 

ui+2(t) = t. In particular, if we set 

{8.20) 

this implies that Xi+2 differs from all the numbers xo, ... , w~~t1 (xi+i), and the 
induction step from i to i + 1 is complete. 

Consider case {b): fii+i < 0. Take a point e close to the value w;1 (Xi+i) so 
that Xi+i is among the values assumed by functions in ni at that point. According 
to Lemma 8.2, such a point exists and can be chosen so that it differs from all 
the numbers used to introduce Oi. Let the function 1Wi(x) E Oi be such that 
1Wi{e) = Xi+i1 i.e., e = 1w;1 (xH1). We have a set of functions 

(8.21) 0} ={}(Mo, ... 'Mi, 1Wi1 (xH1)) 
Xi+l 

and all the numbers in O} are distinct. Now take a point e different from all the 
numbers inn} and close to w;2 (xH1) so that 1wi1 (xi+1) was among the values 
assumed by the functions nt ate. Let 2Wi(x) be a function inn} and satisfying 
2Wi{e) = 1w;1 (xH1). Then e = 2w;2 (xi+1), and we arrive at the set 

{8.22) n~ = n (M M· 2Wi1 (xH1) 2Wi2 (xH1)) 
u, ~' 01"'1 ii -1( ) Xi+l 2Wi Xi+l 

in which all the numbers are distinct. Continuing this process, we arrive at the 

function ln;+ilwi(x) ~f Wi+1(x) and the non-empty set 

n def nlni+il n {"" M M ) Hi+l = Hi = HQ .LV.LQ, • • • 1 i1 i+l 1 

( 
-1 { ) -2 { ) ni+l { ) ) M· _ wi+1 Xi+l wi+l Xi+l . . . wi+1 Xi+l 

i+l- -1 { ) n;+1+l{ ) 1 Xi+l wi+l Xi+l wi+l Xi+l 

{8.23) 

where all the entries are distinct. Moreover, the number t = w~~t1 (xH1) can 
be chosen so that it does not belong to the set u;)2 (xo, ... ,wn;+i+l (xi+i)) and 
ui+2(t) "It. This, in particular, implies that the number 

(8.24) 

is different from x0 , •.• , w~~t 1 (xH1), and the induction step of going from i to i+ 1 
has been completed for this case also. 

As a result of the above process we obtain a function wp(x) such that 

uPw;P ... u1w;1 (x 0 ) "I xo, 

and so for the word F = UpVnP ... u1vn1 we can choose a function v(x, F) ~f wp(x) 
of the form (8.4) with measure µ E 'P such that on replacing v by v(x, F) we 
obtain F(x) "Ix. Now, enumerate all words in Gn \Gn1 : Fi, F2, ... , Fm, .... Take 
xo > 0 and construct as above the function v (x, Fi) withµ E 'P. Denote the matrix 
obtained as before from the values of v (x, F1) by Mi, and let n {M1) be a {non
empty) class of functions defined by this matrix. A point y0 for the construction of 
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v (x, F2) is chosen so that all the values that appear when we apply the construction 
process above lie to the right of those in Mi. This can be achieved as follows. Let 

and let Po be the largest entry in the matrix Mi. Among all functions {8.4) the 
function vo(x) = ebx has the fastest growth. Hence, if p >po, whereas 

{8.25) Yo> max ( vbnd(p), uivhnd(p), ... , vbnpl(p), uivhnd ... Upvbnpl(p)), 

then, starting the process for v (x, F2) with yo, we shall only deal with points that 
lie to the right of p. Therefore, we can only deal with functions inn (Mi), and the 
process will produce the function v (x, F2) that belongs ton {M2), where M2 :::>Mi. 
So, the values of v (x, F2 ) at points related to Mi are the same as those of v (x, Fi). 
Thus, replacing vi in the word Fi by v (x, F2), we obtain Fi(x) ":Ix, in the same 
way as we did while replacing Vn in that word by v (x, Fi). Continuing the process, 
we obtain a sequence of functions { v (x, Fm)} of the form {8.4) with measures µm 
in 'P. Also, the functions v (x, Fm) do not lead to e(x) = x when we substitute 
them into the words Fi, F2, ... , Fm. Selecting out of measures {~} a sequence 
that converges weak{*) to the measureµ, we obtain from {8.4) a function v(x). (We 
cannot now claim that µ E 'P, but this is not needed.) During the construction of 
v (x, Fm) we obtained the sets n (Mm) for which the lengths of the matrices Mm 
increase together with m: Mi C M2 C · · · C Mm C · · ·. The function v(x) has 
in the lowest row of the matrix Mm the same values as v (x, Fm) for m = 1, ... , 
and hence when it is substituted into Fm it yields Fm(x) '¢ x. Thus, the function 

v(x) ~f vn(x) simultaneously "services" all words in Gn \Gn-i· 
Note that in the construction of the functions vn(x) the segment [a, b] C [O, +oo) 

was arbitrary. Take a sequence of segments {[an, bn]}, where 0 < an+i < bn+i < 
an < bn :::; 1 {bi = 1). The functions vn(x) constructed above can be chosen to 
have the form 

{8.26) lb,. 

dµ = 1. 
a,. 

{The value bi = 1 is chosen only because we have started the construction with 
vi(x) = xex, which corresponds to the unit mass at point 1.) Then 

(8.27) 

The inequality {8.27) completes the proof of the theorem. 

THEOREM 8.3. There exist compact sets X, Xi, ... , Xn,... and surjective 
mappings 'Pi : x --+ xi, i = 1, ... 'n, ... ' satisfying the following properties: 

1. For any three distinct indices ii, i2, ia we have for an arbitrary function 
g(x) E B(X) the following representation: 

g(x) = 91 o 'Pi1 (x) + 92 o 'Pi2 (x) + 93 o 'Pis (x), 
9k E B(Xk), k = 1, 2, 3. 

{8.28) 
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2. There exists f(x) E C(X) that cannot be represented in the fonn 
00 00 

(8.29) f(x) = L9i o C,Oi(x), 

3. For any two indices ii f:. i2, the subspace 

(8.30) 9i o C,Oi1 (x) + 92 o C,Oi2 (x), 

is dense in C(X). 

PROOF. Construction. Let {vn(x)} be a sequence of functions constructed in 
the proof of Theorem 8.1. There are countably many words in Go \eo, and for each 
word F, in view of analyticity of the function F(x) (i.e., (cpf)(x), where cp is the 
isomorphism constructed in Theorem 8.1), there are at most countably many roots 
of the equation F(x) = x. Let So be the set of all the roots of all the equations for 
all words. Since So is a countable set, it can be covered by open intervals with an 
arbitrarily small total length. Let S be the union of such intervals covering So. It 
is easy to choose it so that 

(8.31) meas [Sn [O, h]] = o(h), h - o+. 
Let X = [-1, 1]\S. Since Sis open, Xis compact. Define the functions C,On(x) on 
X, n = 1, 2, ... , by setting 

(8.32) C,On(x) = x when x ~ 0, C,On(x) = Vn(lxl) when - 1 :$ x < 0. 

Let Xn = C,On(X). Since Vn(l) > 1 (in view of (8.2) and (8.6)), Xn = [O, Vn(l)]. 
Thus, 

(8.33) X = [-1, 1]\S, Xn = 'Pn(X), { x, 
'Pn(x) = Vn (lxl)' 

x ~ 0, 

x <0. 

Note the very simple structure of the compact sets X and {Xn}· In particular, the 
Xn are simply segments. 

PROOF OF PROPERTY 1. Call the points x and x' in x equivalent with re
spect to Rt, i = 1, 2, ... , if 'Pi(x) ='Pi (x'). We shall write it as xRix'. If x f:. x' 
and xRtx', then x and x' have opposite signs and x' = Vi (lxl) when x < 0, 
whereas lx'I = v;i(x) when x > 0. Clearly, Rt is indeed an equivalence rela
tion. Consider a sequence of points xi, x2, ... , Xn of a set X and certain relations 
Rt1 , Rt2 , • • • , Rin-t. Let 

(8.34) 

(8.34) means that xiRt1 x2, x2Rt2 x3, etc. Assume that xi =/:- x2,x2 f:. x3, ... , 
Xn-i f:. Xn and, also, ii=/:- i2,i2 =/:- i3, ... ,in-2 =/:- in-i (i.e., the consecutive relations 
Rt in (8.34) are all distinct). Under these assumptions call (8.34) a lightning bolt 
joining xi and Xn (concerning the origin of this terminology, cf. Chapter 2, where 
this notion plays a crucial role). Every point x E X is considered to be a lightning 
bolt joining x with x. Let us show that two points x and x' can be joined by not 
more than one lightning bolt. Let xi and Xn be joined by the lightning bolt (8.34). 
Relate to it the word F in the free group Go: 
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where the exponents k; alternate between 1 and -1: ki = 1 if xi < 0 and ki = -1 
if xi > 0. Under our assumptions F is indeed a word, since these assumptions 
provide for the lack of "empty" words in F. In case when xi = Xn, we take F = eo. 
The word Funder the isomorphism cp corresponds to a function F(x) = (cpF)(x). 
Then, lxnl = F (lxil). Suppose there is another lightning bolt that joins xi and Xn. 
It corresponds to another word H E G0 which, in turn, corresponds to a function 
H(x) E G. Then F(lxil) = H(lxil). If xi> 0, it follows that H-i oF(xi) =xi. 
But by construction X does not contain roots of any equation <I>(x) = x when 
CI> E Go \e0 • Hence, H-i F = e0 and, therefore, the words H and F, and the 
corresponding lightning bolts, are the same. If xi < 0, then x2 > 0 and x2 = 
Vi1 (lxil), lxil = v4i (x2). We obtain F o v4i (x2) = Ho v4i (x2) and, as in the 
previous case, Fv4i = Hv4i, F = H. (In addition, if we had xi = Xn, then taking 
F = eo we would have obtained H = eo as well.) 

Now select among the mappings { 'Pn} three with different indices. To fix the 
ideas, let them be cpi, cp2, <pa. In addition to the equivalence relations Ri. R2, Ra 
defined above, introduce on X one more relation R by setting xRx' if x and x' can 
be joined by a lightning bolt that only contains relations Ri, R2, Ra. Without any 
difficulties one can show that R is an equivalence relation. Let hi = Yi o cpi, Yi E 
B (Xi)· Clearly, hi(x) E B(X), and it takes constant values on each equivalence 
class in the quotient set X/ Ri. Conversely, if the hi(x) are in B(X) and assume 
constant values on each equivalence class in X/ ~. then obviously one can find 
Yi EB (Xi) such that hi= Yi o 'Pi· Hence, for l(x) E B(X) we must find bounded 
functions Hi(x), i = 1, 2, 3, such that 

Now consider the equivalence classes X/ R. Each such class is a saturation class for 
X/~. The latter means that if Eis some class in X/R, x EE and X'~x, then 
x' E E. Therefore, functions hi can be defined on each class in X / R independently 
of their definition on other classes in X/ R as long as hi remains bounded on all of 
x. 

Let E be an equivalence class in X/ R. Choose a point xi E E. For any x E E 
call the number of points in the lightning bolt joining xi to x, the rank of x. Set 
hi (xi) = I (xi), h2 (xi) = ha (xi) = 0. Suppose that the values of hi are defined 
for all points ofrank less than n (n > 1) so that at those points lhil ~ 11111, if x~x' 
then hi(x) = hi (x'), and, finally, I = hi + h2 +ha. Let Xn be a point of rank n. 
It is joined to xi by the lightning bolt (8.34), where now all ik = 1, 2, 3. The point 
Xn-i had rank n - 1 and, in view of the uniqueness of a lightning bolt joining xi 
and Xn, this is the only point of rank n - 1 that is equivalent to Xn with respect to 
one of the relations ~. i = 1, 2, 3. (Otherwise, there would be two lightning bolts 
joining xi and Xn, or xi could be joined to Xn by a lightning bolt with less than n 
points.) Let Xn-iRixn, and let j =f. k be the remaining two numbers among 1, 2, 3 
different from i. Set ~ (xn) = hi (Xn-i), h; (xn) = -hi (xn), hk (xn) = I (xn)· 
Continuing this process inductively (with respect to the rank), we properly define 
hi, h2, ha on the whole class EE X/ R. Combining the results over all such classes, 
we obtain on X 

I= hi+ h2 +ha, lhi(x)I ~ 11111, 
hi(x) =hi (x') whenever x~x', i = 1,2,3. 
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Using hi, we find appropriate 9i E B (Xi), and hence f has the form (8.28). 

PROOF OF PROPERTY 2. If for each f(x) E C(X) (8.29) is satisfied, then 
according to Theorem 2.1 there exists a number .X (0 < .X :$ 1) such that for each 
µ E C(X)*, 

(8.35) sup ll'Pn ° µII 2:: .Xllµll. 
n 

Denote by m the Lebesgue measure on the real line, and, taking h, 0 < h < 1, 
define a measure µ on Borel subsets E C X by setting 

µ(E) = m(E), E [O h] 
h c ' ' 

(8.36) m(E) 
µ(E) = --h-, E c [-h,O], 

µ(E) = 0, E c [-1, -h) U (h, l]. 

Then, 

(8.37) 
1 llµll = h [2h - m (Sn [O, h])] = 2 - o(l). 

Take an arbitrary e > 0 and choose h so small that 

(8.38) v~(x) < 1 +e, 0 < x < h. 

For all n, (8.6) yields the following inequalities: 

1 < v~(x) < v~(x), x < vn(x) < vi(x), x > v;;: 1(x), 

( -1)' 1 1 1 1 
Vn (x) = / ( _1 ( )) > -,-( ) > -,--( ) > -1 - > 1- e. Vn Vn X Vn X Vi X + e 

(8.39) 

Now estimate ll'Pn o µII. According to Lemma 3.2 we have: 

(8.40) 

where 8n is defined as in that lemma. According to (8.36), we have for A (in the 
notation of Lemma 3.2) X n [O, h], B = [-h, O]. In view of the definition of 'Pn we 
obtain 

(8.41) c = 'Pn(A) n 'Pn(B) =An (0, Vn(h)] =A= (0, h]\S. 

Let P c C. Then (using the notation in Lemma 3.2, and (8.36), (8.39)), 

Thus, 

(8.42) 

8n(P) =min {µ(P'), jµ(P")I} =min {µ(P), jµ (v;;: 1 (P)) I}; 

µ(P) = *m(P) jµ (v;;: 1(P))j = * L (v;;.-1)' dm > *(1-e)m(P). 

1-e 
8n(P) > -h-m(P). 
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For an arbitrary partition of the set C into sets Pi, i = 1, ... , k, we obtain from 
(8.4) and (8.42) 

k 1-c k 1-c 
Len (Pi) > -h- L m (Pi) = -h- [h - o(h)] = (1 - c) (1 - o(l)). 

1 1 

Therefore, for en in (8.40) we obtain the estimate 

k 1 
en = inf Len (Pi) > 1 - c - o(l) > 211µ11 - c. 

1 

(8.43) 

(8.35) is equivalent (Lemma 4.3) to the inequality 

sup2en :5 (1- .X)llµll. 
n 

But (8.43) yields that the latter inequality does not hold for any A (0 < A :5 1) if 
we take h sufficiently small. 

PROOF OF PROPERTY 3. Take, for example, i = 1, 2. We must show that the 
subspace D 

(8.44) 

is everywhere dense in C(X). Letµ E Dl.. Using Fubini's theorem, we right away 
obtain that µ E Dl. if and only if Vi = 'Pi o µ = 0, i = 1, 2. We need to show 
that in our situation from V1 = 0 and v2 = 0 it follows that µ = O. Assume the 
opposite. Consider intervals (t, 1], t 2::: -1, for which the variation of the measure 
µ on (t, 1] n X equals zero. (The empty interval (1, 1] is also allowed.) Let (T, 1] 
be the union of all such intervals. Assume that T > 0. Since for x > 0 (cf. (8.39)) 
v2(x) < v1(x), it follows that v1 1(T) < v2 1(T) and v2 o v11(T) < T. Consider a 
closed set P in [-1, -v11 (T)]. Then the set Q = r.p1 (P) n X is also closed. By 
definition of r.p1 we have Q = v1 ( - P) n X ( - P is the set symmetric to P with 
respect to the origin) and Q c [T, 1) n X. Moreover, r.p1 1(Q) = Q UP. Since we 
assumed v1 = 0, we obtain 

v1(Q) ~r µ (r.p11(Q)) = µ(Q) + µ(P) = 0. 

However, µ(Q) = 0 also, since Q c [T, 1) n X. Hence, µ(P) = 0. Now let M 
be a closed set inside (v1 ov11(T),1] n X and N = -v21(M). Then N is also 
closed, and N C [ -1, -v! 1 (T)] . Therefore, in view of what we have shown above, 
µ(N) = 0. Furthermore, r.p21(M) = MUN. Since v2 = 0 by our assumption, 
whereas 

v2(M) ~f µ (r.p21(M)) = µ(M) + µ(N) = 0, 

then µ( M) = 0 as well. Thus, on an arbitrary closed set M C ( V2 o v! 1 (T), 1] the 
measure µvanishes, µ(M) = 0. 

In view of the regularity of µ this implies that the total variation of µ on 
(v2 ov11 (T),1] vanishes. But we have already noted that v2 o v11(T) < T and, 
hence, the variation ofµ vanishes on a semi-interval that is larger than (T, 1]. This 
contradicts the definition of T. The contradiction appeared because we assumed 
that T > 0. Hence T :5 0. But then, recalling again that v1 = 0 and v2 = 0, we 
conclude that µ = 0, and the proof of the theorem is now complete. 
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REMARK. We have already noted that in [136] the examples are constructed 
with BD = B(X), but D # C(X). However, in those examples D # C(X). So, 
both possibilities may occur: 

1. BD = B(X), D # C(X), D = C(X); 
2. BD = B(X), D # C(X). 

§9. Measure of compact sets on which all continuous 
functions are representable by sums of superpositions 

Let X, Xi, i = 1, ... , N, be compact sets, 'Pi : X -+ Xi continuous mappings. 
Consider the products 

k<N. 

Assume that the family of mappings F = ( <p1, ... , <p N) separates points in X. 
Then, the mapping 

{9.2) F:X-+Y, x EX-+ {<p1(x), ... , 'PN(x)) 

is a homeomorphism. Identifying X with its image F(X) in Y, we can assume 
x c y and the 'Pi are natural projections from y onto xi. 

Also, consider the mappings 

{9.3) 

that are the restrictions to X of the natural projections of Y onto Yk and Yk, 
respectively. 

THEOREM 9 {[131]). Let all f E C(X) be representable in the form 

(9.4) f(x) =go <P(x) +go ~(x), 

If A and µ are two arbitrary positive finite measures on Yk and Yk respectively that 
vanish on one-point sets and v = A x µ, then 

{9.5) v(X) = 0. 

In particular, {9.5) holds if for all f E C(X) the representation (3.18) holds. 

PROOF. Assume that v(X) > 0. By Fubini's theorem we have: 

Therefore, there exists an uncountable set of points t E Yk for which 

Hence, there exist a positive number TJ and an infinite sequence of distinct points 
{ti}, i = 1, ... , n, ... , in Yk for which 

{9.6) 

Among them there exist at least two points ti and tj such that Ei n Ej contains 
at least two points. Indeed, assuming that every pair Ei and Ej intersects over at 
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most one point, we form the set E = LJ Ei. Since the measure µ has no atoms, it 
follows that 

µ(E) = Lµ(Ei) 
i 

and according to (9.6), µ(E) = oo, contradicting the finiteness of the measureµ. 
Thus, let Ei n E; contain two points a and /3 from Yk. Consider four points in 

the set X 

X1 =(ti, a), 

and the measure 

(9.7) 

X3=(t;,a), X4 = (t;,/3) 

where 6x denotes the delta-measure at the point x. A straightforward calculation 
yields that the measure (9.7) annihilates all functions (9.4), and hence C(X) cannot 
consist only of such functions (e.g., a function f(x) such that f (x1)- f (x2)+ f (xa)
f (x4) =I 0 cannot be represented in the form (9.4)). 





CHAPTER 2 

Approximation of Functions of Two 
Variables by Sums cp(x) + 'lf;(y) 

§1. Raising the questions. Lightning bolts 

Asking the questions. Let D be the subspace of linear superpositions in 
G(X). In Chapter 1 we studied various approaches to the following question: 

1. When is D = G(X)? 
In the case of bounded functions the question was posed on coincidence of the 
subspace BD with B(X). In the case when D ¥ G(X) we are now going to 
study the problem of best approximation of functions f E G(X) by elements of the 
subspace D (or of functions f E B(X) by the elements of the subspace BD). This 
gives rise to the following questions: 

2. When is D everywhere dense in G(X)? 
3. When is D closed in G(X)? 
4. When is D proximinal in G(X)? 

Recall that a set W in a metric space V is called proximinal if for each element 
v E V there exists an element w0 E W closest to v among all elements of W. 

The above questions are also natural in the context of the subspace BD in 
B(X). Concentrate on subspaces of sums of superpositions-the simplest in struc
ture ((2.1) or (2.6) of Chapter 1). Thus, we are considering the subspaces D and 
B D that consist of functions 

(1.1) 91 o <P1(x) + · · · + 9N o <PN(x), 

where X, X1, ... , XN are compact sets, <Pi : X --+ Xi, i = 1, ... , N, are con
tinuous mappings and 9i E G (Xi) are arbitrary (in case of the subspace D), or 
X, Xi, ... , XN, <Pi : X --+ Xi are arbitrary sets and mappings while 9i E B (Xi) 
(the subspace BD). 

Reformulation in terms of function algebras. Consider the subspace D 
of functions (1.1). Functions 

(1.2) 

form a closed subalgebra Ai of the algebra G(X), and Ai contains the constants. 
Conversely, let Ai, i = 1, ... , N, be closed subalgebras of G(X) (Xis still compact) 
containing the constants. Define the equivalence relation R;., i = 1, ... , N, for 
points in X by setting 

(1.3) xR;.x' if f(x) = f(x') for all f E Ai. 

Then Xi = X/ R;., the quotient space of X with respect to the relation R;. equipped 
with the quotient space topology, is compact and the natural projection <Pi : X--+ 

53 
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Xi is continuous (see [1], (117]). The space Xi is not merely compact but is also 
Hausdorff; hence {being compact) it is a normal space. This is seen from the 
following lemma. 

LEMMA 1.1. Let A be a family of functions continuous on a compact space X, 
and r an equivalence relation defined by A: 

{1.4) xrx' {:} f(x) = f(x') VJ EA. 

The saturation r(F) of any closed set F C X (r(F) = UxeFr(x); r(x) is the 
equivalence class of a point x) is closed, and the canonical projection <I> : X--+ X/r 
is a closed mapping (r(F) = q>-i(<I>(F))). 

PROOF. Let xo be a limit point of r(F). There exists a net {xa} C r(F) 
converging to x { {a} is a directed set of indices). For each Xa there exists Ya E 
F with YarXa· Since F is compact, we can select from the net {Ya} a subnet 
{y,a}--+ Yo E F. The corresponding subnet {xp}--+ Xo, and for any f EA we have 
f (xo) = limf(xp) = limf (y13) = f (Yo), i.e., xoryo and xo E r(F). Closedness of 
the projection <I> is equivalent to what we have proved (cf. [117]). 

COROLLARY 1.2. Under the assumptions of Lemma 1.1, X/r is a normal com
pact space and therefore is a Hausdorff compact space. 

For a proof, cf. [117]. 
In view of the Stone-Weierstrass theorem {(40]), which applies here since X/ Ri 

is compact, 

{1.5) 

Hence, the questions raised above can be reformulated as follows. Let Ai, i = 
1, ... , N, be closed subalgebras in C{X) containing the constants. 

1. When does Ai + · · · +AN coincide with C(X)? 
2. When is Ai +···+AN dense in C(X)? 
3. When is Ai +···+AN closed in C(X)? 
4. When is Ai + · · · + AN proximinal? 

Changing the set-up. Suppose {this is natural for a number of situations) 
that the mapping 

{1.6) X--+ W(x) = (<!>i(x), ... , <i>N(X)), 

is injective. Then '11 is a homeomorphism between X and Q = \ll(X), and all 
the questions can be studied for Q C Xi x · · · x XN, treating the <I>i as natural 
projections of Q into xi. 

In this chapter we shall study the case N = 2. On the one side, there is a 
meaningful theory for that case. On the other side the case N > 2 is very little 
studied, and the difficulties here are much greater. In relation to question 1, we 
have already seen in §8 of Chapter 1 that there is an essential difference between 
the cases N = 2 and N > 2. 

The simplest case. For the problem with N = 2 it is worthwhile to change 
the notation: Q, X, Y are compact sets, points in Q are denoted by p, q, etc. 
7ri : Q --+ X, 71'2 : Q --+ Y are continuous mappings. Then, 

{1.7) D = D(Q) = {gi o 7ri {p) + 92 o 7r2{p)}, gi E C{X), 92 E C(Y). 
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Clearly, D(Q) C C(Q). In the case when Q C Xx Y, and 7r1 and 7r2 are natural 
projections from Xx Y onto X and Y respectively, for p = (x, y) we set 7r1(p) = x, 
11"2 = y; x EX, y E Y. In that case, we can write the functions in D(Q) in a simpler 
form: 

(1.8) D(Q) = {cp(x) + 1f;(y), cp E C(X), 1f; E C(Y)}. 

We shall call this set-up the simplest (one can assume that 7r1(Q) = X and 7r2(Q) = 
Y). The main tendencies for D(Q) are already seen in the special case when QC JR2 

and x, y are the usual coordinates in JR 2 . 

Lightning bolts. Let 71"1 : Q --+ X and 71"2 : Q --+ Y be continuous mappings 
of the compact set Q onto the compact sets X and Y, respectively. Introduce on 
Q equivalence relations Ri. R2 by setting pRiq if 7ri(P) = 11"i(q). If we consider 
the subalgebras Ai = {gi o 11"i(p)}, i = 1, 2, where gi, 92 are arbitrary functions in 
C(X), C(Y) respectively, then 

(1.9) 11"i(p) = 11"i(q) ~ f(p) = f(q), 

A finite or infinite sequence f, of points [pi,p2, ... ,pn, ... ] in Q is called a lightning 
bolt (respectively finite or infinite) if Pi =/= Pi+li i = 1, ... , and either 

P1R1p2,p2R2p3,p3R1p4, · · · 

or 

(1.10) 

The points Pi, i = 1, ... , are called vertices of the lightning bolt. The point p1 is the 
beginning of the lightning bolt. If the lightning bolt f, = [pi, ... , Pn] is finite, then 
Pn is its end and l joins Pl to Pn· Every point p can be considered as a lightning 
bolt joining p to p. If a lightning bolt f, = [p1, ... , Pn] is finite, the number n of its 
vertices is called its length. A point is considered to be a lightning bolt of length 
one. Sometime we shall specify the relations Ri in the lightning bolt notation, e.g., 

(1.11) 

In the case when QC IR2 and 7ri, 7r2 are coordinate projections, each segment PiPi+l 
in the lightning bolt [p1, p2, ... ] is parallel either to the Ox-axis or Oy-axis, and two 
consecutive segments Pi-lPi and PiPi+l are perpendicular. This easily-visualized 
interpretation is useful in a general situation as well. The notion of a lightning bolt 
has already appeared in §8 of Chapter 1. We shall see that for N = 2 the notion 
of a lightning bolt turns out to be very useful for answering the questions raised 
above, concerning the subspaces D and BD. 

The notion of a lightning bolt appeared in the works of Arnold [4], [5] where 
the thirteenth Hilbert problem was solved. Arnold considered lightning bolts in 
JR3 . Later the notion of a lightning bolt has been used in practically all works deal
ing with representation and approximation by superpositions, though sometimes it 
appeared under different names ([113], [99], [100],[79], [80], [61], [91], and others). 

Circular and closed lightning bolts. A finite lightning bolt [p1, ... , Pn] is 
called closed if p1R1P2 and PnR2Pi. or p1R2P2 and PnR1P1· A closed lightning 
bolt must have an even number of vertices: n = 2m. A finite lightning bolt 
[p1, ... , Pn] is called circular if Pn = p1 and at least two vertices of the bolt are 
distinct. If [p1, ... ,P2m] is a closed lightning bolt, then [pi, ... ,p2miP1] is circular. 
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If [p1, ... ,pn,Pd is a circular lightning bolt, then [pi, ... ,pn] need not be closed, 
because the equivalences of P1 with P2 and Pn with P1 for n odd turn out to be the 
same. Yet from a circular lightning bolt one can select a closed one by omitting 
some vertices. Closed lightning bolts were used {under a different name) in (38] 
even before the general notion of a lightning bolt had evolved. 

Irreducible lightning bolts. A (finite) lightning bolt is called irreducible if 
there does not exist a lightning bolt of a smaller length with the same beginning 
and end. A lightning bolt [pi,p2] is always irreducible {p1 -=/. p2). A lightning bolt 
containing a single vertex pis irreducible. In an irreducible lightning bolt all vertices 
are distinct. 

The relation R. Define yet one more relation R: pRq if there exists a finite 
lightning bolt joining p and q. 

LEMMA 1.3. R is an equivalence relation. The equivalence class R(p) of a 
point p is an Fu-set. If E is a closed subset in Q, then its saturation R(E) is an 
Fu -set. The saturation of a Borel set is a Borel set. 

PROOF. Clearly pRp, and if pRq, then qRp. Let us show that pRq, qRs => pRs. 
Let a lightning bolt [p1, ... , Pn] join p and q (p1 = p, Pn = q) and let a lightning bolt 
(q1, ... , qm] join q ands (q1 = q, qm = s). If Pn-1.ll;. 1Pn and qiRi2 q2, ii -=/. i2 (ii. i2 = 
1, 2), then the lightning bolt [pi, ... ,Pni qi ... , qm] joins P1 = p and qm = s. If, on 
the other hand, Pn-1.ll;.Pn and qi.ll;.q2, the lightning bolt [pi, ... 1 Pn-i. q2, ... , qm] 
joins P1 = p and qm = s. Let EC Q be closed, and hence, compact. Then the sets 

00 

are all compact. It is easy to see that R(E) = LJ Eki hence R(E) is Fu. In 
k=l 

particular, if E = {p}, we obtain that the equivalence class R(p) is a Fu-set. If E 
is a Borel set, then E 1, ... ,Ek, ... are also Borel sets, and so is R(E). 

Relation R3. In addition to the equivalence relations Ri. R2, R on Q intro
duced above, we shall need one more. Consider the algebra A3 = A1 n A2 . It is a 
closed subalgebra in G( Q) that contains constants. Set 

{1.12) pR3q, if f(P) = f(q) for all f E A3. 

Obviously, R(p) C R3(p). 

The condition of representability by superpositions in terms of light
ning bolts. Consider an operator r(Z) defined by the formulas (7.1), (7.2) of 
Chapter 1. 

PROPOSITION 1.4. For any Q, x, Y, 11"1 : Q -+ x, 11"2 : Q -+ Y, the following 
are equivalent. 

1. There exists a natural number n = n(Q) such that rn(Q) = Q. 
2. Q does not contain closed lightning bolts, and there exists M = M(Q) such 

that every irreducible lightning bolt l c Q has no more than M vertices. 
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PROOF. Let us show that 1 => 2. For a closed lightning bolt f., we have 
r(f.) = f., hence rn(f.) = f. for all n. Therefore, if Q contains a closed lightning bolt, 
rn(Q) = Q is impossible. Moreover, if there exists an irreducible lightning bolt f. 
in Q with k vertices, then r(f.) is obtained from f. by omitting the first and last 
vertices, and therefore r(f.) is a lightning bolt with k - 2 vertices. In general, rn(f.) 
contains k - 2n vertices, and since rn(Q) = f., k ~ 2n. 

Let us show that 2 => 1. Since Q contains no closed {hence, circular) lightning 
bolts, if two points are joined by a lightning bolt it is unique, hence irreducible. 
Let rn(Q) # 0 and P1 E rn(Q). Then there exists P2 #pi, P2 E Tn-1(Q), p1R1p2. 
Moreover, there exists p3 E Tn-2(Q), p3 # p2, p2R2p3, etc. Finally, there exists 
Pn E r{Q) and [pi, ... 1Pn] is a lightning bolt on Q that is not circular and is 
irreducible. Then n ~ M, while for n > M necessarily rn(Q) = 0. 

We can now reformulate Theorems 7.3 and 7.4 of Chapter 1. 

THEOREM 1.5. Let Q, X, Y be arbitrary sets, and 11"1 : Q ---t X, 11"2 : Q ---t Y be 
arbitrary mappings. In order that the subspace 

g1 E B{X), g2 E B(Y) 

coincide with B( Q) it is necessary and sufficient that Q contain no closed lightning 
bolts and the lengths of all irreducible lightning bolts be bounded by the same number. 

THEOREM 1.6. Let Q,X, Y be compact metric spaces, and 11"1 : Q ---t X, 11"2 : 

Q ---t Y continuous mappings. For a subspace D (I. 7) to coincide with C( Q) it is 
necessary and sufficient that Q contain no closed lightning bolts and the lengths of 
all irreducible lightning bolts be bounded by the same number. 

This result has been obtained by the author in [80] independently of [133], 
and the theorem remains true for arbitrary compact spaces Q, X, Y, not merely 
compact metric spaces. This will be shown later on in §4. 

Now let us raise a natural question complementing question 1. Again, let 
X, Xi, ... , XN be sets, and q>i : X ---t Xi be mappings. Under what conditions can 
an arbitrary function f(x) defined on X be represented in the form 

{1.13) f(x) = g1 o q>1(x) + · · · + gN o q>N(x), 

similar to {1.1), but with arbitrary gi defined on Xi? Thus, no boundedness or 
continuity assumptions are implemented on f, gi, ... , gN. When N = 2, we are 
able to answer this question. 

THEOREM 1.7. Let N = 2. In order that each function f(x) can be represented 
in the form {1.13), it is necessary and sufficient that X contain no closed lightning 
bolts. 

PROOF. Necessity. If [x1, ... , Xn] is a closed lightning bolt, then a straightfor
ward calculation shows that every f(x) representable by {1.13) satisfies 

f (xi) - f (x2) + f (x3) - f (x4) + · · · + f{x2m-1) - f (x2m) = 0. 

But a function F(x) such that F (xi) # 0, F (x2) = · · · = F (x2m) = 0 violates this 
condition, and therefore cannot be represented in the form {1.13). 

Sufficiency. The absence of closed lightning bolts guarantees that if points x 
and y in X can be joined by a lightning bolt, it is unique. This allows one to 
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argue in a similar manner as in the proof of part 1 of Theorem 8.3 in Chapter 1. 
Now the situation is even simpler, since we have to construct only two functions hi 
and h2 , not three as there, and we need not worry about the boundedness of those 
functions. 

From the examples below (see §2), it follows that a bounded function f(x) can 
indeed be represented by unbounded functions. 

§2. Closedness of the subspace D 

We give two forms of the answer to the question raised in §1 regarding the 
conditions implying that the subspace D (l. 7) is closed. 

THEOREM 2.1 (Marshall and O'Farrell [99]). For the subspace (1.7) D to be 
closed in C(Q), it is necessary and sufficient that there exist a constant c > 0 such 
that 

(2.1) sup var f:::; csup var f for each f E Ai. 
pEQ Ra(P) pEQ R2(P) 

Here and below, var E f on a set E means the oscillation of f on E. 

THEOREM 2.2 (Medvedev [102]). In order that the subspace (1.7) D be closed 
in C(Q), it is necessary and sufficient that the lengths of all irreducible lightning 
bolts contained in Q be uniformly bounded. 

In Theorem 2.2 closedness of Dis encoded in geometric properties of Q, while 
in Theorem 2.1 there are two parts: a geometric one associated with the structure 
of R2(P) and Ra(P), and an analytic one, verification of (2.1). We shall need some 
auxiliary considerations. 

Best approximation of a bounded set (of values) by a continuous 
function. As long as we are going to study the problem of best approximation 
of a function f(x,y) by the sums cp(x) + 'l/J(y), it is natural to start out with the 
problem of approximation of f(x, y) by functions of one variable only. In a slightly 
more general form, the problem is the following. 

Let T be a compact, and let each point t E T correspond to a set of real 
numbers f(T) (there is a multivalued function defined on T). Assume the sets f(t) 
are uniformly bounded: there exists M such that lf(t)I :::; M for all t E T. The 
problem is to find 

(2.2) e(f) = inf sup sup lf(t) - cp(t)j, 
<pEG(T) tET f(t) 

and to determine the function cp*(t) E C(T) for which the infimum in (2.2) is 
attained (provided that such a function exists). First, we introduce the functions 

(2.3) M(t) =sup f (t), m(t) =inf f(t). 

Consider to ET, and let E (to)= {u (t0)} be a directed set of neighborhoods u (to) 
of that point partially ordered with respect to inverse inclusion. Define scalar nets 
with the index set E (to): 

(2.4) f(u) = sup M(t), 
tEu(to) 

f (t) = inf m(t) 
- tEu(to) 



and set 

(2.5) 
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M* (to) = lim f(u), 
E(to) 

m* (to) = lim f(u). 
E(to)-
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The existence of the limits in (2.5) follows from the monotonicity of](u) and f(u). 
Clearly, M* (to) ~ M (to) and m* (to) $ m (to). -

PROPOSITION 2.3. We have 

(2.6) 
1 

e(f) = -2 sup (M*(t) - m*(t)). 
tET 

Moreover, there exists a point to E T where the supremum in (2.6) is attained. 
There also exists a function cp*(t) E C(T) for which the infimum (2.2) is attained. 

PROOF. The function M*(t) is upper semi-continuous, whereas m*(t) is lower 
semi-continuous. Hence, M*(t) - m*(t) is upper semi-continuous and attains its 
supremum at a point to E T. Let cp(t) E C(T). To fix the ideas, assume that 
cp (to) $ ! (M* (to)+ m* (to)). Taking c > 0, consider a neighborhood u (to) such 
that lcp(t) - cp (to)I < c, t Eu (to). In this neighborhood there exists a point t' such 
that M (t') > M* (to) - c. Therefore, 

M (t') - cp (t') ~ M*(t) - cp (to) - 2c ~ M* (to) - 4 (M* (to)+ m* (to)) - 2c 

1 
= 2 (M*(t) - m* (to)) - 2c. 

Thus, 

1 
(2.7) sup sup lf(t) - cp(t)I ~ 2 (M* (to) - m* (to)). 

tET f(t) 

Since cp E C(T) is arbitrary, we find that 

1 1 
(2.8) e(f) ~ -2 (M* (to) - m* (t0)) = -2 sup (M*(t) - m*(t)). 

tET 

Set q = M* (to)-m * (to) and try to construct a continuous function cp* ( t) satisfying 
the inequalities 

(2.9) -~ + M*(t) $ cp*(t) $ ~ + m*(t). 

The left-hand side in (2.9) is indeed less than or equal to the right. On the left-hand 
side of (2.9) we have an upper semi-continuous function, while on the right we have 
a lower semi-continuous function. According to the well-known theorem of Katetov 
[76] such a continuous function cp*(t) exists (in [111, Chapter XV, Section 4] the 
construction is given when T is an interval on the real axis, but it extends mutatis 
mutandis to the general case). From (2.9) we obtain 

Therefore, 

(2.10) 

M(t) - cp*(t) $ M*(t) - cp*(t) $ ~· 

cp*(t) - m(t) $ cp*(t) - m* s l 

IM(t) - cp*(t)I $ ~· lcp*(t) - m(t)I s l 
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But (2.10) implies that for all t E T, 

and hence 

(2.11) 

sup lf(t) - <p*(t)I $ ~· 
f(t) 

sup sup lf(t) - <p*(t)I $ ~· 
t f(t) 

Together with (2.8), (2.11) implies (2.6) and all the statements of our proposition. 

Proposition 2.3 is proved in [79). A special case when f(t) is a single-valued 
(discontinuous) function was treated in [90). 

Best approximation of a bounded set of values by a bounded func
tion. Change the problem now by considering approximation by bounded func
tions. Now let T be an arbitrary set and let B(T) be the space of bounded functions 
on T with the usual uniform norm. Find 

(2.12) e(f) = inf sup sup lf(t) - <p(t)j. 
ipEB(T) tET f(t) 

Unlike Proposition 2.3, the following assertion can be viewed as obvious. 

PROPOSITION 2.4. We have 

(2.13) 
1 

e(f) = -2 sup (M(t) - m(t)). 
tET 

There exist functions <p*(t) E B(T) for which the infimum in (2.12) is attained. 
One of them is the function 

(2.14) 
1 

<p*(t) = '2 (M(t) + m(t)). 

In some sense, the function (2.14) is the best of the best approximations, since 
its values are optimal for each cross-section of f(t). This need not be true for a 
solution of the problem (2.12): it is easy to see that the values (2.14) are prescribed 
only for those cross-sections f (to) for which M (to) - m (to) =sup (M(t) - m(t)). 

t 
For other values of t, functions giving best approximation may diverge somewhat 
from the function (2.14). 

Best approximation of a function of two variables by functions of one 
variable. Let Q c X x Y be a compact set, where X, Y are compact spaces and 
f(x, y) E C(Q). The following problem is a special case of the problem (1.15): 

(2.15) e.,(f) = inf llf(x, y) - <p(x)llc(Q) = inf maxmax lf(x, y) - <p(x)I 
ipEC(X) ipEC(X) x Y 

and, similarly, the problem 

(2.15') ey(f) = inf llf(x, y) - .,P(y)llc(Q) = inf maxmax lf(x, y) - .,P(y)I 
1/JEC(Y) ,PEC(Y) Y x 
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of approximating f(x,y) by functions 'l/J(y) E C(Y). For the problem {2.15) we set 

{2.16) 

M(x) = maxf(x, y), 
y 

f(u) = sup M(x), 
xEu(xo) 

M* (xo) = lim f(u), 
E(xo) 

m(x) = minf(x,y), 
y 

f(u) = inf m(x), 
- xEu(xo) 

m* (xo) = lim f(u), 
E(xo)-

1 
ex(!)= -2 max (M*(x) - m*(x)). 

xEX 

We leave to the reader the task of writing out the corresponding formulas for the 
problem (2.15'). 

If QC Xx Y, X, Y being arbitrary sets, then similar problems rise in the class 
B(Q): 

{2.17) ex{!)= inf 11/(x, y) - cp(x)llB(Q) = inf sup sup l/{x, y) - cp(x)I 
cpEB(X} cpEB(X} x y 

and a similar problem for cy{f). A solution of the problem {2.17) is given by 

M(x) = sup f(x, y), m(x) = inf f(x, y), 
(x,y)EQ (x,y)EQ 

{2.18) 
1 

ex{!) = -2 sup (M(x) - m(x)), 
xEX 

{2.19) 
1 

cp*(x) = '2 (M(x) + m(x)) 

and by similar formulas for approximation by functions 'l/J(y) E B(Y). 
If f (t) ¢ C(T) in the problem {2.2), then c{f) ~ e(f) always, and it is easy 

to find examples when the inequality is strict. However, if M(t) and m(t) are 
continuous, then c{f) = e(f) and the function (2.14) is a best approximation. 
Hence, in that case enlarging the class of approximating functions does not improve 
the result. 

COROLLARY 2.5. If X and Y are compact spaces, Q =Xx Y, f E C(Q), then 

{2.20) 
1 

ex{!)= ex(!)= '2 max (M(x) - m(x)). 

The function {2.19) is a best approximation. Similar statements hold for E:y, ey, and 
'l/J*(y). 

The distance to a subalgebra. The following situation is an important case 
when e{f) and c{f) coincide. 

LEMMA 2.6. Let Q be a compact set, A a closed subalgebra in C(Q) containing 
constants, and r the equivalence relation on Q defined by A. Then for all f E C(Q) 
we have 

p(f, A) = inf II/ - cpll = inf max l/(p) - cp{p)I 
cpEA cpEA pEQ 

{2.21) 
= ~max [max f(q) - min f(q)] = ~max var/. 

2 pEQ qEr(p) qEr(p) 2 pEQ r(p) 
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PROOF. Consider the quotient space T = Q/r whose elements are equivalence 
classes t = r(p), and the natural projection 7r: Q---+ Q/r. The space Tis compact, 
and according to the Stone-Weierstrass theorem A can be identified with C(T). 
The approximation problem (2.21) is then the problem of best approximation of 
sets of values f ( t) assumed by the function f (p) on equivalence classes t = r (p) into 
which r divides Q. Let us show that for all t E T we have M*(to) = M (to) and 
m* (to)= m (to). In view of Propositions 2.3 and 2.4, this will prove the lemma. 

Let E (to)= {a (to)} be a directed set of neighborhoods of a point t0 • For any 
a (to) E E (to) we have f(a) ~ M (to). Given an arbitrary c > 0, then for any 
a= a(to) there is a tu E a such that M (tu) > f(a) - c ~ M* (to) - c. Hence, 
there exists a point Pu E 7r-i (tu) such that f (pu) ~ M* (to) - c. From the net 
{pu} choose a subnet {p,a} that converges in Q to qo. Then 7r (qo) = lim 7r (p,a) = 
lim 7r (pu) =to. Therefore, qo E 7r-i (to) = r (po). Then M (to) = supqEr(po) f(q) ~ 
f (q0) = lim/ (p,a) ~ M* (to) - c. Since M (to) :5 M* (to) always, we obtain the 
equality M (to) = M* (to). The proof that m (to) = m* (to) is the same. The 
lemma is proved. 

Now we can finally start proving the main theorems. 

PROOF OF THEOREM 2.1 (about closedness of D(Q)). Consider the isomor
phism of the quotient algebras 

(2.22) Aif A3 =Ai/Ai n A2---+ Ai+ A2/A2 c C(Q)/A2. 

Let f E Ai. Consider the equivalence classes F = f + Ai n A2 and ~ = f + A2 
determined by an element f; they are elements in Ai/Ai n A2 and Ai+ A2/A2, 
respectively. These classes correspond to each other under the isomorphism (2.22). 
The respective norms (quotient norms) are 

(2.23) 

Here pis the distance from f to A3, or A2, in C(Q). Clearly, 11~11 2 :5 llFlli, and 
the linear operator F---+ ~defined by (2.22) is continuous. If there is a c such that 
llFlli :5 cll~ll2, then Ai + A2/ A2 is a Banach space. Conversely, if Ai+ A2/ A2 is a 
Banach space, then according to the Banach Open Mapping Theorem there exists 
c such that llFlli :5 cll~ll2· On the other hand, Ai+ A2/A2 being a Banach space 
is equivalent to closedness of Ai+ A2 • Thus, the inequality 

(2.24) 

with a certain constant c is equivalent to closedness of Ai + A2. Applying to 
llFlli = p (!, A3) and 11~112 = p (!, A2) formula (2.21) of Lemma 2.6, we complete 
the proof. 

PROOF OF THEOREM 2.2 (about closedness of D). Necessity. Assume that 
the sum Ai + A2 (i.e., the subspace D) is closed, but still Q contains irreducible 
lightning bolts of an arbitrarily large length. Then, for each natural number N 
there exists an irreducible lightning bolt 

(2.25) 



§2. CLOSEDNESS OF THE SUBSPACE D 63 

(We have specified explicitly the relations between the points of the lightning bolt 
lPoP1 ... P2n+2l ·) Introduce an operator 'Y by setting for any set E C Q 

(2.26) 

The powers of 'Y are defined accordingly. Set 

Bk = 'Yn-k (p2n+2) , k = 0,1, ... ,n. 

Here, 'Yo (p2n+2) = {p2n+2}. The set Bn-1 = 'Y (p2n+2) contains points P2n+2, 
P2n+l E R2 (p2n+2), P2n E R1 (p2n+1) C R1 (R2 (p2n+2)). At the same time, Bn-1 
does not contain any other points of (2.25) since it is irreducible. (If a point p;, 
j < 2n belongs to 'Y (p2n+2), then we can find a point q such that 

P;R1qR2P2n+2· 

But this means that there exists a lightning bolt shorter than (2.25) with end-points 
Po and P2n+2·) In general, Bk contains points P2k+2,P2k+3• ... ,P2n+2 and does not 
contain points Po, Pi. ... ,P2k+1· In particular, Bo contains all of (2.25) except Po 
and p1. Each of the sets Bk is closed (since R; is the saturation of a closed set, 
therefore closed) and is saturated with respect to R1. Set Ck = Q\Bk· Ck is an 
open set and is also saturated with respect to R1. Since Bo :J Bi :J · · · :J Bn, we 
have 

(2.27) 

Also, 

(2.28) 

Let us show that 

(2.29) k = 0, ... ,n -1. 

Indeed, if the inclusion (2.29) fails for some k, then there exists y1 E Ck such that 
y1R2y2R1y3, where Ya rt Ck+I· This implies that Ya E Bk+I = Q\Ck+I· Then 
Y2 E Bk+i. since Bk+l is saturated with respect to R1. But then Y1 E R2 (Bk+I) C 
'Y (Bk+i) =Bk, and this contradicts the condition Y1 E Ck. 

In view of (2.27) and (2.28) we have 

(2.30) 11"1(po)=11"1(p1)C11"1 (Co) C 11"1(C1)C···C11"1 (Cn). 

All the sets 11"1 (Ck), k = 0, ... , n, are open. Indeed, the sets 11"1 (Ck) and 11"1 (Bk) 
are disjoint, since otherwise the sets 71"11 (7r1 (Ck)) = Ck and 71"11 (7r1 (Bk)) = Bk 
are not disjoint either. (The equality 71"11 (7r1(E)) = E means that Eis saturated 
with respect to Rt-) Since 11"1 (Bk) is closed, 11"1 (Ck)= X -11"1 (Bk) is open. 

Set Fo = 11"1 (po). It is a closed set (a point). Since X is compact, there exists 
an open set Vo such that 

Fo c Vo c Vo c 11"1 (Co) 

(this is the so-called small Urysohn lemma, cf. [1], [117]). From 71"11 (Vo) c 
71"11 (7ri (Co))= Co, it follows that 'Y (7r1i (Vo)) c C1. Set F1=11"1 ['Y (7r11 (Vo))]. 
Then Fi is a closed set, and F1 C 11"1 (Ci). Again, we can find an open set Vi such 
that F1cVicViC11"1 (Ci). Set F2=11"1 ['Y (7r1i (Vi))]. F2 is closed, and since 
71"11 (V1) c Ci, then 'Y (7r11 (V1)) c -y(C1) c C2. Hence, F2 = 11"1 (C2). Let us 
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find an open set Vi with F2 C V2 C V2 C 7r1(C2), and let Fa= 7r1 ['y (7r11 (V2))), 
etc. We obtain a sequence Vo, Vi, ... , Vn of open sets in X and a sequence of closed 
sets such that 

Fo c Vo c F1 c Vi c F2 c V2 c · · · c Vn-1 c Fn c 7r1 ( Cn) , 

Fk = 7r1 ['Y (7r11 (Vk-1))), Fk c 7r1 (Ck). 
(2.31) 

We have 

k= 1, ... ,n. 

Hence, 

(2.32) 

On the other hand, in view of (2.28) and (2.31) 

(2.33) 7r11 (Fk-i) n {P2k, ... 1P2n+2} C Ck-1 n {P2k1 · · · 1P2n+2} = 0. 

Therefore 

(2.34) 

whence 

(2.35) 

In addition, Fk \ Vk-2 is a closed set. For the sake of uniformity, complete our 
notation by setting 

(2.36) V_1 = 0, Vn = 7r1 (Cn)' Fn+l = x. 
By Urysohn's lemma we can construct a continuous real-valued function hk(x), 
k = 1, 2, ... , n + 1, satisfying the following conditions: 

(2.37) 
hk(x) = k - 1, for x E Fk-1 \ Vk-2i 

hk(x) = k, for x E Fk\Vk-ti 

k -1 :S hk(x) :S k for all x E Fk\Vk-2· 

It is possible for the set Fk-1 \ Vk-2 or Fk \ Vk-1 (or even both of them) to be empty. 
The domains of definition of the functions hk may intersect only for consecutive 
indices, yet on those intersections the functions hk and hk-li or hk and hk+l• as 
defined by (2.37), coincide. 

The function h(x) defined by 

(2.38) h(x) = hk(x) for x E Fk \ Vk-2, k = 1, ... , n + 1 

is well defined on all of X and is continuous. Set f = ho7r1. Then FE A1. We have 
7r1 (p0 ) = Fo = Fo \ V-1· Therefore, ho 7r1 (po) = 0. Moreover, for k = n + 1 the 
only point remaining in (2.34) is P2n+2i hence 7r1 (p2n+i) E Fn+l \ Vn-1· Therefore, 
f (p2n+2) =ho 1T (p2n+2) = n + 1. Comparing the relations Rand Ra, we see that 
Ra (p) :::> R(p) always. Hence, 

(2.39) sup var f ~ sup var ~ var f ~ n + 1. 
pEQ Rs(P) pEQ R(p) R(po) 

(Incidentally, it is not hard to see that the last inequality in (2.39) is, in fact, an 
equality.) Now let E be an equivalence class with respect to R2. Let k be the 
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smallest index for which En 11"11 (Fk) =/. 0. (7r11 (Fn+1) = 7r11(X) = Q.) If 
0 < k < n + 1, then En 11"11 (Fk-1) = 0. But 11"11 (Fk+i) = 'Y (7r11 (Vk)) :) 
'Y (7r11 (Fk)) :) R2 (7r11 (Fk)) :) E. Therefore, 

E c 11"11 (Fk+1 \Fk) C 11"11 (Fk+1 \ Vk-2) · 

Hence varE f ~ 2. For k = 0 or k = n + 1, we obtain similarly that varE f ~ 1. 
Hence 

(2.40) sup var f ~ 2. 
pEQ E 

Comparing (2.39) and (2.40), we see that the condition (2.1) in the Marshall
O'Farrell criterion is violated. Necessity in Theorem 2.2 is proved. 

Sufficiency. We have to show that the subspace D is closed provided that the 
lengths of all irreducible lightning bolts in Qare bounded by a number N. As was 
noted earlier, for any p E Q the inclusion R3(p) 2 R(p) always holds, and since 
R3(p) is closed R3(P) 2 R(p). Let us show that in our case R3(p) = R(p). If 
q E R(p), then among the lightning bolts joining p to q we can choose one that 
has the smallest number of vertices. This lightning bolt is going to be irreducible, 
and so its length is at most N. Thus, any two points in a equivalence class with 
respect to R can be joined by a lightning bolt that has at most N vertices. This 
immediately implies that in any case 

(2.41) R(p) = 'YN (p), 

where 'Y is the operator defined by (2.26). But 'YN (p) is closed; hence the equivalence 
class R(p) is a closed set. 

Similarly, if Fis a closed subset of Q, then R(F) = 'YN (F), and this implies that 
R(F) is also closed. Therefore (see [117]), Q/ Risa normal compact space and the 
natural projection 7r : Q --+ Q/ R is a closed mapping. For two distinct equivalence 
classes a = R (p1) and b = R (p2), we can construct a function <I> continuous on 
Q such that <.t>(a) = 1, <.t>(b) = 0. The function F(p) = <I> o 7r(p) is continuous on 
Q. Since it is constant on every equivalence class R(p), F E A3. At the same 
time it takes distinct values on R (pi) and R (p2), which is only possible if p1 is not 
equivalent to p2 with respect to R. Thus, R3(p) = R(p). 

Now, let f E Ai. Choose two points p' and p" in R3(p) = R(p). Then p' and p" 
can be joined by a lightning bolt [p',pi, ... ,pk,P"], and k ~ N -2. To fix the ideas 
assume that p' RiPi.PRR2p" (all the remaining possibilities are treated similarly). 
Then P1R2p2,p3R2p4, ... iPk-2R2Pk-liPkR2p", and we have 

(2.42) 
If (p') - f (p")I ~ If (p1) - f (p2)I +If (p3) - f (p4)I + · · · 

+ If (pk) - f (p")I ~ [N2] sup var. f 
pEQ R2(P) 

(f (p') = f (pi), f (P2) = f (p3), · · · , f (Pk-3) = f (Pk-2), f (pk-1) = f (pk), since 
f E Ai). From (2.42) we obtain 

sup var f ~ - sup var /; [N] 
pEQ R3(P) 2 pEQ R2(P) 

hence, in view of Theorem 2.1 (where we have to set c = [N/2]), the subspace Dis 
closed. The proof is now complete. 
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Bars and a cross. Let Q,X, Y be sets, and 71'1 : Q -+ X, 71'2 Q -+ Y 
surjective mappings. If for Po E Q we have 

(2.43) 

or, using different notation, 

(2.43') 

then R1 (po) is called a y-bar passing through Po· Similarly, if 

(2.44) 

then R2 (po) is an x-bar passing through Po· In the case when Q c Xx Y existence 
of a y-bar through Po means that 71'1 (po) x Y c Q. Similarly, existence of an x-bar 
means that 71'2 (po) x X c Q. If R1 (po) is a y-bar and R2 (Po) is an x-bar, then 
R1 (po) U R2 (po) is called a cross (passing through Po). This notion was used, e.g., 
in [113], [109], [110], [81]. 

COROLLARY 2. 7. If Q, X, Y are compact sets and Q contains at least one bar, 
then D(Q) is closed in C(Q). 

PROOF. Let Q contain an x-bar through Po and let Pl E Q,p2 E Q be two 
points. By the hypothesis there exist points q1 ER (po) and q2 ER (p0) such that 
71'1 (p1) = 71'1 (q1) and 71'1 (p2) = 71'1 (q2). Then, (p1R1q1R2q2R1p2] is a lightning bolt. 

EXAMPLES. Let us give few examples illustrating the theory presented here. 
All examples are constructed for Q c R2 with X, Y being projections of Q on the 
coordinate axes; the subspace D has the form (1.8), Ai = {cp(x)}, A2 = {1/J(y)}, 
A3 = A1 n A2 . For a more complete analysis of the examples below let us note the 
following fact (cf. Theorem 4.15 below). In order that D(Q) = C(Q), it is necessary 
that there be no closed lightning bolts in Q. (This is easily verified by arguments 
in the proof of necessity in Theorem 1.7.) With the same goal in mind, we shall be 
appealing to Lemma 4.1 in order to check that a measureµ orthogonal to D(Q) is 
a zero measure. 

EXAMPLE 2.8. A3 does not consist of constants only. Let 

Qi= {(x,y),y = x,O::; x::; 1}, 
Q2 = {(x, 1), 1 ::; X::; 2} I 

Q3 = {(2, y), 1 ::; Y ::; 2} I 

Q = Qi u Q2 u Q3. 

Obviously, Ai =/:- A2 =/:- A3, and A3 contains some other functions besides constants. 
For instance, 

can also be written as 

f(x,y) = { x, 

1, 
0 ::; x ::; 1, 

1 ::; x ::; 2, 

{ 
y 0 ::; y ::; 1, 

f(x,y) = I 

1, l::;y::;2; 

hence f(x, y) E A3 although f(x, y) =/:- const. 
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EXAMPLE 2.9. Here we illustrate situations when D = C(Q) and D -:f:. C(Q). 
(a) Q = {(0,0), (1,0), (1, 1), (0, 1)}. D -:f:. C(Q) because Q is a closed lightning 

bolt. 
(b) Q = {(O, 0), (1, 0), (1, 2), (2, 2), (2, O)}. D -:f:. C(Q) because Q contains a 

closed lightning bolt. 
(c) Q = {(O, 0), (1, 0), (1, 2), (2, 2)}. D = C(Q). 

In examples (a), (b), (c), D = D. In general, when Q is a finite set, the 
assumptions of Theorem 2.2 are trivially satisfied and D = D (here, C(Q) is a finite
dimensional space and D, of course, is also finite-dimensional, so automatically 
D=D). 

EXAMPLE 2.10. Here we illustrate cases when D = D and D -:f:. D. 
(a) Q is a union of two parallel segments that are not parallel to the coordinate 

axes. D = C(Q) = D. (The assumptions of Theorem 1.6 are satisfied.) 
(b) Three such segments. By Theorem 2.2, D = D. If the segments are 

sufficiently long, then D "!- C(Q) (there is a closed lightning bolt in Q). 
(c) Q is a boundary of the triangle with vertices (0,0), (1/2,0), (1,1). Here, 

D -:f:. C(Q) (there exist arbitrarily long irreducible lightning bolts). One can show 
(see Lemma 4.1 below) that D = C(Q) and, therefore, D "!- D. (The latter follows 
from Theorem 2.2.) 

( d) Q consists of a polygonal path whose sides are parallel to the coordinate 
axes and whose vertices are 

(0, 0), {1, 0), {1, 1), ( 1 + ;2 I 1) I ( 1 + ;2 I 1 + ;2) I 

( 1 1 1) ( 1 1 1 1) 
1 + 22 + 32 I 1 + 22 I 1 + 22 + 32 I 1 + 22 + 32 I • • • • 

We add to the path the limit point for the vertices 

( 7r2 7r2) (7r2 - 00 _!__) 
6, 6 , 6 - L n2 . 

n=l 

By Lemma 4.1 one can verify that D = C(Q). However, D "!- D by Theorem 2.2. 
Construct a function f(p) = f(x, y) on Q as follows. On the link joining {O, 0) 
to {1, 0), f(x, y) is continuously increasing from 0 to 1; on the link from (1, 0) to 

(1, 1) it continuously decreases from 1 to O; on the link from {1, 1) to ( 1 + ;2, 1) 

it increases from 0 to ~; on the link from ( 1 + ;2 , 1) to ( 1 + 2\ , 1 + 2\) it 

decreases from ~ to O; on the next link it increases from 0 to ~, etc. At the point 

( ~2 , ~2 ) set the value of f equal to 0. Clearly, f is a continuous function and 

therefore can be uniformly approximated by the sums cp(x) + 1/J(y), where cp, 1/J are 
continuous. At the same time, f(x, y) can be represented in the form 

f(x,y) = <P(x) + '1!(y). 

{In general, according to Theorem 1. 7 any function on Q is representable by such 
a sum.) However, it is easy to see that in any such representation cl> and '1! cannot 
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be bounded-once more confirming that D =/. D, although D = C(Q). Here, the 
equivalence class with respect to R3 of any point is all of Q, it contains R((O, 0)), 

(( 71'2 71'2)) (71'2 71'2) 
andR 6'6 = 6'6. 

(e) Add to the set Q in the previous example one more copy of Q adjacent 

( 71'2 71'2) 
to 6 , 6 from "above", the set Q1. Let Q = Q U Q1. For all p E Q we 

have R3 (p) = Q. There are three equivalence classes with respect to R: the point 

( 71'2 71'2) 
q= 6 ,6 , Q\q, and Q1\q. 

§3. Proximinality 

Propositions 2.3-2.4, Corollary 2.5, Lemma 2.6 all contain statements concern
ing proximinality of subspaces of functions go <I>(p), where <I> is a given mapping. 
In this section we treat problems concerning proximinality of subspaces of sums of 
two superpositions. First, consider bounded functions. Similarly to (1.8), assume 
that X, Y and QC Xx Y are arbitrary sets, 71'1 : Xx Y --t X, 71'2: Xx Y --t Y 
are canonical projections, X = 7r1(Q), Y = 7r2(Q). Functions f(p), p E Q, can be 
written as f(x, y), x EX, y E Y. 

The subspace BD = BD(Q) in B(Q) consists of functions ip(x) + 7/J(y): 

(3.1) BD = {ip(x) + 'l/J(y)}, ip(x) E B(X), 'l/J(y) E B(Y). 

Also, in addition to the subspace BD we consider in B(Q) another subspace 

(3.1') ED= {ip(x) + 'l/J(y)}, for all ip(x), 'ljJ(y) with ip(x) + 'l/J(y) E B(Q). 

It follows from the example (2.lOd) that in general BD and ED are different. 

THEOREM 3.1. The subspace BD is always proximinal. 

PROOF. In every equivalence class with respect to the relation R choose a 
point. Let R (pi) be such a class in which the point P1 is chosen. Each point 
p E R (p1) can be joined to p 1 by a finite lightning bolt. Among the lightning bolts 
joining p and p1 there exist irreducible ones. Fix one such irreducible lightning bolt 
(pi,p2, ... ,pm= p]. We call it marked, and denote it by {pi,p}. If Pi = (xi, Yi), 
Pi+ 1 = (xi+ 1, Yi+ 1), then either Yi = Yi+ 1 , or Xi = Xi+ 1 . In the first case we shall 
write i E C.,, in the second case i E Cy. Consider the following linear functionals 
on B(Q): 

Ap(f) = L [/(PHI) - f (pi)] ; 
l<i<m-1 

(3.2) 
-iEC,. 

Bp(f) = L [! (pi+l) - f (pi)]. 
l<i<m-1 
-iEcy 

If p = p1, then both sums are defined to be zero. For all p E R (p1) these functionals 
are continuous in the weak(*) topology of B(Q) defined by B(Q) = l 1(Q)*. Also, 
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for any two points p and jj that belong to the same equivalence class R (p1) define 
the linear functionals 

{3.3) 
LA,p,p{f) = (Az; - Ap) (!); 

LB,p,z;{f) = (Bz; - Bp) (!). 

These functionals are also continuous with respect to the weak ( *) topology in B( Q). 
Considering all the equivalence classes with respect to R into which R divides Q, 
denote by M the set of those functionals {3.3) for which the following additional 
requirements hold (p = (x, y), jj = (x, y)): 

{3.4) LA -(/) e M if x = x· ,p,p , LB,p,p{f) E M if y = y. 

~ j_ 
ASSERTION 3.2. BD = M . 

PROOF. Let f E BD and hence f(p) = cp(p) + 1/J{p), where cp(p) = cp(x), 
1/J(p) = 1/J(y). If p ER (pi) and {Pi.P} is the marked lightning bolt, then 

Therefore, 

{3.5) 
cp (pi+i) - cp (pi) = I (pH1) - I (pi), 

1/J (pi+i) -1/J (pi) = I (pH1) - I (pi), 

Hence, using the functionals {3.2), we obtain 

{3.6) 

If LA,p,p E M, p = (x, y), jj = (x, y), then in view of {3.4) x = x. Hence p and 
jj belong to the same equivalence class with respect to the relation R. Let it be a 
class R (p1). Then from {3.1)-(3.6) it follows that 

(3.7) LA,p,p{f) = Az;(f) - Ap(f) = cp (jj) - cp(p) = cp (x) - cp(x) = 0. 

Similarly, for LB,p,p EM we obtain 

{3.7') LB,p,z;{f) = 0. 

Therefore, BD c Ml.. Now let f E B(Q) be orthogonal to M. Construct cp(x) and 
1/J(y) such that f = cp(x) + 1/J(y). Taking an equivalence class R (p1), set cp (p1) = 
f (pi), 1/J (pi) = 0 at the marked point p1. At any p E R (pi) define the functions 
cp(p) and 1/J{p) by {3.6). Do this for all the equivalence classes. From (3.2) and {3.6) 
it follows right away that f(p) = cp(p) + 1/J(p). Now let points p = (x, y) E R (p1) 
and jj = (x,y) be such that x = x. Then, jj E R(pi) and LA,p,p EM. Therefore, 
LA,p,p{f) = 0. From {3.6), {3.3) it follows that cp(p)-cp (jj) = 0. Thus, cp(p) depends 
only on the coordinate x of a point p: cp(p) = cp(x). Similarly, one shows that 1/J(p) 
depends only on the y-coordinate. Thus, f = cp(x) + 1/J(y), and so Ml. c Ev. 
Thus, Ml. = BD, and Assertion 3.2 is proved. 

In order to complete the proof of Theorem 3.1, note that from Assertion 3.2 it 
follows that Ev is weak ( *) closed, and weak ( *) closedness implies proximinality. 
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THEOREM 3.3. If the lengths of irreducible lightning bolts in the set Q are 
uniformly bounded, then BD = BD and hence the subspace BD(Q) is proximinal. 

PROOF. By the hypothesis the number of vertices of any given lightning bolt 
does not exceed some constant M. Let f(p) = cp(x) + 'l/J(y) E BD. On each 
equivalence class R (p1) functions cp and 1/J are defined up to additive constants c1 
and c2 = -c1, respectively. Therefore, we can assume that at a given point P1 we 
have cp(pi) = f (P1) and 1/;(p1) = 0. Then from (3.2) and (3.6) we obtain (since f is 
a bounded function!) 

jcp(p)I ~ Mllfll, 11/J(p)I ~ Mllfll. 
Thus, cp E B(X), 1/J E B(Y), and f E BD. Hence BD = BD, and from Theorem 3.1 
it follows that BD is proximinal. 

COROLLARY 3.4. If the set Q contains either an x-bar or a y-bar, then BD is 
proximinal. 

PROOF. As in Corollary 2.7, we conclude that the lengths of all irreducible 
lightning bolts are bounded by 4. 

Now consider conditions that would provide proximinality of the subspace D 
as in (1.8) in C(Q). We shall only consider compact metric spaces. If Vis a metric 
space, we denote by a(a, r) the closed ball ofradius r centered at a EV. 

THEOREM 3.5. Let X, Y, Q C Xx Y be compact metric spaces and let a 
subspace D be defined by formulas (1.8), where 11'1 : Q ~ X, 11'2 : Q ~ Y are the 
natural projections (considered on Q only), 11'1(Q) = X, 11'2(Q) = Y. Suppose that 
for any point x EX and any o > 0 there exists Oo = oo(X), 0 < o0 < o, such that 
the set 

(3.8) 

has a y-bar. Then the subspace D is proximinal in C( Q). 

First, we shall establish the following lemma. 

LEMMA 3.6. If the assumptions of Theorem 3.5 hold, then the lengths of irre
ducible lightning bolts in Q are uniformly bounded. 

PROOF. From the compactness of X it follows that there exist a finite number 
of closed balls a (xk, ok), Xk EX, k = 1, ... , v, covering X, such that each set 

Qk = 11'11 (a (xk, Ok)), k = 1, ... , v, 

contains a y-bar. Let x2 E a (xk, ok) be such a point corresponding to a y-bar of 
the set Qk. If p = (x, y) and p = (x, ii) are two points from Qk, the points (x2, y) 
and (x2, ii) also lie in Qk. Therefore, p and p can be joined by a lightning bolt 
[p, (x2, y), (x2, ii) ,p] of length 4. 

v 

Since LJ Qk = Q, the number of equivalence classes in Q with respect to the 
k=l 

relation R is finite, and each such class is a union of some of the sets Qk. Take a 
point Pk E Qk in each of the sets Qk (e.g., Pk = (x2,Yk)). If Qi and Qi belong 
to the same equivalence class, let mij denote the length of an irreducible lightning 
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bolt joining Pi and Pi· Now, if p and p belong to the same equivalence class with 
respect to R, where p E Qi, p E Q;, then in view of the above argument, the points 
p, Pi, P;, p can be included in one lightning bolt whose length in any case does not 
exceed 4 + mi; + 4. Hence all irreducible lightning bolts in Q have length bounded 
by M + 8, where M =max mi;· 

PROOF OF THEOREM 3.5. Let f E C(Q) C B(Q). In view of Theorem 3.3 and 
Lemma 3.6, the function f(p) = f(x, y) has the best approximation <po(x) + 1/Jo(Y) 
in the space BD. We shall use the following notation. If V is a metric space, 
W c Vis a subset and v E V an element, then dist(v, W) is the distance from v 
to W. Let 

(3.9) d = dist(!, BD) 

in B(Q). Consider the function F(x, y) = f(x, y) -1/Jo(y). Obviously, 

(3.10) d =dist (F, B(X)), 

where B(X) is viewed as a subspace of B(Q). As in Propositions 2.3 and 2.4, intro
duce for F(x,y) the functions M(x), m(x), M*(x), m*(x). From Proposition 2.4 
and (3.10) it follows that 

(3.11) 
1 

d = -2 sup (M(x) - m(x)). 
:z:EX 

So, for all x E X, we have 

(3.12) M(x) - m(x) :::; 2d. 

Let us also show that 

(3.13) M*(x) - m*(x):::; 2d 

for all x E X. Take an arbitrary e > 0. The uniform continuity of f(x, y) on Q 
implies the existence of 8 > 0 such that whenever p (x, x) < 8 and (x, y), (x, y) are 
points in Q, 

(3.14) lf(x, y) - f (x, y)I < e. 

Fix xo E X and choose 81 < 8 so that the set 71'11 (u (xo, 81)) has a y-bar. Let 
x1 E u (xo, 81) be a value of x corresponding to that bar. For every x E u (x0 , 81) 
we use (3.14) and the existence of a y-bar corresponding to x1 to get 

M(x) = sup F(x, y) :::; sup F (x1, y) + e = M (xi)+ e; 
(x,y)EQ (:z:1,y)EQ 

m(x)= inf F(x,y)'?: inf F(x1 ,y)-e=m(x1)-e. 
(x,y)EQ (:z:1,y)EQ 

Therefore, 

M* (xo) :::; sup M(x) :::; M (x1) + e; 
:z:Eu(:z:o,c5) 

m* (xo) '?: inf m(x) '?: m (x1) - e. 
:z:Eu(:z:o ,c5) 

(3.15) 

Since M (x1) - m (x1) :::; 2d (in view of (3.12)), we obtain from (3.15) that 

M* (xo) - m* (xo) :::; M (xo) - m (x1) + 2e :::; 2dte. 
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Since c > 0 is arbitrary, (3.13) follows. 
According to Proposition 2.3, 

(3.16) dist (F, C(X)) = ~sup [M*(x) - m*(x)] 2'. dist (F, B(X)) = d. 
2 xEX 

Comparing (3.16) and (3.13), we conclude that 

dist (F, C(X)) = d. 

Proposition 2.3 also implies that there exists the best approximation <p*(x) E C(X) 
to F(x, y) for which 

(3.17) IJF(x, y) - <p*(x)ll = llf(x, y) - <p*(x) -1/J(y)IJ = d. 

Consider a continuous function ct>(x, y) = f(x, y) - <p*(x). From (3.17) it follows 
that 

(3.18) dist (ct>, B (Y)) = d. 

Construct for 4.>(x, y) functions M(y) and m(y) similar to the earlier construction 
of M(x) and m(x). According to Proposition 2.4 

(3.19) dist (4.>, B(Y)) = -2
1 sup [M(y) - m(y)]. 

yEY 

However, Lemma 2.6 also shows that in this situation 4.> is continuous, Q is a 
compact set and the distance dist(4.>,C(Y)) is equal to the distance in (3.19). So, 
again, M*(y) = M(y) and m*(y) = m(y). From.Proposition 2.3 it follows that the 
best approximation 1/J*(y) E C(Y) to 4.> does exist. So, 

IJ4.> -1/J*ll = llf(x,y) - <p*(x) -1/J*(y)IJ = d, 

and hence <p*(x) + 1/J*(y) is the best approximation to fin the subspace D. Prox
iminality of D in C( Q) is proved. 

REMARKS 3. 7. 1. It is clear from the proof that <p* + 1/J* is the best approxi
mation to f not only in C(Q) but also in B(Q). 

2. The asymmetry of the assumptions of the theorem with respect to x and y 
should be stressed: presence of local y-bars suffices, while presence of crosses does 
not. (Of course, one can interchange the roles of the variables in the statement of 
the theorem.) 

3. Since a proximinal space is necessarily closed, uniform boundedness of all 
irreducible lightning bolts in Q is also necessary for proximinality of Din C(Q). 

EXAMPLES 3.8. (a) The assumptions of Theorems 3.3 and 3.5 are satisfied for 
a wide class of sets. For example, they are satisfied for a curvilinear trapezoid 

{(x, y) : a$ x $ b, 0 $ g $ f(x)}, 

provided that f(x) is a continuous function on [a, b], or, also, the set 

{(x,y): a$ x $ b, fi(x) $ y $ h(x)} 

provided that fHx)fHx) $ 0. The assumptions of Theorem 3.5 are also satisfied 
for a compact Q symmetric about the Ox-axis, provided that all its cross-sections 
by the lines x = const are either segments or points. An arbitrary finite union of 
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closed rectangular regions (with sides parallel to the coordinate axes) satisfies the 
assumptions of Theorem 3.5 as well. It is easy to form such a union that does not 
contain a global x-bar, y-bar, or, the more so, a cross. 

(b) A closed region bounded by an ellipse whose axes are not parallel to the 
coordinate axes satisfies the assumptions of Theorem 3.3 but not those of Theo
rem 3.5. It is unknown whether Dis proximinal there. 

(c) Example 2.lOd shows that the assumptions of Theorems 3.3 and 3.5 are 
essential (the assumptions of Theorem 3.5 are violated at the point (7r2 /6, 7r2 /6)). 
In that example, the set Q is one-dimensional. Let us give an example showing 
that the assumptions of Theorems 3.3 and 3.5 are also essential when Q is a closed 
region. Let a closed region Q be bounded by the curves 

1 1 
y=x--x3 , y=x+-x3 , x=l. 

3 3 
The requirements of Theorem 3.5 fail either for points x EX= [O, 1], or for points 
y E Y = [O, ll]. The requirements of Theorem 3.3 also fail: we can place in 
Q lightning bolts of an arbitrary length ( Q / R consists of two classes: (0, 0) and 
Q\(O, 0)). Consider the functions 

cp(x) = { ~. x :;i: O, 
0, x=O, 

'l/J(y) = { -t· y =I= 0, 
0, y= 0, 

and set f(x,y) = cp(x)'l/J(y). It is easy to check that f E C(Q), f E D, but 
f fl. D and f (J!..D; hence f neither has the best approximation in D, nor in 
BD. Yet f E BD, and hence is its own best approximation in BD. We have 
g(x, y) = sincp(x) +sin 'l/J(y) E C(Q), g E BD, g E D, but g fl. D. So, if the 
requirements of Theorem 3.5 are not fulfilled, there exist situations in which a 
continuous function has a best approximation in BD, but not in D. 

The results of these sections are taken from [51]. 

§4. Annihilator of sums of superpositions. When is the 
subspace of sums of superpositions everywhere dense? 

In many problems of approximation by elements of a given subspace, it is nec
essary to make a study of the annihilator of that subspace. In this section we shall 
start the study of the annihilator of the subspace of sums of superpositions. First, 
consider a general case of linear superpositions. Let X, X 1, •.. , Xi, ... be compact 
sets, q,i : X---+ Xi continuous mappings, and hi(x) E C (Xi) given functions. Form 
the linear subspace in C(X) that consists of all linear superpositions-each has its 
own number of terms: 

(4.1) D = { ~ hi(x)gi o q,i(x), k ~ 1, 9i E C(Xi)}. 

LEMMA 4.1. In order that a measureµ E C(X)* be orthogonal to the subspace 
(4.1) it is necessary and sufficient that 

(4.2) def ( · ) Vi= q,io hiµ =:O, i = 1,2, .... 

The proof follows immediately from formula (2.12) of Chapter 1. Let µ = 
µ+ - µ- be the Jordan decomposition ofµ E D.l... Formula (4.2) carries some 
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information concerning symmetry in the disposition of S,_.+ and S,_.-. (Sv is, as 
usual, the closed support of the measure v.) Such symmetry appears more clearly 
when hi(x) = 1 for all i = 1, .... In that case, (4.2) means that for an arbitrary 
Borel set E c Xi 

or 

(4.3) 

To make the condition (4.2) more transparent, consider the case when S,_. is a finite 
set. 

COROLLARY 4.2. Let hi(x) = 1, i = 1, ... , µ E D.l., and assume that the 
support S,_. of the measureµ is a finite set. Then each point Xo ES,_.+ corresponds 
for all i = 1, 2,... to at least one point Xi E S,_.- such that <Pi (xo) = <Pi (xi) and, 
accordingly, each point Yo E S,_.- corresponds for all i = 1, ... to at least one point 
Yi ES,_.+ such that <Pi (yo) =<Pi (Yi)· 

THEOREM 4.3 [131]. Let X, {Xi) be compact metric spaces, and let D be 
defined by (4.1), where all hi(x) = 1, i = 1, 2, .... Let the operator r: 2x - 2x be 
defined by (7.1) and (7.2) of Chapter 1, where the intersection in the second formula 
is taken over all i. Ifµ E D.l. and lµI denotes the total variation ofµ, then 

(4.4) 

PROOF. As shown in Lemma 7.5 of Chapter 1, if Z C X is a Borel set, then 
zi and r(Z) are also Borel sets. For each i, consider X\Xi. For any Borel set 
E C X\Xi, we have 

µ(E) =<Pioµ (<Pi(E)) 

and, in view of Lemma 4.1, µ(E) = 0. Hence, lµI (X\Xi) = 0. But then 

lµI (X\r(X)) = lµI ( y (X - Xi)) :::; L lµI (X\Xi) = 0, 

so that the measure µ is supported on the set r(X). Taking Z = r(X), consider 

Z\r(Z) = r(X)\r2(X). Let E c Z\Zi. We have E1 ~r <Pi1 [<Pi(E)] = EU 
E2, where E2 C X\Z. By Lemma 4.1, µ (E1) = 0. By what we have already 
shown, µ (E2) = 0, so µ(E) = 0. Thus, we have shown that lµI (z\zi) = 0. 
Similarly, we can show now that lµI (Z\r(Z)) = 0 and, accordingly, the measureµ 
is supported on r(Z) = r 2(X). Continuing these arguments, we can prove that for 
all n, lµI (rn(X)\rn+l(X)) = 0 andµ is supported on rn(X). Finally, 

lµI ( X\01 rn(x)) = lµI (Q1 (rn- 1(X)\rn(X))) = O 

00 00 

andµ is supported on n rn(X), while S,_. c n rn(X). 
n=l n=l 
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Approximation of measures in DJ. with finite supports. From now on, 
assume that D consists of functions (1.1) with a fixed number of terms N. In fact, 
without loss of generality, assume that X C Y = X1 x · · · x XN, and the <Pi are 
natural projections from Y onto Xi, <l>i(X) =Xi. We can consider functions in D 
as being defined on Y: D = D(Y). We shall specifically say so whenever by <Pi we 
understand its restriction to X (as, e.g., in (4.3)). 

THEOREM 4.4. Letµ E DJ., Sµ, c X, 11µ11 = 1. There exists a set of measures 
{µa} C D(Y)J. weak (*) converging in C(Y)* to µ and satisfying the following 
properties: 

i. IIµ°' II = L 
2. Sµ," is a finite set. 
3. For any open neighborhood G C X there exists an index ao such that Sµ," C 

G fora> ao. 

PROOF. To simplify notation, we shall conduct the arguments for N = 2. 
Consider partitions of X1 into a finite number Ui, ... , Uk of Borel subsets, and 
similar partitions Vi., ... , Vt for X2. For indices a we use all possible pairs of such 
partitions: a= (Ui. ... , Uk; Vi., ... , Vt). The set {a} has a natural partial order 
(according to the "fineness" of a partition), after which {a} becomes a directed 
set. Take some a. In each one of the sets U1, ... , Uk that are incorporated into 
a, we choose a point ti, ... , tk. Similarly, in V1, ... , Vt we select points Ti, ... , Te. 
Points Xij =ti x Tj E ui x lf;, i = 1, ... ,k, j = 1, ... ,l, are points in y = 

X 1 x X2. At each one of the points Xij we place an atom of the measure fea ( Xij) ~f 
µ (Ui x V;). Applying Lemma 4.1 first to the measure µ, and then to a newly
constructed measure µ, we conclude that fea E D(Y)J.. Clearly, llfea II ---+ 1, so we 

can pass to measuresµ°'= ll~:ll for which llµall = 1. 

The proof of (2) and (3) is a rather elementary exercise in measure theory, and 
we omit it. When X1 and X2 are compact metric spaces, instead of a net {µa}, 
one can construct an ordinary sequence {µ,.}, and then the checking of properties 
(2) and (3) becomes especially simple. 

Measures on lightning bolts. Consider the case N = 2 and return to the no
tation of (1.7) and (2.18) of the present chapter. If a lightning bolt l = (p1, ..• ,pn] 
contained in Q is finite, we associate with it a linear functional over C(Q) defined 
by the formula 

or 

(4.5) 

Thus, re is generated by a measure that has atoms ±..!:. with alternating signs at 
n 

the vertices of the lightning bolt. We denote this measure by re, the same as the 
corresponding functional, in order not to complicate the notation. 
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If 8p is the delta-mass at p, then 

(4.6) 

or 

(4.6') 

If l : [pi, ... , Pn, ... J is an infinite lightning bolt, we associate with it a sequence of 
linear functionals on C(Q): 

(4.7) n= 1,2, .... 

LEMMA 4.5. 1. For {4.5) we have llrell :5 1, while for (4.7), llrill :5 1, n = 
1,2, .... 

2. IJrell = 1 (llrill = 1, n = 1, 2, ... ) if and only if the set of vertices of the 
lightning bolt l having even indices does not overlap with that having odd indices. 

3. If l is closed, then re E Dl.. If l is an infinite lightning bolt and r is a limit 
point of the sequence of linear functionals { rl} in the weak ( *) topology of the space 
C(Q)*, then r E DJ.. 

PROOF. 1. Clearly, Jre(J)I :5 .!.nllfll, and hence IJrell :5 1. Similarly, llri(f)ll :5 
n 

1, n = 1,2, .... 
2. The assumptions in part 2 of the lemma mean that the same point p cannot 

simultaneously be a vertex of l having even and odd indices (although we do not 
exclude cases when among the vertices of l having even indices (or odd, for that 
matter) there are equal ones). Consider the case of a finite lightning bolt l = 
[p1, ... , Pn]. In the case when a vertex p is repeated among vertices with odd 

indices m times it accumulates the charge m. If a vertex p is repeated k times 
n 

among vertices with even indices, it accumulates the charge _'I!._. Clearly, in this 
n 

situation we always have 

[ ldrel = [ ldrel = .!, · n = 1, JQ le n 
i.e., IJrell = 1, and, similarly, llrill = 1, n = 1, 2, ... , for the case of an infinite bolt. 
If a vertex p had both even and odd indices, then in the sum (4.6) (or (4.7)) the 
corresponding terms would cancel, since they have opposite signs. Thus, the total 

variation of the charge will still be less than 1 - ~. 
n 

3. Let, e.g., l = p1R1p2R2p3 .. ·Pn-1Rn-1Pn· If n is even, then Rn-1 = Ri, 
while if it is odd, then Rn-1 = R2. In the first case (n = 2m) for an arbitrary sum 
gl o 11"1{p) + g2o1l'2{p) we have 

(4.8) 
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In the second case ( n = 2m + 1) we have 

(4.8') 

Similar formulas also hold when P1 R2P2. If the lightning bolt is closed, then n = 2m 
and ( 4.8) implies that rt E D( Q).l.. If f, is infinite and a subsequence {r;k}, nk --+ oo, 
converges to a functional r in the weak(*) topology of C(Q)*, then it follows from 
(4.8) and (4.8') that r E D.i.. (Note that we do not rule out the case r = 0.) 

Below, we shall mainly use only the lightning bolts for which llrtll = 1 (and 
therefore, the sets of vertices with even or odd indices are disjoint). This is stip
ulated by the fact that in duality relations one uses measures µ E D.l. for which 
11µ11=1. 

Representation of measures in D.l. with finite supports by measures 
on lightning bolts. 

LEMMA 4.6. Ifµ E D.l., 11µ11 = 1 andµ has support S,,, that consists of finitely 
many points, thenµ is a convex combination of measures on closed lightning bolts 
whose supports are contained in S,,,. 

PROOF (V. A. Medvedev). Choose an arbitrary point P1 E S,,,. According 
to (2.2) and (2.3) there exists a point P2 E s,,,, p1R1p2, while µ~)µ(pi) < 0. 
Further, there exists p3 ES,,, with p2R2p3 andµ (p2) µ (p3) < 0, etc. The process 
is finished when at the next step we arrive at one of the points constructed earlier. 
Without loss of generality assume that P1 is such a point. Let us assume that 
the constructed points Pi.P2, ... 1 Pn 1 P1 form a circular lightning bolt. If PnR2Pi. 
then the lightning bolt £1 = [p2, ... ,pn] is closed. At the neighboring vertices of 
£1 atoms ofµ have opposite signs. Let m be the smallest of the absolute values 
of atoms of the measure µ at vertices of £1. Consider measure rt1, choosing the 
signs of the atoms on f, 1 to be the same as those for µ. If N denotes the number 
of vertices of £1 (N = n or N = n - 1), then the measure Nmrt1 has values ±m 
at the vertices of £1 and the signs coincide with those ofµ. Since mis the smallest 
modulus of values ofµ at the vertices of li. the measure µ 1 = µ - >.1rt11 where 
>.1 = Nm, has at the vertices off 1 the same signs as µ, and lµ1 I = lµI - Nm h 1 I; 
hence llµill = llµll->.1 llrt1 II = 1->.1. Further, rt1 E D.l.. So µi E D.l.. Finally, at a 
vertex of £1 where µ takes a value ±m, the value of µi equals zero. So, the support 
of µ 1 is smaller than S,,, by at least one point. Now repeat a similar construction 
on S,,, 1 • Clearly, after finitely many steps we arrive at 

>.k > 0. 

COROLLARY 4. 7. For N = 2, in view of Theorem 4.4, each one of the measures 
µ°' approximating the measure µ E D( Q).l. is a convex combination of measures on 
closed lightning bolts situated in G for a > ao. 
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Duality relations. Let L be a normed linear space, Lo a subspace in L and f 
an element of L. The following duality relation has by now become a routine part 
of approximation theory: 

(4.9) max 1£(!)1 = inf II! - gll. 
i!EL~ gELo 

lllll'.9 

(Here, as always, we write max (min) instead of sup (inf) when we can guarantee 
that it is attained.) Using the earlier notation, let us consider a problem of the best 
approximation in C(Q) of a given function f E C(Q) by functions in the subspace 
D: 

(4.10) E(f) ~f inf II! - gll = inf max lf(p) - (g1 o 7r1(p) + g2 o 7r2(p))I. 
gED 91 EC(X) pEQ 

g2EC(Y) 

Then, ( 4.9) becomes 

(4.11) E(f) = ~~ ll fdµI. 
11µ11~1 

Theorem 4.4 and Corollary 4.7 allow us to use in (4.11) measures with a simple 
structure, although without being able to guarantee that sup is attained. Assume 
that all functions in C(Q) are extended to functions in C(X x Y), and all functions 
in D(Q) to functions in D(X x Y). 

Let G be an open neighborhood of Q, and let 'f/ =Grun over the directed set 
of all such neighborhoods of Q partially ordered in the usual way. Set 

(4.12) R,,(f) =sup I r fdrel =sup ire(f)I, 
tea le tea 

where sup is taken over all closed lightning bolts£. Clearly, the scalar-valued net 
{R11 (f)} is decreasing with respect to 'f/· Therefore, there exists 

(4.13) 

THEOREM 4.8 (duality). If Q =xx Y, then 

(4.14) E(f) =sup lre(f)I, 
lEQ 

where the supremum is taken over all closed lightning bolts f. In the general case 
QcXxY, 

(4.15) E(f) = limR,,(f). 
T/ 

PROOF. Fix e > 0, and let g1 E C(X) and g2 E C(Y) be such that 

II! - gl 0 7r1(p) - g2 0 7r2(p)llQ < E(f) + €. 

Take a domain 'f/ = G c Q so that 

II! - gl o 7r1(P) - g2 o 7r2(p)llc < E(f) + 2e. 
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For any closed lightning bolt l C G we have, since re E D.i_, 

(4.16) 
Ire(!) I= Ire[! - gl o 7r1(p) - g2 o 7r2{p)]I 

:::; llf - gl o 7r1 - g2 o 7r2il < E(f) + 2e:. 

Therefore, 
R,,(f) < E(f) + 2e. 

So, we obtain that 

(4.17) lim R,, (!) :::; E (!). 
T/ 

On the other hand, letµ* E D.i_(Q) be a measure that realizes the max in (4.11). 
Then 11µ*11 = 1 and s,,.. C Q. According to Theorem 4.4 and Corollary 4.7, for an 
arbitrary open set G ::> Q there exists a measureµ such that S,,. CG, 11µ11=1, and 

(4.18) 
s' 

µ = L:>-eree, 
IJ=l 

where the le are closed lightning bolts in G and 

(4.19) ll fdµ - l fdµ*I < e. 

From (2.34) we obtain that 

(4.20) 

Since µ is a convex combination of the re8 , there exists an index () such that 

(4.21) 

Hence (TJ = G), 

(4.22) RT/(!) > E(J) - e and limR,,(J) ~ E(J). 
T/ 

Combining ( 4.22) and ( 4.17), we complete the proof of the theorem. 

COROLLARY 4.9. If E(f) > 0, then among the measures realizing the max in 
(4.11) there exists a measure equal to the weak(*) limit of a net of measures {re .. } 
supported on closed lightning bolts la. c Xx Y, and the net {la.} is such that for 
any open net G ::> Q there exists an index ao for which la. c G for all a > ao. 

The proof is omitted, since it is similar to that of Corollary 4.12 below. 

Bibliographical notes. The duality theorem in the case when Q is a rectangle 
in IR2 was proven in the seminal paper of Diliberto and Straus [38]. At that time, 
the duality approach had not yet become widely popular in approximation theory. 
(Papers by Krein and Nikol'skil [120], [89] played a crucial role in spreading duality 
methods to problems of best approximation.) The theorem was independently 
found by S. A. Smolyak, and some ideas of the proof were suggested by Arnold (cf. 
[113]). Yet another proof was given in Golomb's paper [64], another of the few 
very first publications concerning these problems. However, the latter proof had 
an essential gap, pointed out in [100]. For Q's other than a rectangle, the theorem 



appeared in [80]. In [79] another form of the result was given under the additional 
assumption that the best approximation in D does exist. In [100] the theorem was 
proved without this additional assumption. We shall discuss some of these results 
later on. 

When is D(Q) dense in C(Q)? 

COROLLARY 4.10. If a subspace Dis as in (4.1), in order that D be everywhere 
dense in C(X) it is necessary and sufficient that (4.2) implyµ= 0. 

COROLLARY 4.11. In order that a subspace in Theorem 4.4 be everywhere dense 
in C(X), it is necessary and sufficient that any net of measures {µo:} satisfying all 
the properties listed in Theorem 4.4 converge weak(*) to zero in C(Y)*. 

COROLLARY 4.12. For N = 2, under the assumptions (and notation) of Corol
lary 4. 7 the following conditions are equivalent: 

1. D(Q) = C(Q). 
2. Let {rt.,.} be a net of measures on closed lightning bolts {lo:} such that for 

an arbitrary open set G :::> Q there exists an index ao such that lo: C G for a > ao. 
Then, {rt.,.} converges weak ( *) to zero in C(X x Y)*. 

We only need to prove Corollary 4.12. Assume that D I- C(Q). Then there 
exists f E C(Q) such that d =dist(!, D) > 0. According to the Krein-Nikol'ski1 
duality relation (4.11), there exists a measureµ E D(Q)1-, 11µ11=1, such that 

lfdµ=d. 

Let {µo:} be a net of measures in C(X x Y)* approximatingµ in accordance with 
Theorem 4.4. By Corollary 4. 7 each one of the measures µ°' for a > a 0 is a convex 
combination of measures on closed lightning bolts located in G. For at least one of 
those bolts lo: 

f fdrt .. ;::: J fdµo:. 

and hence {re.,.} cannot converge to zero. 
From Theorem 4.3 we obtain 

COROLLARY 4.13. If under the assumptions of Theorem 4.3 we have 

then D = C(X). 

A geometric condition for density of D( Q). Let us clarify the "geometric" 
meaning of Corollary 4.12. Let l be a finite lightning bolt and g an open set. Denote 
by S(l) the number of vertices of land by s+(l,g) (S-(l, g)) the number of vertices 
of l inside g with positive (negative) masses. 

PROPOSITION 4.14. Let {lo:} be a net of lightning bolts. If for any open set g 
we have 

(4.23) Is+ (lo:,g) - s- (lo:,g)I = o(S (la)), 

then the set {re.,.} weak (*) converges to zero in C(X x Y)*. 
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PROOF. (4.23) can be rewritten as 

(4.24) rt,.(g) = o(l). 

Then use a general result of Alexandrov on weak(*) convergence (Theorem IV.9.15 
in [40]). The fact that there the theorem is stated for sequences, while here we are 
dealing with nets, is of no importance. 

The Marshall-O'Farrell criterion. For N = 2 there exists a much more 
effective criterion for D = D(Q) to be everywhere dense in C(Q), yet with an 
essential additional assumption. 

THEOREM 4.15. In order that D = C(Q), it is necessary and, if for each point 
P E Q the equivalence class R(P) is closed, it is also sufficient that there exist no 
closed lightning bolts in Q. 

LEMMA 4.16. Let E = R (Ei), where Ei is a Borel set. If a measure µ E 
D( Q).L, then the restriction v = µIE ofµ on E also belongs to D( Q).L. 

PROOF. Sinceµ E D(Q).L, according to Lemma 4.1 we have µi = 1ri o µ = 0, 
i = 1, 2. Set Vi= 1ri o v. We must show (again, in view of Lemma 4.1) that vi= 0. 
Let A be a Borel subset in X, and let Ai = 7ri(E). Since Eis saturated with 
respect to R, then whenever p EE, 7r:[i7r1(p) c E as well. Therefore, 

v1(A) =vi (An A1) + v1 (A\A n Ai)= v [7r:li (An Ai)]+ v [7r:li (A\A n Ai)] 

=µ [7r:li (An A1)] + v [7r:li (A\A n A1)] 

=µ [7r:[1 (An Ai)] + 0 = µi(A n Ai) = 0. 

Hence vi = 0. Similarly, one can show that v2 = 0. 

Extreme points in D(Q).L. If D.l = {O}, D = C(Q). Assuming then that 
D(Q).L =f:. {O}, consider a set a ofregular signed Borel measuresµ on Q defined by 

(4.25) a = {µ : µ E D( Q).L, 11µ11 ~ 1} · 

a is convex and closed in the weak (*) topology of the space C(Q)*, and so, ac
cording to the Krein-Milman theorem (cf., e.g., [40, Chapter V, Section 8]), has 
extreme points and is equal to the weak ( *) closure of convex combinations of its 
extreme points. 

LEMMA 4.17. Assume that the equivalence class R(p) of any point p is a closed 
set. If F1 :) F2 :) · · · :) Fn :) . . . is a sequence of closed sets in a compact Q, then 

(4.26) 

00 

PROOF. Let p E nR(Fn)· Then, for all n there exists Pn E Fn such that 
n=l 

p = R (pn) and Pn = R(P). Since Q is compact, the sequence {Pn} has a limit point 
00 

Po· In view of the closedness of all Fn's, Po E n Fn. Since R(p) is a closed set too, 
n=l 
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p0 E R(p), p E R(po). Thus, p ER CE1Fn). Hence, fiR(Fn) s;; R (D/n) · 
The opposite inclusion is trivial. 

LEMMA 4.18. Suppose that for all points p E Q the equivalence classes R(p) 
are closed. Ifµ is an extreme point of the unit ball u (see (4.25)), then the closed 
support Sµ of the measureµ is contained in some equivalence class. 

PROOF. For any set E let 

(4.27) 

Then, 'Yn ( E) is the set of all points that can be joined to points in E by lightning 
bolts of length :::; 2n. Let p E Sµ,, while q ¢ R(p). Choose a neighborhood of 
the point q whose closure U does not intersect R(p). Since p ¢ 'Yn(U) for all n 
and U is closed, 'Yn(U) is also closed and there exists a closed neighborhood Vn of 
the point p that does not intersect 'Yn(U). Without loss of generality assume that 
Vi ~ V2 ~ · · · ~ Vn ~ ... We have 

00 

R(U) = LJ 'Yn(U) and Vn n 'Yn(U) = 0. 
n=l 

Moreover, 

(n1 Vm) n R(U) = Q1 (m~l Vm) n 'Yn(U) = 0 

<=> UnR (Dl vm) = 0 <=>Un Dl R(Vm) = 0. 

Since p E Sµ and Vm is a neighborhood of p, we must have lµI (Vm) > 0. Then, 
however, the more so lµI (R (Vm)) = a > O. Let us show that a = 1. If a < 1, 
set µ1 = µ IR(Vm) and µ2 = µ IQ\R(Vm). In view of Lemma 2.17, µ1 E D(Q)J. 

and µ2 E D(Q)l., while llµ1ll =a, llµ2ll = 1- a, andµ= aµ 1 + (1- a) 1µ2 . 
a -a 

Therefore, µ cannot be an extreme point. Hence, a = lµI (R (Vm)) = 1. Since 
{R (Vm)} is a decreasing sequence of sets, we have 

lµI (Dl R(Vm)) = n!~oo lµI (R(Vm)) = 1. 

Hence, lµl(U) = 0 and q ¢ Sw 

Note that the contents of Lemma 4.18 is given in (99] by one sentence without 
any hint regarding its proof. S. Ya. Khavinson has reproduced Lemma 4.18 for 
compact metric spaces. The above presentation (together with Lemma 4.17) was 
suggested by V. A. Medvedev. 

LEMMA 4.19. Under the assumptions of Lemma4.18 the equivalence class R(p) 
that contains S µ must contain a closed lightning bolt. 
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PROOF. For the sake of brevity, set A= R(p) and let A1 = {p}, A2 = 71'11 o 
71'1 (A1), A3 = 71'21 o 71'2 (A2), ... , 

(4.28) j = 1,2, 

where j and n - 1 are simultaneously even or odd. All An are compact, and 
00 

(4.29) R(p) =A= LJ An. 
n=l 

Since An s;; An+l • we have 

lim µ+ (An) = lim µ- (An) = -2
1 , 

n-+oo n-+oo 

whereµ=µ+ - µ- (lµI = µ+ + µ-) is the Jordan decomposition of the measure 
1 

µ. (Recall that µ(A) = 0 and lµl(A) = 1.) Let no be such that µ+ (An0 ) > 3· 
According to the Hahn decomposition of the set Ano there exists a Borel set Eo C 

Ano such that 
1 

µ+ (Eo) > 3 and µ- (Eo) = 0. 

Without loss of generality assume no to be even. In view of Lemma 4.1, 

µ [71'21 o 71'2 (Eo)] = 0. 

Since Eo c 71'21011'2 (Eo), µ+ [71'21 o71'2 (Eo)] = µ- [71'21 o71'2 (Eo)] > ~· According 

to Hahn's theorem, there exists a Borel set E1 C 71'21 o71'2 (Eo) c Ano+l such that 

1 
µ- (Ei) > 3 and µ+ (E1) = 0, Eo nE1=0. 

Continue this process by considering the set 71'11 o 71'1 (Ei) C Ano+2· We arrive at 
the set E2 C Ano+2 with the properties: 

and so on. As a result, we obtain a sequence of Borel sets Eo, Ei. E2, ... with the 
following properties: 
(4.30) 

EiC Ano+i• 
Ei+1 c 7f'j1 o 7f'3(Ei), 

µ+(E2s) > ! and µ-(E28 ) = 0, 

µ-(E2s+i) > ! and µ+(E2s+i) = 0, 

Ei nEk = 0 

i = 0, ... j 

i = 0, ... ' j = 1, 2; 

i, j simultaneously even or odd; 

s = 0,1, ... j 

s = 0,1, ... j 

whenever i is even and 

k odd, or vice versa. 

The latter condition follows from the fact that all the E2s are taken inside the 
support ofµ+ while all the E2s+l are taken from inside the support ofµ-, and 
those supports do not overlap by Hahn's theorem. On the other hand, any two 
sets Ei and E3 with i, j = 2s must intersect. Indeed, assuming that Ei n E3 = 0, 
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and adding another set Ek with k having parity difference from that of i and j, we 
obtain three pairwise non-overlapping sets Ei, Ej, Ek, and then we have 

1 
1 = lµl(Q) ~ lµI (Ei) + lµI (Ej) + lµI (Ek)> 3 · 3 = 1, 

a contradiction. Talce a set E28 , s >no. Then, Eon E2s =/: 0. Let q E Eon E2s· 
According to the construction and properties of sets En there exists a lightning 
bolt 

(4.31) qi E Ei, i = 0, 1, ... , 2s - 1. 

If among the vertices of this bolt there are repeating ones, then ( 4.31) contains a 
circular lightning bolt, and therefore it does contain a closed one and the lemma is 
proved. Thus, we assume all the vertices in (4.31) to be distinct. Since q E Eo and 
qo E Eo while Eo ~ Ano, according to the construction of the sets Ai there exist 
lightning bolts joining p and q, p and qo: 

(4.32) 

where [pi, ... ,Pr] and IPL ... ,p~] in any case belong to Ano and r < no, t <no. 
Consider the sequence 

(4.33) 

The sequence ( 4.33) need not be a lightning bolt due to the behavior at q and q0 of 
the junction of (4.31) with (4.32). However, performing an obvious reconstruction 
of the links at those points and some of the following points, we obtain a circular 
lightning bolt. Here the main point is that the inequality s > n0 and the fact that 
all vertices in (4.31) are distinct guarantee that we do not return from q top over 
the same sequence of vertices used to reach q from p. From a circular lightning bolt 
we choose a closed one, and the lemma is proved. 

PROOF OF THEOREM 4.15. Necessity. Let Q contain a closed lightning bolt f.. 
By Lemma 4.5 the linear functional re (see (4.7)) belongs to D.l... Therefore, D(Q) 
is not dense in C(Q). 

Sufficiency. Consider D(Q).l... If D.l.. =/: 0, then according to Lemmas 4.18 
and 4.19 we could find a closed lightning bolt in Q. 

Extreme points in D(Q).l.. among measures with finite support. Lem
ma 4.6 shows that among measures with finite support only measures corresponding 
to closed lightning bolts can serve as extreme points in the unit ball a in D( Q).l... 
Let us clarify more precisely the conditions that a closed lightning bolt f, must 
satisfy in order that re be an extreme point in a. 

LEMMA 4.20. Let there be given measures µi E C(Q)*, i = 0, 1, ... , k, and let 

(4.33') 
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and llµill = 1, i = -, 1, ... , k. Then, 

(4.34) 

k 

LJ Sµ,, ~ Sµ,o• 
i=l i=l 

k 

µt = I:tiµt, 
1 

i=l 
n 

µ'(j = I:tiµ;, 
1 
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where Qi U Qi is the Hahn decomposition for µi, µi = µi - µ;, lµil = µi + µ; is 
the Jordan decomposition for µi, and Sµ,, is the closed support of the measure µi. 

PROOF. All relations (4.34) are almost obvious corollaries of (4.33') and the 
fact that the total variations of all the measures are the same. For instance, we 
have 

(4.35) 
k k k 

µo (Qt)= µt (Qt)= I:tiµi (Qt) :5 I:ti lµi (Qt) I :5 I:ti llµillQt, 
i=l i=l i=l 

(4.35') 
k k k 

µ'(j (Q"O) = -µo (Q"O) = - I:ti~ (Q"O) :5 I:ti lµi (Q"O)I :5 I:ti llµillQ0 . 
1 1 1 

All the inequalities (4.35)-(4.35') are in fact equalities, and we obtain the inclusions 
and equalities (4.34). 

Let l = !P1, ... , P2n] be a closed lightning bolt. A closed lightning bolt L = 
[qi, ... , q2m], m < n, is called an oriented regular part of l if 

1. all vertices of Lare contained among the vertices of l, and 
2. the signs of charges at the vertices qi, ... , q2n of l alternate in the same way 

as in L. 

EXAMPLE 4.21. Consider (in R2) a closed lightning bolt l = [p1, ... ,P12], 
where P1(4,0), P2(4, 2), p3(3, 2), p4(3.3), p5(4, 3), p5(4, 4), p7(l, 4), Pa(l, 3), pg(O, 3), 
P10(0,2), Pn(l,2), P12(l,O). Agree, when writing an oriented lightning bolt, to be
gin with a vertex having a positive charge. The lightning bolts L1 = [pi, P2, pn, P12]; 
L2 = [p11,p10,p9,pa]; L3 = [p3,p2,p5,p4]; L4 = [p1,p5,p1,P12]; L5 = [p3,p4,p9,p10]; 
L5 = [p5,p5,p7,pa] all give examples of oriented regular parts of l. The closed light
ning bolt L1 = [p3,p4,pa,p11] is not an oriented regular part of l. 

PROPOSITION 4.22. 1. Let l be a closed lightning bolt. The measure re corre
sponding to l is an extreme point of the unit ball in D( Q).L if and only if l does 
not contain oriented regular parts. 

2. If 

(4.36) 
k 

re= I: tire" 
1 

then each one of the closed lightning bolts li is an oriented regular part of l. Rep
resentation ( 4.36) is not unique in general. 
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PROOF. The second statement follows directly from Lemma 4.20. We prove 
the first statement. If re is not an extreme point, then we have re = ! [µ1 + µ2], 
where mi E D(Q)1-, llµill = 1, i = 1,2, and µi =F µ2. In view of Lemma 4.6 we 
obtain a representation of rt in the form (4.36). But then, according to the second 
statement, l has oriented regular parts. Now, conversely, let l have a regular 
oriented part L. If the number of vertices in£ equals 2n while in Lit equals 2m, 
then µ = rt - m r L E D( Q)l.. µ vanishes at those vertices of £ that belong to L, 

. n m 
and is the same as for l elsewhere. Therefore, 11µ11=1 - -. The measureµ has a 

n 
finite support, and hence, according to Lemma 4.6, µcan be represented by (4.36). 
So, the measure Ti is also given by a convex combination (4.36). In Example 4.21 
we have, e.g., 

EXAMPLE 4.23. Any lightning bolt£ with four vertices has rt as an extreme 
point. Another example: the lightning bolt P1(0, 0), P2(l, 0), p3(l, 1), p4(l/2, 1), 
p5(1/2, 2), p5(0, 2). Proposition 4.22 is due to S. Ya. Khavinson and V. A. Medve
dev. 

Further information concerning extreme points of the unit ball in 
D(Q)1-, densities in D(Q) and duality. Let us list without proofs some addi
tional information concerning the extreme points in D ( Q) 1-. Let £ = [pi , P2, ... J 
be an infinite lightning bolt and let r'f, n = 1, 2, ... , be signed measures defined 
by (4.7). If a measureµ is equal to the limit of the sequence {ri} in the weak (*) 
topology of C( Q)*, we shall say that µ is induced by l. If l is a finite closed light
ning bolt, then the corresponding measure re can be viewed as that induced by an 
infinite lightning bolt obtained from l by circling it infinite many times. In [100], 
Marshall and O'Farrell obtained in principle a complete description of extreme 
points in D(Q)l.. 

THEOREM 4.24 (Marshall-O'Farrell). Let Q be a compact metric space. If a 
measureµ is an extreme point of the unit ball in D(Q)1-, then it is induced by an 
infinite lightning bolt £. 

This result (in fact, [100] has it in a much more complete form) is obtained by 
using essentially new techniques from ergodic theory and stochastic processes. 

COROLLARY 4.25 [100]. In order that D(Q) (Q is a compact metric space) 
be everywhere dense in C(Q), it is necessary and sufficient that for any infinite 
lightning bolt l the sequence {r'f} weak(*) converge to zero. 

COROLLARY 4.26 [100) (the duality relation). For f E C(Q), 

(4.37) E(f) =sup lim r'f(f), 
ecQn-+oo 

where the supremum is taken over all closed or infinite lightning bolts l C Q. 

The main advantage of Corollary 4.26 in comparison with Theorem 4.8 is that 
here we do not have to "leave" Q for its neighborhood. At the same time, Theo
rem 4.8 is based on the description of all measures in D( Q)l., not merely extreme 
points. 
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COROLLARY 4.27. If D(Q) is closed in C(Q), then 

(4.38) E(f) =sup lre(f)I, 
ecQ 

where sup is taken over all closed lightning bolts f. in Q. 
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PROOF. The assumption concerning closedness of D(Q) according to Medve
dev's criterion (Theorem 2.2) implies the possibility of closing up every finite light
ning bolt by adding finitely many vertices whose number does not depend on the 
particular lightning bolt. Considering an infinite lightning bolt f. and its finite 
parts f.n, close up those parts to closed lightning bolts Ln. It is easy to see that 
ren - rLn ---+ 0 in the weak (*) topology. 

PROOF OF THEOREM 1.6 FOR ARBITRARY (NOT NECESSARILY METRIC) COM
PACT SPACES. Necessity. According to Theorem 4.15, Q cannot contain closed 
lightning bolts. Now let f. = [pi, ... ,Pn] be an irreducible lightning bolt. Accord
ing to Theorem 2.5 of Chapter 1, there must exist a number>., 0 < >. $ 1, such that 
for any measureµ E C(Q)* we have maxi=1,2 ll7l'i o µII ~ >.11µ11· However, llrell = 1, 

and it is easy to calculate that ll71'i o rell $ ~. Hence, ~ ~>.and n $ ~. 
n n "' 

Sufficiency. According to Theorem 2.2 the subspace Dis closed. Since there 
are no closed lightning bolts, all lightning bolts are irreducible and the uniform 
boundedness of their lengths implies that for any point p E Q its equivalence class 
R(p) with respect to the relation Risa closed set. According to Theorem 4.15 we 
obtain that Dis everywhere dense and, therefore, coincides with C(Q). 

Examples. To conclude the section let us give a few examples associated with 
Theorem 4.15 and some of the examples given in Section 2. 

EXAMPLES 4.28 (All examples are in Il~.2). 
(a) If Q has interior points, then D =ft C(Q) since Q contains closed lightning 

bolts. Whether D = D depends on the geometry of Q. In simple domains, indeed 
D =Das is easily seen from Theorem 2.2. It is equally easy to construct domains 
containing irreducible lightning bolts of an arbitrarily large length. Hence, by 
Theorem 2.2, D =ft D there. 

(b) Generalization: Q has positive area. Here, D =ft C(Q). Indeed, we can place 
inside Q vertices of a square with sides parallel to the coordinate axes. Let us prove 
this assertion. Almost every point of a set of positive measure is a density point 
(see [111]). Let Po E Q be such a point. Then, there exists a square A centered at 

Po with sides parallel to the coordinate axes such that CT (A n Q) > ~CT (A) (CT is the 

Lebesgue measure on the plane) and hence CT(A \Q) < ~CT(A). Divide A into four 

equal squares by lines passing through p0 and parallel to the axes. We obtain the 
squares Ai, ... , A4 with centers p1, ... ,p4. Let Ao be another square congruent 
to Ai, i = 1, ... , 4, and having sides parallel to the coordinate axes. Denote its 
center by Q. Translate the squares Ai, i = 1, ... , 4, so that they coincide with the 
square Ao. Call a point in Ao "bad" if it corresponds to at least one point from 



88 2. APPROXIMATION BY SUMS rp(x) + 1/J(y) 

4 

LJ (Ai\ Q). The area a of all "bad" points satisfies 
i=l 

4 1 a ~ La {Ai \Q) = a{A \Q) < 4a(A) = a {Ao) . 
1 

So, there are points in Ao that are not "bad". Let b E Ao be such a point. Then 
its preimages bi in Ai, i = 1, ... , 4, belong to Q. Each point bi is obtained from 
the center Pi of the square Ai by translating it by the same vector ab. Therefore, 
b1, ... , b4 are vertices of the required square. 

This argument is due to V. A. Medvedev, who also has observed an even more 
general curious geometric fact. For an arbitrary finite set of points E in the plane 
we can find in a set Q of positive area a subset e C Q that is obtained from E by 
a dilation and translation. Thus, in particular, Q contains closed lightning bolts of 
any given form. 

(c) Let Q be a closed Jordan curve. By Shnirel'man's theorem [120a] there 
exists a square with vertices on Q. If the sides of such a square are parallel to 
the coordinate axes, then D =/:- C(Q). The natural question of whether always 
D = {'t'(x) +1/!(y)} is not dense in C(Q) has a negative answer {cf. Example 2.lOc). 

{d) Let Q be a compact in IR2 without interior. Can one find functions 't11(P) E 
C(Q) and 't12{p) E C(Q) so that the subspace 

{rt' o 't11(p) + 1/1o1/12(p)}, rt' EC ('t11(Q)), 1/1 EC ('t12(Q)) 

is everywhere dense in C(Q)? If Q is a totally disconnected set, then there exists a 
simple Jordan arc r such that r :J Q. Let x = x(t), y = y(t) be the equation of that 
arc. Then on r, and therefore on Q, t = 't'i{p), p = (x,y), is a continuous function 
that is injective on Q. Then every J(p) E C(Q) can be written as rt' o 't'i{p), and 
hence {rt' o 't'l (p)} = C( Q). In general, though, the answer to the above question is 
unknown. 

In conclusion, let us prove the following striking result. 

THEOREM 4.29. Let N = 2. If BD = B(Q), then BD = B(Q). 

PROOF. There are no closed lightning bolts in Q, since for any such bolt f, 
we have re E D1-. Therefore, all finite lightning bolts are irreducible and any two 
points in Q can be joined by at most one lightning bolt. For every equivalence 
class E E Q / R, mark and fix a starting point pf. A point p, as in the proof of 
Theorem 8.1 in Section 1 of Chapter 1, is called a point of rank n if the lightning 
bolt joining p with the starting point pf has length n. Denote by Qi the set of 
all points in Q whose rank is odd, and by Q2 the set of points of even rank. Then 
Q1 n Q2 = 0 and Qi U Q2 = Q. In view of Theorem 1.5 we need to show that the 
lengths of all lightning bolts are bounded by a number that does not depend on the 
particular lightning bolt. If it is false, then for any natural integer n there exists a 
lightning bolt fp1, P2, ... , Pn], where P1 = pf for some E E Q / R. Define a function 

F(p) = 1, p E Qi, F(p) = -1, p E Q2. 

Since BD = B(Q), there exists a function f(p) satisfying 

f(p) = 91 ° 7r1 (p) + 92 0 7r(p), 91 E B(X), 92 E B(Y), 
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and such that 

(4.39) 
1 

f(p) > 2 for p E Qi, 

( 4.40) 

Assume, for example, that in our lightning bolt p1R1P2· Then, 

etc. From ( 4.39) we obtain 

h1 (p1) = f (p1) - h2 {p1); 
h2 (p2) = f (p2) - h1 {p2) = f (p2) - f (p1) + h2 {p1); 
h1 {p3) = f {p3) - h2 {pa) = f (pa) - f (p2) + f (p1) - h2 {pi); 
h2 {p4) = f {p4) - h1 {p4) = f {p4) - f {p3) + f (p2) - f {p1) + h2 (P1) ; 

and so on. Therefore, for 2k ~ n, we have: 

h2 (p2k) = f (p2k) - f (p2k-1) + f (P2k-2) - · · · - f {p1) + h2 {p1), 
h2 {pi) - h2 (p2k) = f (p1) - f (p2) + f (pa) - · · · - f (P2k). 

From this and ( 4.40) it follows that 
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which contradicts the boundedness of h2 • Hence, the lengths of lightning bolts in 
Qare uniformly bounded. Also, Q contains no closed lightning bolts. Theorem 1.5 
shows that BD = B(Q). 

Theorem 4.29 is due to V. A. Medvedev {unpublished). 

§5. Relation to the theory of functional equations 

Let's show some applications of the above theory to the study of functional 
equations. This possibility was discovered by Buck [26-28] and stimulated the 
study of the above problems. The main results presented in §§1-4 had not yet been 
discovered at that time. 

Let k(x), f3(x) and u(x) belong to C[O, 1], and let f3(x) : [O, 1] -+ [O, 1]. Consider 
a functional equation 

(5.1) i,o(x) - k(x)i,o (f3(x)) = u(x) 

with an unknown function <p E C[O, 1]. The equation (5.1) has been studied by 
many authors. A survey of results can be found in [90a]. The case llkll < 1 is 
simple, since one can use the principle of contracting mappings. Our theory relates 
to the case k = 1. Following [26], consider a more general situation. 
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Let X and Y be compact spaces and /30 ( x), ... , f3n ( x) be continuous mappings 
of X into Y. Given functions uk(x) E C(X), k = 1, ... , n, we look for a function 
cp E C(Y) satisfying a system of functional equations: 

cp (/3o(x)) - cp (/31 (x)) = u1 (x); 
(5.2) 

<p (/3n-1(x)) - <p (/3n(x)) = Un(x). 

A necessary condition for solvability. Set 

(5.3) ri,j = {x : 'Pi(x) = <pj(x)}, 0 $ i < j $ n. 

LEMMA 5.1. In order that the system (5.2) have a solution it is necessary and 
sufficient that the right-hand sides of (5.2) satisfy the following relations: 

Uk = 0 for X E rk-1,m k = 1, ... , n 

Uk(X) + · · · + Um(X) = 0 for X Er n-1,m> 1 $ k $ m $ n. 
(5.4) 

PROOF. From the k-th equation in (5.2) we obtain that uk(x) = 0 at those 
points where f3k-1(x) = f3k(x). Adding equations with indices from k tom, we 
obtain 

cp (/3k-1(x)) - cp (/3m(x)) = Uk(x) + · · · + Um(x), 
which implies all of the relations (5.3). 

Approximate solutions. We shall say that the system (5.2) has an approx
imate solution if for every e > 0 there exists cp E C(Y) such that 

(5.5) k = 1, ... ,n. 

If we can take e = 0, then cp is an ordinary, exact solution. 

Buck's Theorem. In the space Xx Y consider graphs of the mappings f3k(x) 
by setting 

(5.6) k = 0, 1, ... , n; Q = Qo U · · · U Qn. 

THEOREM 5.2. In order that the system (5.2) have a solution for arbitrary 
right-hand sides u1 (x), ... , un(x) that satisfy (5.4), it is necessary and sufficient 
that D(Q) = C(Q). In order that the system (5.2) with arbitrary right-hand sides 
uk(x) satisfying (5.4) have an approximate solution, it is necessary and sufficient 
that D(Q) be everywhere dense in C(Q) (i.e., D(Q) = C(Q)). 

PROOF. Let ui(x), ... ,un(x) belong to C(X) and satisfy (5.4). Define a func
tion F on Q by setting 

(5.7) ( ) { 
0, x E Qo 

F x,y = k 
- Li Uj(x), x E Qk, 1 $ k $ n. 

(5.4) guarantees that F(x, y) is well-defined on Q and is continuous. 
Suppose that D(Q) is everywhere dense in C(Q). Then, for every e > 0 there 

exists f(x, y) = A(x) + B(y) so that 

(5.8) llF-fllQ <e. 
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Hence, 

llA(x) + B (.Bo(x)) - Oii ::::; c:, 

llA(x) + B (.B1(x)) + u1(x)ll::::; c:, 

llA(x) + B (f3k(x)) + ~ Uj(x)ll ::::; c:, 1::::; k::::; n. 

(5.9) 

From the first two inequalities in (5.9) we obtain 

llB (.Bo(x)) - B (/31 (x)) - u1 (x)ll ::::; 2c:. 

Similarly, from the k-th and (k - 1)-st inequalities it follows that 

llB (.Bk-1(x)) - B (.Bk(x)) - uk(x)ll::::; 2c:. 

Therefore, the function B(y) E C(Y) is an approximate solution of the system 
(5.2). If D(Q) = C(Q), then taking c: = 0 we obtain as before that B(y) is an exact 
solution of (5.2). 

Let us now assume that the system (5.2) has an approximate solution. We need 
to show that D(Q) = C(Q). Suppose there is a function F(x, y) E C(Q) defined 
on Q. Set 

(5.10) 

A straightforward calculation yields that all such uk(x) satisfy conditions (5.4). Let 
cp(y) be an approximate solution of the system (5.2). Consider the function 

(5.11) f(x, y) = f (x, /3o(x)) - cp (.Bo(x)) + cp(y) E D(Q). 

On Qo, we have 
f(x, y) = f (x, .Bo(x)) = F(x, y). 

On Qi, using (5.10), we have 

Hence, 

(5.12) 

f (x, y) = f (x, .81 (x)) = F (x, .Bo(x)) - cp (.Bo(x)) + cp (.81 (x)) 
=F (x,.Bo(x)) - u1 (x) - [cp (/3o(x)) - cp (/31 (x)) - u1 (x)] 

=F (x, /31 (x)) - [cp (.Bo(x)) - cp (.81 (x)) - u1 (x)] . 

In general, for 1 ::::; k::::; n we have on Qk 

f(x, y) =F (x, .Bo(x)) - cp (.Bo(x)) + cp (.Bk(x)) = [F (x, f3o(x)) - F (x,f31(x))] 

+ [F(x,.B1(x))-F(x,.B2(x))] + · · · + [F(x,.Bk-1(x))-F(x,.Bk(x))] 
+ F (x, .Bk(x)) - [cp (.Bo(x)) - cp (.81 (x))] - [cp (.81 (x)) - cp (f32(x))] 

- · · · - [cp (f3k-1 (x)) - cp (f3k(x))] = u1 (x) + · · · + uk(x) + F (x, .Bk(x)) 
- [cp (.Bo(x)) - cp (.81 (x))] - · · · - [cp (.Bk-1 (x)) - cp (.Bk(x))] . 

From the latter we obtain 

II/ - FllQk =II/ (x, .Bk(x)) - F (x, f3k(x))ll 

(5.13) k 

::::; L llcp(.B3-1(x)) - cp ({33(x)) - u3(x)ll <kc:. 
1 
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From (5.11)-(5.13) we obtain that D(Q) = C(Q). If the system (5.2) had an exact 
solution cp(y), then performing the same calculations with e = 0, we would show 
that D(Q) = C(Q). The proof is complete. 

A special case. 

COROLLARY 5.3 [26). Let p(x) be an increasing continuous function on [O, 1], 
/3(0) = 0, /3(1) = 1, and 0 < fi(x) < x for 0 < x < 1. The functional equation 

(5.14) cp(x) - cp (fi(x)) = u(x) 

with an arbitrary u(x) E C[O, 1) has an approximate solution satisfying u(O) 
u(l) = 0. 

PROOF. In our case, /3o(x) = x, /31(x) = fi(x), and ro,1 = {O, 1}. Therefore, 
the necessary requirements (5.4) are reduced to u(O) = u(l) = O. The set Q is a 
union of graphs Qo: y = x and Qi : y = fi(x). Since Q contains lightning bolts with 
an arbitrarily large number of vertices, Theorem 2.2 yields that D(Q) is not closed 
and so D(Q) -:f:. C(Q). Yet, D(Q)l. = {O} (cf. Example 2.lO(c)) and, accordingly, 
D(Q) = C(Q). Therefore, equation (5.14) need not have an exact solution for all 
u(x) satisfying the necessary requirements u(l) = u(O) = O; nevertheless, for any 
such u(x) there exists an approximate solution. 

Note that in [26), due to the lack of criteria needed to make direct statements 
concerning the place of D(Q) inside C(Q), the conclusions were presented in the 
reverse order: first, by some special means, it was shown that (5.4) has an approx
imate solution, and from that the conclusions about D( Q) were derived: 

An application to the moment problem. 

COROLLARY 5.4 [26). Let fi(x) be the same as in Corollary 5.3. If for a Borel, 
real-valued measureµ on [O, 1] we have 

(5.15) 11 
[xn - (fi(x)t] dµ = 0, n= 1,2, ... , 

then Sµ = {O, 1}. In particular, if µn = f0
1 xndµ, then µi = µ2 = · · ·. 

PROOF. By the Weierstrass approximation theorem, (5.15) implies that for 

any cp(x) E C[O, 1] we must have 11 
[cp(x) - cp (fi(x))] dµ = 0. But the equation 

(5.14) has an approximate solution for all u(x) such that u(l) = u(O) = O. For any 
v(x) E C ([O, 1]), the function u(x) = x(x - l)v(x) satisfies u(O) = u(l) = O. Hence 
dµ1 = x(x - l)dµ = 0, and therefore µ can only have atoms at x = 0 and x = 1. 

§6. Chebyshev-like problems for the best approximation 
of a function of two variables by sums cp(x) + 1/J(y) 

Chebyshev's ideas in the theory of best approximation. By Cheby
shev's ideas in the theory of best approximation, we generally understand (cf., e.g., 
[2]) the study of characteristic properties of functions that give the best approxima
tion, problems of their uniqueness, relations to other extremal problems (duality), 
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methods of calculating or estimating the quantity of the best approximation, and 
algorithms allowing one to construct functions giving the best approximation. Ques
tions concerning existence of the best approximation should not, strictly speaking, 
be included into the circle of "Chebyshev's ideas", since P.L. Chebyshev did not 
himself consider such questions (in relation to polynomials or rational functions), 
taking existence of functions giving the best approximation for granted. However, 
in the case of infinite-dimensional subspaces the question is non-trivial. In this 
section we add a few existence results to those of §3. The following section deals 
with algorithms. 

Chebyshev's Theorem (79). Let X, Y, and Q be compact spaces, Q C 
X x Y, and let 71"1 and 7r2 be natural projections from X x Y onto X and Y, 
respectively. Then D = D(Q) is the subspace in C(Q) that consists of functions 
cp(x) + 'lf;(y), cp(x) E C(X), 'lf;(y) E C(Y). For an arbitrary f E C(Q), set 

(6.1) E(f) =dist(!, D) = rpEi2fx) 11/(p) - cp(x) -1/J(y)llQ, p = (x, y) E Q. 
1/IEC(Y) 

So, we are considering the best approximation of f (p) by functions from the 
subspace D. Functions cp*(x) + 1/J*(y) E D(Q) realizing the inf in (6.1) are called 
best approximations off in D(Q). (We assume that at least one such function 
exists.) In §2, while studying properties of the subspace D, we considered in passing 
simpler problems of approximation of f(x, y) by functions of only one variable
problems (2.2)-(2.12), (2.17), (2.21). 

THEOREM 6.1. In order that the sum cp*(x) + 1/J*(y) E D(Q) give the best 
approximation of f(x, y) E C(Q) among all functions in D(Q), it is necessary and 
sufficient that there exist a lightning bolt l C Q with the following properties: 

1. l is either closed or infinite. 
2. At the vertices of l the expression f(x, y) - cp*(x) -1/J*(y) assumes values 

±M, where M =II/ - cp* -1/J*ll and, moreover, the signs at the neighboring 
points are opposite. 

Thus, in our problem of the best approximation, which is quite distant from 
approximation by polynomials, the celebrated Chebyshev alternation appears in a 
peculiar but clear form. 

Before giving a proof of the theorem, let us recall the general criterion for 
the best approximation (cf., e.g., (120)) of real-valued, continuous functions on a 
compact Qin the space C(Q). 

THEOREM 6.2. Let E be a subspace in C(Q). In order that ~*(p) EE be the 
function of the best approximation to a given function f(p) E C(Q), it is necessary 
and sufficient that there exist a Borel real-valued measureµ* E El.. such that 

11µ*11=lldµ*I=1, µ* = µ*+ - µ*-, 

f(P) = ~*(P) = M, p ES(µ*+), 
(6.2) 

f(p) - ~*(p) = -M, p Es(µ*-)' M =II/ - ~*II· 

Here, as usual, µ*+ and µ*- are components in the Jordan decomposition ofµ*, 
S (µ*+)and S (µ*-)are their closed supports, 11µ*11 is the total variation ofµ*. For 
µ*one can take any measure for which the supremum in the duality relation (4.11) 
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is attained and which is normalized by the condition l f dµ* > O. In addition, any 

charge µ*, realizing the above-mentioned supremum, characterizes via (6.2) any 
function 4>* of the best approximation. 

We shall need a lemma that is closely related to Lemma 4.18, but is much 
easier. 

LEMMA 6.3. Let a measure µ E D( Q)l., and let µ = µ+ - µ- be its Jordan 
decomposition. If S(µ+) and S(µ-) do not overlap, then S(µ) contains either a 
closed lightning bolt f, or an infinite one. In addition, the vertices of f, with odd 
numbers are in S(µ+), while those with even numbers are in S(µ-). 

PROOF. Let p1 E S (µ*). Consider all neighborhoods G of p1. For every 
neighborhood G, according to Lemma 4.1, we have 

µ (7r11 o7r1(G)) = 0. 

Therefore, in 7r 1 1 o 11"1 ( G) there must exist a point qc E S (µ-) and a point PG E G, 
such that 71"1 (pc) = 11"1 (qa). The set of all neighborhoods {G} is a directed set, 
while the net of points {pc} -+ p1. From the net { qc} we can choose a subnet 
fae} that converges to a point P2 E S (µ-), so P2 -:/:- Pl· We have 11"1 (p2) = 
lim7r1 (qp) = lim7r1 (pp) = lim7r1 (pc) = 7r1 (p1). Similarly, starting with P2 and 
using the projection 11"2 we construct a point p3 E S (µ+)for which 7r2 (p2) = 11"2 (p3), 
etc. Either the resulting lightning bolt [pi,p2,p3 ... ] closes down at a certain step, 
or it is infinite. 

PROOF OF THEOREM 6.1. Necessity. Let cp*(x) + 1/J*(y) be the best approxi
mation to f andµ* be a charge characterizing it as in Theorem 6.2. According to 
Theorem 6.2, S(µ*+) is contained in a set where f - cp* -1/J* = M while S(µ*-) 
is contained in one where f - cp* -1/J* = -M. Hence, S (µ*+) and S (µ*-) do 
not overlap and in S (µ*) there exists a lightning bolt f, satisfying the required 
properties. 

Sufficiency. First, let f, = [pi, ... , Pn] be a closed lightning bolt satisfying 
all the properties listed in the theorem ( n, then, is an even number). Define a 
functional rt by the formula (4.6) (rt E Dl. according to Lemma 4.5). Clearly, for 
the measure µ* = rt defining the functional all relations (6.2) are satisfied. (For 
the sake of definiteness, we assume that (/* - cp* -1/J*) (p1) = M.) Now let the 
lightning bolt f, = [pi, ... ,pn, ... ] be infinite. Define a sequence of functionals 
{rf }, n = 1, 2, ... , as in Lemma 4.5. Then 

1 dr£+ -+ ~, h dr;- -+ ~. 

We can assume that the sequence { r;+} converges weak ( *) to a measure µ+ while 
{ r;-} converges weak ( *) to a measure µ- and, in addition, 

According to Lemma 4.5, the functionalµ* defined by the measureµ*=µ+ - µ
belongs to the annihilator Dl.. The closed support S (µ+) ofµ+ belongs to the 
set of limit points for the set of vertices of the lightning bolt with odd numbers 
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(again, for the sake of definiteness, we suppose that (f - ip* - 'l/J*) (p1) = M, while 
S (µ-) is situated in the set of limit points for the set of vertices with even indices). 
Therefore, it is clear that at the points of S (µ*) the values of f - ip* - 'l/J* equal 
M while at points of S (µ-) the values off - ip* - 'l/J* equal -M (in particular, 
S (µ+)and S (µ-) do not overlap and henceµ+ - µ- is the Jordan decomposition 
forµ* ). The proof is now complete since all the requirements of (6.2) are fulfilled 
(11µ*11 = J Q dµ+ +IQ dµ- = 1). 

Levelling of a function. A function f ( x, y) given on Q C X x Y is said to 
be levelled with respect to y if 

(6.3) supf(x,y) =-inf f(x,y) for all x EX, 
y y 

and levelled with respect to x if 

(6.4) sup f(x, y) =-inf f(x, y) for ally E Y. 
x x 

If f(x, y) is levelled with respect to both variables, we shall simply call it levelled. 

COROLLARY 6.4. If f(x, y) E C( Q) is levelled, then E(f) = 11111. 

Indeed, let P1 be a point where f (p1) = II/II. Since f is levelled there exists 
a point P2 such that 7l'1(p1) = 11'1 (p2), f (p2) = -11/11. Again, since f is levelled, 
there exists a point pg such that f (pg) = II/II, 11'2 (p2) = 11'2 (pg), etc. We obtain 
a lightning bolt [p1,p2,pg, ... ] with all the properties as required by Theorem 6.1. 
So, if for some f E C(Q) we choose a function ip*(x) + 'l/J*(y) c D(Q) so that 
f - ip* - 'l/J* is a levelled function, then ip*(x) + 'l/J*(y) is the best approximation of 
fin D(Q). 

There exists a simple algorithm that allows us, for a given function f, to con
struct a levelled function f(x, y) - ip*(x) - 'l/J*(y). It is given in §7. If f(x, y) -
ip*(x) - 'l/J*(y) is a levelled function, then ip*(x) + 'l/J*(y) is not merely the best 
approximation to f but, in a certain sense, "the best of the best" approximations. 
This, too, is discussed below. 

Realization of either one of two situations in the Chebyshev crite
rion. Both possibilities mentioned in Theorem 6.1, the case of a closed lightning 
bolt and that of a bolt containing infinitely many links, may indeed occur. As 
to closed lightning bolts, this is obvious. To construct an example for which the 
second possibility occurs is more difficult, since the lengths of links of a polygonal 
path cannot tend to zero; indeed, at the end-points of each link the expression 
f - ip* - 'l/J* assumes values of opposite sign but equal modulus. 

The first example of such a phenomenon was constructed in the author's paper 
(79]. Below we shall present that and other similar constructions. However, first 
let us establish a simple sufficient criterion for existence of a closed lightning bolt 
satisfying the properties of Theorem 6.1. 

PROPOSITION 6.5. Let i = [pi,p2 ... ] be an infinite lightning bolt from Theo
rem 6.1, yet the set of its vertices has only finitely many limit points. In that case, 
there exists a closed lightning bolt L = (qi, ... , q2m] such that f (qi) - ip* (qi) -
'l/J* (qi)= (-l)i-lE(J). 
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PROOF. Consider the measure µ* obtained in the proof of Theorem 6.1 for the 
case of an infinite lightning bolt. Clearly, the closed support ofµ* belongs to the 
set of the limit points for the collection of vertices of the lightning bolt£. Starting 
with a point q1 E S (µ*+) and repeating the construction in the proof of necessity 
in Lemma 6.3 and Theorem 6.1, we necessarily arrive at a closed lightning bolt 
because S (µ*) is a finite set. 

EXAMPLES. (All constructions are in IR.2.) 

EXAMPLE 6.6. We need to construct two disjoint closed sets iJ.>1 and il>2 with 
the following properties: 

(a) iJ.>1 and il>2 have equal projections on the coordinate axes; 
(b) any lightning bolt whose vertices lie in il>1 and il>2 so that two neighboring 

vertices (along the bolt) cannot belong to the same set, has infinitely many 
links (cannot be closed). 

The fact that projections of iJ.>1 and iJ.>2 on the coordinate axes are equal provides 
existence of a lightning bolt with vertices in il>1 and il>2 and the alteration described 
above (we can start the lightning bolt at any point in il>1 or il>2). 

CONSTRUCTION OF AN EXAMPLE. We shall approach the desired set iJ.> = 
iJ.>1 U iJ.>2 in several steps. At the first step consider the main rectangle U1 with 
vertices A}, A~, A~, Al (with sides parallel to the coordinate axes and, in addition, 
the side A} A~ parallel to Ox). At the second step we construct the lightning bolt 
U2 with eight vertices A~, i = 1, ... , 8, as follows. Surround points Al, A~, A~, Al 
by disjoint small neighborhoods st, ... , Sl that we assume to be closed. Taking in 
st a point A~, issue from it a line parallel to Ox until we arrive at S:}. Taking for 
A~ one of the points of intersection of our line with S:}, issue from A~ a line parallel 
to Oy until the intersection with S§. In SJ choose vertex A~ as before. From A~ 
issue a link parallel to Ox until the intersection with Sl, where we choose vertex 
A~, but so that the line A~A~ is not parallel to Oy. From A~ issue a link parallel 
to Oy until the intersection with Sl, where we choose a vertex A~ and then repeat 
circuiting the main rectangle U1 constructing vertices A~, A~, and A~, the latter so 
that the vertical link A~A~ closes the lightning bolt. During the construction we 
also watch for all the links of U1 and U2 to run along different lines. Surround the 
points A~, i = 1, ... , 8, by disjoint closed neighborhoods SJ, i = 1, ... , 8, every 
one of them lying in a corresponding neighborhood Sf, and construct a lightning 
bolt Ua with sixteen vertices by a process similar to that used for U2. 

Suppose at the k-th step we have constructed a closed lightning bolt Uk with 
the vertices A~, ... , A~k (the number of vertices Vk = 4 · 2k-l). Surround the 
point Af, i = 1, ... , vk, by disjoint neighborhoods Sf, every one of which lies 
in a corresponding neighborhood s:-1 that appeared at a previous step of the 
construction. Then, to construct Uk+l with the number of vertices 4 · 2k we proceed 
as follows. Choose a vertex A~+l in Sf and run from it a link parallel to the link 
A~A~ (i.e., parallel to the Ox-axis) till the intersection with S~. Choose a vertex 
A~+i in S~. Then, from A~+i run a link parallel to A~A~ and choose a vertex A~+i 
ins~. etc. Choose a vertex A:~L1 in s:.2k-l such that the segment A:~L1A~+l 
is not parallel to the link A!.2k_ 1 A~ (i.e., the Oy-axis). From AgL1 run a link 
parallel to Oy and the next vertex A:~L 1 chosen in Sf. Starting with A:~Li+i• 
repeat circuiting the lightning bolt Uk along links parallel to the corresponding 
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links of Uk. Choose a vertex A:~t in S!.2k-1 so that the link A:~tA~+1 would 
close Uk+l · While constructing all the links of Uk+l we also secure that all the 
links of all the lightning bolts U1, ... , Uk+i belong to different lines. This allows us 
to choose at the k-th step neighborhoods Sf, ... , S!.2k-i so small that any closed 
lightning bolt whose vertices we only allowed to belong to the set Sf U · · · U S!.2k-i 

would have at least vk (vk = 4 · 2k-l) vertices. It is clear that such a choice of 
neighborhoods Sf, ... , S~k is always possible. 

Continue the process of constructing the lightning bolts Uk indefinitely. Thus, 
we have constructed a sequence of closed lightning bolts Ui, ... , Uk, .... Set Sk = 

k 00 

LJ Sf, <P = n Sk. Obviously, <P is a closed set since all the neighborhoods Sf are 
i=l k=l 
closed. Denote by <P1 the part of <P that belongs to Sf U S~, and by <P2 the part 
that belongs to Sf U SJ. Let us show that <P1 and <P2 have the same projections 
on the coordinate axes. (As was mentioned above, this would show the existence 
of lightning bolts whose vertices alternate between <P1 and <P2.) Let A E <P1. 
For definiteness, assume that A E SJ. There exists a sequence of closed spheres 
Sf :::> Sf2 :::> Sf3 :::> • • • of decreasing ranks shrinking to the point A. By our 
construction the sequence SJ :::> Sf2+1 :::> Sf3 +1 :::> ••• shrinks to a point B E <P2 
having the same ordinate as A. Similarly, we can show the existence of a point 
C E <P2 that has the same abscissa as A. It remains to show that there are no 
closed lightning bolts whose vertices alternate between <P1 and <P2. 

Again, let A be a point in <P; without loss of generality, assume again that 
it belongs to Sf. Let us show that every lightning bolt starting at A and having 
its vertices alternate between <P1 and <P2 cannot close and, therefore, must contain 
infinitely many links. Consider the neighborhoods Sf, ... , S!.2k-1 constructed at 
the k-th step of our procedure. The set <P belongs to the sum of those neighborhoods 
and has a nonempty intersection with every one of them. Assume that a lightning 
bolt starting at A is closed. Then its vertices, while belonging to <P must also 
belong to Sk = Sf U · · · U S!.2k-i and, in view of the property of neighborhoods Sf 
mentioned above, the number of those vertices cannot be less than 4 · 2k-l. Since 
this holds for all k and 4 · 2k-l --+ oo, our lightning bolt cannot be closed. 

Now, taking a large rectangle F :::> <P, construct a function f E C(F) such that 

{ 
1, (x, y) E <Pi, 

f(x,y) = -1, (x,y) E <P2, 

If (x, y) I < 1, (x, y) E F\ <P. 

From Theorem 6.1 and the properties of the set <Pit follows that E(l) = 1 and the 
best approximation is given by the function cp*(x) + 1/J*(y) = 0, so the lightning 
bolt mentioned in Theorem 6.1 is infinite. 

Let us give another construction of such an example (100). 

EXAMPLE 6.7. Construct <P as a set-theoretic limit of compact sets <Pn. The 
set <P1 consists of four segments Li, L2, £3, £4 that form a 45° angle with the 
x-axis and are such that 7r1 (£1) = 7r1 (£2), 7r1 (£3) = 7r1 (£4), 7r2 (£1) = 7r2 (£4), 
7r2 (£2) = 7r2 (£3). To obtain <Pn from <Pn-i. turn <;me of the segments in <Pn-1 by 
90°. Having done that, remove from all the segments (including the one turned) 
the middle third. Clearly, <Pn consists of 4 · 2n-l linear segments, and it is easy to 
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check that the equivalence class (with respect to R) of every point in q>n consists of 
4 · 2n-l points, one on each segment. The rest follows as in the previous example. 

On q> we can define a measure µ "#- 0, µ E D(¢).L. For that we construct 
measures µn on linear segments that are contained in q>n by starting with the 
linear measure on those segments normalized so that llµnll = 1, choosing a positive 
sign for µn on those segments that came from L1 and L3 by our process, and 
a negative sign for those that arose from L2 and L4. Unlike in the situation in 
Proposition 6.4, here S(µ) consists of infinitely many points and does not contain 
a closed lightning bolt. 

I want to note that in 1969 when I presented Example 6.6 at Professor B. S. 
Mityagin's seminar, he suggested a modification that essentially coincides with 
Example 6.7. 

The following result further "regularizes" construction of examples similar 
to 6.6 and 6.7. It is plausible that it has been inspired by Buck's arguments pre
sented in §5. 

PROPOSITION 6.8 (61]. Let TC X be a compact set for which there exists a 
homeomorphism h : T 1--+ T such that no power of it (in the sense of superpositions) 
has fixed points. Let the function f(x, y) E C(X x Y) be such that II/II = 1 and 

f(x,x) = 1, x ET; 

(6.5) f (x, h(x)) = -1, x ET; 

lf(x, y)I < 1, elsewhere. 

Then, there is no lightning bolt i for which Ire(!)! = 1. 

PROOF. Let Q1 = {(x,x),xET}, Q2 = {(x,h(x)),xET}. Clearly, Q1 and 
Q2 are compact and Q1 n Q2 = 0 since h does not have fixed points. Construct 
a lightning bolt i = (pi,p2,p3,. .. ] such that P2i-l E Qi, P2i E Q2, 71'1 (p2i-1) = 
71'1 (p2i), 71'2 (P2i) = 71'2 (p2i-1). i is infinite, since no power of h has fixed points. We 
have f (pi) = (-l)i-l; hence, according to Theorem 6.1, E(f) = 1, i.e., ip*(x) + 
,,P*(y) = 0 gives the best approximation to f. Any lightning bolt L for which 
lrL(f)I = 1 must start either at a point in Q1 or at a point in Q2 and have its 
vertices in Q1 and Q2, whereas no two neighboring vertices can belong to the same 
of these two sets. Hence L must be infinite. 

EXAMPLE 6.9 (61]. Let T be the Cantor ternary set in X = (0, 1]. Let x ET, 
x "#- 1. Then, 

00 

x = Lti3-i, ti E {O, 2}. 
i=l 

Let tn be the first 0 among ti, t2, .... Set 

n-1 oo 

h(x) = L (2 - ti) a-i + Ltia-i, h(l) = o. 
i=l n 

Then all powers of the homeomorphism h have no fixed points. 

Proposition 6.8 and Example 6.9 also show that the assumption concerning 
closedness of R-equivalence classes in Theorem 4.17 was essential. Indeed, consider 
the restriction of a function fin (6.5) to the set Q = Q1 UQ2. <p* +'l/J* = 0 will again 
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be the best approximation to f on Q. Hence, the subspace D(Q) is not everywhere 
dense in C(Q). At the same time, Q does not contain any closed lightning bolts. 

An addition to the duality theorem. We can now prove Corollary 4.26, 
but with an essential extra assumption: existence of the best approximation cp* ( x) + 
1/;* (y) for f. Indeed, in view of Lemma 4.5, it is obvious that the left side in ( 4.37) is 
not larger than the right side. On the other hand, if f, is the lightning bolt described 
in Criterion 6.1, then 

lrt(f)I = M =II! - cp* -1/J*ll = E(f). 

The following theorem of de la Vallee-Poussin concerning an estimate from below 
of the best approximation (cf., e.g., [2]) plays a useful role in the theory of the best 
polynomial approximation. For our problem there is an analogue of that result. 

THEOREM 6.10 [79]. Let the difference f(x,y)-cp(x)-1/;(y) assume the values 
ai, -a2, a3, ... at the vertices pi,p2,p3, ... of a lightning bolt£, where ai > 0 (and 
hence, signs at the neighboring vertices alternate) while f, is either closed or infinite. 
Then, 

(6.6) E(f) ~ inf ai. 

PROOF. Set a= infai. By (4.6)-(4.7) and Lemma 4.5 we have 

-1 
lrt(f)I = lrt(f- cp -1/J)I ~ lim- [a1 +···+an] ~a. 

n n 

Now apply the duality theorem. 

AN EXAMPLE OF THE CHEBYSHEV CRITERION IN ACTION. Let us give a non
trivial example when Theorem 6.1 does apply. 

PROPOSITION 6.11 [79]. Let Q be a rectangle in IR2 : Q = [0, a] x [0, b], and 
f(x, y) E C(Q). Set 

(6.7) g(x,y) = f(x,y)- f(x,0)- f(O,y) + f(O,O) 

and suppose that for any fixed Y1 and y2, ll :5 Y2 < Y1 :5 b, we have 

(6.8) g(x,y1)-g(x,y2) ~ 0, 0 :5 x :5 a, 

and attains its maximum at one and the same value xo. Then, 

(6.9) 
1 

E(f) = 4 [/ (xo, b) - f (xo, 0) - f(O, b) + f(O, O)]. 

PROOF. Clearly, E(f) = E(g). Moreover, we have 

g(O, y) = 0, g(x, 0) = 0, 0 :5 x :5 a, 0 :5 y :5 b. 

In view of (6.8) this implies that, for all x and y, g(x, y) ~ 0. Set 

A= g (xo, b) = [/ (xo, b) - f (xo, 0) - f(O, b) + f(O, O)]. 

Consider the function 
1 

h(x, y) = g(x, y) - 29 (xo, y) 
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for which E(h) = E(g) = E(f). For all admissible x and Y1 > Y2, we have 

1 
h (x, Y1) - h (x, Y2) = g (x, Y1) - g (x, Y2) - 2 (g (xo, Y1) - 9 (xo, Y2)] 

So, 

Set 

1 1 
5,g (xo, Y1) - g (xo, Y2) - 2 [g (xo, Y1) - g (xo, Y2)] = 2 [g (xo, Y1) - g (xo, Y2)] 

1 1 A 5:2 [g (xo, b) - g (xo, O)] = 2o (xo, b) = 2' 

k(x) = ~ [s~p h(x, y) + i~f h(x, y)] , 

m(x, y) = h(x, y) - k(x). 

We have E(m) = E(h) = E(f). For all x we have • 

s~plm(x,y)l 5: ~ [s~ph(x,y)-i~fh(x,y)] 5: ~· 

Hence 

On the other hand, 

1 
h(O, 0) = 0, h(O, y) = -2g (xo, y), 

1 
h (xo, 0) = 0, h (xo, y) = 29 (xo, y), 

1 A 
h(O, b) = - 2g (xo, b) = - 2 , 

1 A 
h (xo, b) = 29 (xo, b) = 2 , 

A A 
k(O) = - 4 , m(O,O) = 4' 

A A 
k(xo) = 4 , m(xo,O) = -4, 

A A A 
m(O,b) = -2 + 4 = -4, 

A A A 
m(xo,b)= 2 - 4 = 4 . 

According to Theorem 6.1, the best approximation to m(x, y) is given by the com
bination 0 + 0, with E(m) = A/4. The proposition is proved. 

COROLLARY 6.12 [116]. If f(x, y) is continuous together with its first and 
second partial derivatives in the rectangle Q and 82 f /8x 8y ~ 0, then 

(6.10) 
1 

E(f) = 4 [f(0,0)- f(O,b) -f(a,O) + f(a,b)]. 
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PROOF. In this case the function g(x,y) defined by (6.7) equals 

where Qxy is the rectangle with vertices (0, 0), (x, 0), (0, y), (x, y). Therefore, g(x, y) 
is increasing with respect to x and y, and all the assumptions of Proposition 6.11 
are satisfied. 

Our goal now is to give a new proof of the existence of a function giving the 
best approximation. For this we must introduce the following elementary operator. 

The levelling operator. Consider a space of bounded, real-valued functions 
v(x) defined on a set EC (-oo, +oo) with the norm llvll = supxEE Jv(x)J. Introduce 
the operator (functional) M by 

(6.11) Mv = -2
1 [sup v(x) + inf v(x)] . 

xEE xEE 

For the function u(x) = v(x) - Mv we have infu(x) = -supu(x), and so we call 
M the levelling operator. 

LEMMA 6.13 (62]. For the operator M the following properties are satisfied: 
1. Monotonicity: 

(6.12) 

2. 

(6.13) 

3. 

(6.14) 

4. 

(6.15) 

u(x) $ v(x) for all x EE:::} Mu$ Mv. 

JMvJ$llvll. 

\ 
llv - Mvll = llvll - llMvll $ llvll. 

Properties 1 and 2 are obvious. To prove (6.14) set 6 = llv1 - v2JJ. Then, 
-6 $ v1(x) - v2(x) $ 6, -6 + v2(x) $ v1(x) $ 6 + v2(x). By monotonicity we 
obtain 

and therefore, -6 $ Mv1 - Mv2 $ 6. To prove (6.15), set a = supv(x), (3 = 

inf v(x). Then Mv = ~(a+ (3), llv - Mvll = ~(a - (3), and llvll = max (a, -(3). 
However, it is easy to check that always 

1 1 2 (a - (3) =max (a, -(3) - 2 Ja + (3J. 



102 2. APPROXIMATION BY SUMS ip(:z:) + 1/J(y) 

Levelling of functions of two variables. Let X, Y, Q C X x Y be arbitrary 
sets; 11'1, 11"2 are natural projections onto X and Y, respectively, and we can assume 
that X = 11'1(Q), Y = 11'2(Q). Similarly to (2.3), (2.18), for a function f(x,y) 
bounded on Q, set 

(6.16) 

M(x) = sup J(x,y), 
y,(:z:,y)EQ 

M(y) = sup f(x, y), 
:z:,(:z:,y)EQ 

m(x) = inf f(x,y), 
y,(:z:,y)EQ 

m(y) = inf f(x, y), 
:z:{:z:,y)EQ 

and define the operators 

1 
Mx(f)(y) = 2 [M(y) + m(y)], 

1 
My(f)(x) = 2 [M(x) + m(x)]. 

(6.17) 

Then, the function f(x, y) - My(f)(x) is levelled with respect toy, while f(x, y) -
Mx(f)(y) is levelled with respect to x. The function My(f)(x) is a solution of 
the problem (2.17) concerning the best approximation of f (x, y) by functions of 
one variable x, and Mx(f)(y) is a solution of a similar problem concerning the best 
approximation off ( x, y) by functions of y. If X, Y are compact spaces, Q = X x Y, 
f E C(Q), then the functions (6.17) solve those problems of best approximation in 
the space C(Q). 

Existence theorem. Let us return to problem (6.1) and give a new proof of 
existence of the best approximation cp*(y) + 1/J*(y) in the case when Q =Xx Y. 
In addition, we shall also obtain an estimate concerning the type of continuity of 
cp* + 1/J* in terms of that of the function being approximated. Fix f E C( Q) and 
define (nonlinear) operators in D 

(6.18) 
AF= Mx(f - F), 
BF= My(f-F). 

From (6.14) it follows immediately that 

(6.19) 
llAF1 -AF21i $ llF1 - F21i 1 

llBF1 - BF21i $ llF1 - F211 · 

Also, define an operator S : D ---+ D as follows: 

(6.20) SF= F+AF+B(F+AF), FED. 

Introduce the following characteristic of the uniform continuity of the function 
f(x,y): 

(6.21) A (xi, Yi. x2, Y2) =sup If (x, Y1) - f (x, Y2)I +sup If (xi. y) - f (x2, y)I 

and define a set K c D by 
(6.22) 

:z: y 

K ={FED: llF - !II $ 11111, IF (xi, Y1) - F (x2, Y2)I $A (xi. Yi. x2, Y2)}. 
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THEOREM 6.14 [91]. K is a non-empty, convex, compact set in C(Q). The 
operator Sis continuous and S(K) c K, so S has fixed points. If Fis a fixed point 
of S in D, then f - F is a levelled function and F is the best approximation of f 
inD. 

Thus, among functions F giving the best approximation off in D, there are 
some for which f - F is a levelled function, and uniform continuity of F satisfies 
the same estimate as that of f. 

PROOF. That K is non-empty is obvious, since 0 E K. It is also easy to check 
that K is convex. The set K of all functions in C(Q) satisfying the inequalities 
in (6.22) is bounded, closed, and equicontinuous; therefore, it is compact in C(Q). 
Since K = KnD and D (e.g., according to Corollary 2.7) is closed, K is compact. 
As follows from (6.19), the operators A and Bare continuous; hence, Sis a contin
uous operator. Let us show that S(K) c K. For FE D we have (applying (6.15) 
twice) 

llf-SFll = llf-F-AF-B(F+AF)ll 

(6.23) = llf-F-AF-My(f-F-AF)ll 

:'.S llf-F-Afll = llf-F-Mx(/-F)ll :'.S 11/-Fll. 

This shows that if F E K, then II/ - SFll :::; II/II. If F = g(x) + h(y), then using 
the definitions of Mx and My we find 

(6.24) 

SF =g+h+Mx(/-g-h) +B(F+AF) 

=g+ h+Mx(/-g)- h+My [f-F-Mx(F-f)] 

=g + Ag+ My [f - g - h + Mx (! - g) + h] 

=g+Ag+My [f-Mx(/-g)J-g = Ag+BAg. 

Let F = g(x) + h(y) and ~(x, y) =SF. Using Lemma 6.13 and (6.24), we obtain 

l~(xi. Y1) - ~(x2, Y2)I 

= l(Ag)(xi. Y1) - (Ag)(x2, Y2) + (BAg)(xi. yi) - (BAg)(x2, Y2)I 

= l(Ag)(yi) - (Ag)(y2) + (BAg)(x1) - (BAg)(x2)I 

:'.S IMx(/ - g)(Y1) - Mx(/ - g)(y2)I 

+ IMy(f - Ag)(x1) - My(/ - Ag)(x2)I 

(6·25) :::; sup I(! - g)(x, Y1) - (! - g)(x, Y2)I 
x 

+sup I(! - Ag)(xi, y) - (! - Ag)(x2, y)I 
y 

=sup lf(x, Y1) - f(x, Y2)I +sup lf(xi. y) - f(x2, y)I 
x y 

= ~(xi, Yi. X2, Y2). 

So, (6.23) and (6.25) show that S(K) c K. Hence, by the Schauder theorem the 
operator S has a fixed point in K. Let F be a fixed point of S in D. Then 

(6.26) AF+ B(F +AF) = 0. 

Since AF is a function of y only while B(F +AF) is a function of x, then AF= C, 
B(F +AF) = -C, where C is a constant. Hence, -C = B(F + C) = BF - C and 
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BF = 0. So, My{! - F) = 0 and the function f - Fis vertically levelled. Also, 
AF= Mx(/ - F) = C. However, we are going to show that C = 0. 

LEMMA 6.15 [91). If Myf = 0 while Mxf = C, then C = 0. 

PROOF. Applying Lemma 6.13, we find that 

11!11 =II! - C - Myf + CJI =JI(!- C) - My{!- C)JI::; II! - CJI 

=II/ - Mxfll = m:x [m:X lfl - IMxfl] = 11/Jl - ICI and C = 0. 

Lemma 6.15 is proved. 

So in the situation described by Theorem 6.14, Mx(/ - F) and hence f - Fis 
a levelled function. But then, according to Corollary 6.4, E(f) = II/ - FJI and F 
is the best approximation to f in D. 

REMARKS 6.16. (a) For the first time, existence of a best approximation with 
the same estimates for continuity as those of the approximated function (defined on 
the rectangle [a, b] x [c, d] C R.2) was proved in the paper of Diliberto and Straus [38] 
by a different method that was, in a sense, more natural and elementary. (We shall 
discuss it in the following section.) Independently, Kolmogorov (see [113]) obtained 
the same result by a method close to the one applied in [38]. In [61] there are some 
results concerning smoothness of the function giving the best approximation in 
terms of the smoothness of the approximated function. 

(b) In the derivation of estimates (6.23) and (6.25), continuity of the function 
g and h has not been used. Hence, if g and h are discontinuous functions, then 
S(g + h) is nevertheless continuous and, in view of (6.23), 

11/-S(g+h)ll::; Jlf-(g+h)ll· 

So, approximation of a continuous function f does not improve if we allow discon
tinuous g and h. This was noted for the first time in [32] by a different reasoning. In 
§2 of Chapter 3 we shall establish a substantial extension of this fact (Theorem 2.4, 
Chapter 3). 

(c) Consider approximation off E B(Q) by a subspace BD (cf. §§2, 3). The 
following statement is true then: if f has the best approximation ip*(x) + 1/J*(y) E 
B D, then among its best approximations there is one 'Pl ( x) + 1/J1 (y) such that 
f - ('Pl + 1/J1) is a vertically levelled function, and similarly, there is a best ap
proximation tp2(x) + 1/J2(y) so that f - (ip2 + </>2) is horizontally levelled .. Indeed, if 
f* = f - (ip* + 1/J*), then the function Ji = f* - Myf* is vertically levelled with 
JI/ill::; llf*ll, according to Lemma 6.13. Similarly, h = f* - Mxf* is horizontally 
levelled with Jlhll::; Jlf*JI. 

Example of deterioration of continuity properties for the best ap
proximation. In the case when Q =j; X x Y, given the existence of the function of 
the best approximation, its continuity properties may be worse than those of the 
function being approximated. 

EXAMPLE 6.17 (113). Q = Qi U Q2 U Q3; Qi = {(x, 1), 1 ::; X::; 2}, Q2 = 
{(x, 2), 1 ::; x ::; 3}, Q3 = {(x, 3), 2 + c:::; x::; 3}, where c: > 0 is given. Assume 
f(x, y) = 0 on Q2 while on Qi and Q3 the graph of f(x, y) is as in Figure 1 
(the plane of the drawings coincide with XOZ). Let the graph of 1/Jo(x) be shown 
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in Figure 2 and 1/Jo{l) = -~, 1/Jo{2) = O, 1/Jo{3) = ~· The graph of fi(x,y) = 
f(x, y) - tpo(x) -1/Jo(Y) is shown in Figure 3. Theorem 6.1 or Corollary 6.4 yields 
that tpo(x) + 1/Jo(y) is the best approximation and E(f) = ~· Also, it is easy 
to see that 1/Jo(y) is a unique (up to a constant) function that can be included 
into the best approximation. Regarding ip*(x), it can differ from ip0 (x), but since 
f{2, 1) -1/Jo{l) = ~. f{2 + e, 3) -1/Jo{3) = -~ and E(f) = ~. then necessarily 
ip*{2) 2: ~' ip*{2 + e) :=:; -~. The function f(x,y) satisfies a Lipschitz condition 
with a constant Lo that does not depend one. At the same time, for any L >Lo 
we can choose e > 0 sufficiently small so that ip*(x) does not satisfy the Lipschitz 
condition with that constant L. 

In (113), Ofman claimed {Theorem 3) that if Q contains a cross while f(x,y) 
satisfies a Lipschitz condition with a constant L, then f has a best approximation 
in D also satisfying the Lipschitz condition with the same constant L. Yet, as was 
noted by Motornyi (109), this is false. In order to see that, it suffices to use the 
original example of Ofman. 

EXAMPLE 6.18 (105). Add a point {3, 1) to Q from Example 6.17. We obtain 
a compact Q. Q contains a cross passing through the point {3, 2). Define the 
function f at the point {3, 1) by setting f(3, 1) = -~. It is easy to see that the 
same ip*(x) + 1/Jo(Y) as in Example 6.17 give the best approximation here too. 
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In [109], [110] there were given sufficient conditions for Q in order that the 
best approximation in D off E C( Q) had the same majorant of uniform continuity. 
However, the arguments presented there contain a gap. 

Best approximation and diameters of families of functions of one 
variable. Let us present a somewhat different interpretation of the problem of the 
best approximation that we have been studying. Let X be an arbitrary set, and let 
V = {g(x)} be a given family of real-valued functions (not necessarily continuous) 
of one variable. Each function g(x) E V has, generally speaking, its own domain 
of definition Ag C X, and it is not necessarily true that Ag1 = Ag2 • Assume that 
functions in V are uniformly bounded. Define a distance between functions in the 
family by setting 

{6.27) 

If Ag1 n Ag2 = 0, set p (g1, g2) = 0. {In general, this "distance" does not satisfy the 
axioms of a metric space.) Naturally, we shall call the quantity 

(6.28) d(V) = sup Pv (g1,g2) 
gi,g2EV 

the diameter of V. Let us add to each function g(x) of the family Va constant Cg, 
one for each g. We denote the new family obtained in such a way by V + C (C is 
the family of constants added). The quantity 

(6.29) do(V) =inf d(V + C) c 

is called the proper diameter of V (here the inf is taken over all families of added 
constants). Let f(x, y) be a bounded function defined on a set Q c Xx Y, where 
X,Y are arbitrary sets. Consider families Vi = {gy(x) = f(x, y), y E Y} and 
V2 = {hx(Y) = f(x, y), x EX}. Let ~ be the proper diameter of Vi, i = 1, 2. 

THEOREM 6.19 [113]. The following equalities hold: 

(6.30) 

PROOF. First of all, note that for a function gy0 ( x) E Vi the domain of defi
nition is Ay = 11"1 {(x, Yo) E Q}. Let 'tf;(y) be an arbitrary bounded function on Y. 
We shall interpret it as a family of constants that are added to functions in the 
family V1. Introduce the following notation (xis fixed): 

M,µ(x) = sup [gy(x) - 'tf;(y)] = sup [f(x, y) - 'tf;(y)]; 
g11EV1,A113X A113X 

(6.31) m,µ(x) = inf [gy(x) - 'tf;(y)] = inf [f(x, y) - 'tf;(y)]; 
g11EVi. A113X A113X 

( ) M,µ(x) + m,µ(x) 
cp,µ x = 2 . 

Clearly, 

(6.32) d(Vi -'If;)= sup [M,µ(x)- m,µ(x)]. 
xEX 
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On the other hand, for any cp(x) defined on X we have 
(6.33) 

II/ - 'P -1/Jll ~ II/ - <p.p -1/Jll = ~sup [M.p(x) - m.p(x)] = ~d (Vi -1/J) ~ ~d~. 
2 xEX 2 2 

Hence, 

(6.34) 

On the other hand, let c > 0and1/Jo(Y) be such that 

(6.35) d (Vi -1/Jo) < d~ + c. 

Then, in view of (6.33), 

II 1 ) 1 1 c f - IP.Po -1/loll = 2d (Vi -1/lo < 2do + 2' 

and so, 

(6.36) 

Combining (6.34) and (6.35) we obtain the first equality in (6.30). The proof of the 
second one is similar. 

COROLLARY 6.20. Let Q =Xx Y, X and Y compact spaces, and f E C(Q). 
Then 

(6.37) 

For the proof, it suffices to combine Theorem 6.19 and Remark 6.16 (b). 

Set of functions giving the best approximation. Usually, a function giv
ing the best approximation in the class Dis not unique. Let f(x,y) E C(Q), and 
let f*(x,y) = f(x,y) - cp*(x) -1/l*(y) be a levelled function. Since in some sense 
cp*(x) + 1/l*(y) gives the "best" best approximation to f(x, y), it is natural to ask 
whether such a function cp*(x)+'l/l*(y) is unique. The following example shows that 
even in such a form uniqueness, generally speaking, fails. 

EXAMPLE 6.21. Let Q =Xx Y, where X and Y consist of four points each. 
In this case, f(x, y) is a square matrix. Consider 

f = ( g -: -g J) . 
-1 0 1 0 

Clearly, f is a levelled function, and hence E(f) = II/II = 1. Take 

cp* = (c, 2c, c, 2c), ·'·* = (-=-;e:) 
'Y -2e: ' 

-e: 
(c is an arbitrary number, 0 < c < ~). Then f* = f - cp* -1/1* is also a levelled 
function and E (!*) = II!* II = 1. 
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Now we present a number of elegant results, most of which are taken from [61] 
and [91] and concern certain sets that appear naturally in Chebyshev's approxima
tion by a subspace D. 

Clearly, Example 6.21 can be easily extended to the case when Q is a rectangle. 
Let Q c Xx Y, Q, X, and Y compact sets, and f E C{Q). Denote by M the set 
of all signed measuresµ* E D(Q)l. for which the supremum in (4.11) is attained 

and hf dµ* > 0. Set 

{6.38) S(f) = S = LJ S (µ*) . 
µ.*EM 

THEOREM 6.22. All best approximations cp*(x) + 'l/J*(y) to f coincide on the 
set S. 

The proof follows from Theorem 3.2 {formula (3.2)). Denote by Z = Z(f) the 
set of points in Q where all functions cp* ( x) + 'l/J* (y) giving the best approximation 
to f coincide. Theorem 6.22 claims that 

{6.39) Z(f) :::> S(f). 

We can assume that E(f) = II/II, i.e., the identically zero function is one of the 
best approximations to f {for that, one may need to pass from f to f - cp* - 'l/J*, 
where cp*(x) + 'l/J*(y) is one of the best approximations). Then 

{6.40) z = nz\l), 
41 

where Z41 is the set of zeros of the function q> = cp* ( x) + 'l/J* (y) and the intersection 
is taken over all q> that give the best approximation to f. Together with S and Z, 
consider also the set 

{6.41) N1 = {p E Q : l/{p)I = II/II} 
(we assume that E(f) = II/II). From Theorem 6.2 it follows that 

(6.42) N1 :::> S. 

Denote by 'P the following set of functions: 

(6.43) 'P = P(f) = {/1: Ii - f ED, II/ill= II/II(= E{f))}. 

Consider the set N given by 

{6.44) 

where the intersection is taken over all functions fi E 'P. The sets Z and N are 
compact. 

LEMMA 6. 23. If there is a function f* E 'P for which 

(6.45) Nr = N(f), 

then 

{6.46) Z(f) 2 N(f). 
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Thus, 

{6.47) Z(f) 2 N(f) :) S(f). 

1 
PROOF. Let Ji E 'P(/). Then, F = 2' (/+Ji) also belongs to 'P(f). Clearly, 

NF s;;; Nf* n N1i s;;; Nf* = N. 

Therefore, Np= N. If at a point p EN we had 

f1(p) =F f*(p) (lf*{p)I = 11!*11 =II/ill), 
then p <f. NF and NF =F N. Hence all functions Ji E 'P coincide with f* on N, 
and so best approximation functions to f (precisely those that distinguish between 
different functions in 'P) equal zero. 

Existence of a function f* E 'P satisfying the properties listed in Lemma 6.23 
probably need not hold in general. However, if we restrict ourselves to, say, 
functions satisfying inequalities (6.22) and change the definitions of 'P and N ac
cordingly, then among such functions a function f* satisfying the requirements of 
Lemma 6.23 exists in view of compactness of the set K. 

A geometric lemma. 

LEMMA 6.24 (91]. Let R be a subset of Xx Y, where X and Y are arbitrary 
sets having the following properties: 

{6.48) . {(x,y) ER, (u,y) ER, (u,v) ER}=> (x,v) ER. 

Then there exist a family of pairwise disjoint sets {Xa} C X and a family of 

pairwise disjoint sets {Ya} CY such that R =Uxa x Ya. 

Geometrically, {6.48) means that when three vertices of a rectangle with sides 
parallel to the coordinate axes belong to R, the fourth vertex also belongs to R. 

PROOF. Set 

Xo={xEX:(x,y)<f.R forallyEY}, 

Yo= {y E Y: {x, y) <f. R for all x EX}. 

On X\Xo we define an equivalence relation by setting x1 ,...., X2 if and only if there 
exists y E Y such that (x1, y) ER and (x2 , y) ER. Using {6.48) one can easily check 
that this is indeed an equivalence relation. Let {Xa} be the family of equivalence 
classes defined by this relation. Define 

Ya= {y E Y: {x, y) ER for all x E Xa}. 

Let us show that different sets Ya do not intersect. Assume that y E Yan Y,a. Then 
(x, y) ER for all x E XanX,a. Choose Xa E Xa and x,a E X,a. Then (xai y) E Rand 

(x,a, y) E R, i.e., Xa "'x,a and therefore Xa = X,a. Let us show that R :) Uxa x Ya· 
a 

Let (u, v) E Xa x Ya. By construction of Ya, (x, v) E R for all x E Xa and, in 
particular, for x = u, i.e., (u, v) E R. It remains to show that R :) Uxa x Ya. 

a 
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Let (a, v) E R. Then u E X\Xo, and therefore u E Xo. for some a. Let x be an 
arbitrary element in Xo.. Then u"' x, and so there exists y E Y such that (x, y) ER 
and (u, y) E R. Now we have {(u, y) ER, (x, y) ER, (u, v) E R} => (x, v) E R in 
view of (6.48). So, not only (u,v) ER but also (x,v) ER for all x E Xo.. Hence, 
v E Yo. and (u,v) E Xo. x Yo.. 

LEMMA 6.25. Let RC X x Y and satisfy (6.48). Let Po E (X x Y)\R. Then 
there exists a function (>(x, y) = g(x) + h(y) such that q> = 0 on R and q> (po) = 1. 

PROOF. Let Xo, {Xo.J, Yo, {Yo.} be as in Lemma 6.24. Then 

X=XoULJXo., Y=YouLJYo., 

Let Po = (xo, Yo). If xo E Xo, then set g (xo) = 1 and g(x) = 0 elsewhere, and let 
h(y) = 0. Then g +his the needed function. If x0 ¢ X0, then Xo. E Xo: for some 
a. Set g(x) = 1, x E Xo:, g(x) = 0 elsewhere; h(y) = -1, y E Yo:, h(y) elsewhere 
on Y. The function g + h satisfies the required properties. 

The set on which all best approximations coincide. 

THEOREM 6.26 (91]. Let Q =Xx Y, where X and Y are finite sets and f 
is a given function on Q. The set of points Z(f) where all best approximations to 
f by the functions ip(x) + 'ljJ(y) coincide is the smallest set satisfying (6.48) and 
containing the set N(f) of vertices of all extremal lightning bolts. 

PROOF. Without loss of generality we can assume that N(f) = N1. According 
to Lemma 6.23, Z(f) :::> N(f). If at three vertices of a rectangle with sides parallel 
to the coordinate axes one of the best approximations q> = ip(x)+'l/J(y) to f vanishes, 
then it also vanishes at the fourth vertex. Indeed, if l is the lightning bolt defined 
by those vertices, then rt E DJ.. and rt((>)= 0. So, (6.48) holds for D(f). Now, let 
R be a set such that R :::> N(f) and R satisfies (6.48). Let Po¢ R. Then, according 
to Lemma 6.25, there exists a function q> = g(x) + h(y) such that q> = 0 on Rand 
q> (p0) = 1. It is not difficult to see that since q> = 0 on N(f), the function cq> has 
the property II/ - cq>ll = 11111 for sufficiently small c > 0 and hence provides the 
best approximation to f. Therefore, Po¢ Z(f) since c</> (po) =I 0. Thus, R 2 Z(f), 
and the theorem is proved. 

THEOREM 6.27. If X and Y are finite sets and Q = Xx Y, then for any 
function f on Q 

S(f) = N(f). 

We shall omit the proof. 

Dimension of the set of best approximations. 

LEMMA 6.28. Let a set R s;;; X x Y satisfy the property (6.48). If the sets 
Xo, Yo defined in Lemma 6.24 are finite and there exist only a finite number of 
equivalence classes Xo:, then 

(6.49) d ~f dim { q> E D : q>IR = O} = m + n + k - 1, 

where mis the number of elements in Xo, n is the number of elements in Yo, k is 
the number of classes Xo: (dim, of course, means dimension). 
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PROOF. Choose an arbitrary set of k numbers /3i. ... ,/3k and define g(x) = 
-h(y) = f3a if {x, y) E Xa x Ya, a = 1, ... , k. Let g and h be arbitrarily defined 
on Xo and Yo. Set cI> = g(x) + h(y). Clearly, cI> E D. If {x, y) E Xa x Ya, then 
cI>{x, y) = f3a - f3a = 0 and so cI>IR = 0. It is clear from the construction that 
d ~ m + n + k - 1 {the one is subtracted because adding a constant to g and 
subtracting it from h does not change cl>). On the other hand, let cI> = g(x) + h(y) 
and cI>IR = 0. Then, g(x) + h(y) = 0 when (x, y) E Xa x Ya. Therefore, g(x) on 
Xa is equal to a constant /3a., and h(y) = -f3a on Ya. Thus, d $ m + n + k - 1, 
and the equality {6.49) is proved. 

THEOREM 6.29 (91]. Let f be a function on Q = Xx Y, where X and Y 
are finite sets. Let X = Xo U X1 U · · · U Xk and Y = Yo U Yi U · · · U Yk be the 
decompositions of X and Y defined in Lemma 6.24 in connection with R = Z(f). 
Then 

{6.50) dim { cI> E D : II/+ cI>ll = E(f)} = m + n + k - 1, 

where m is the number of elements in X 0 while n is the number of elements in Yo. 

PROOF. Suppose f is such that N1 = N(f). Each function cI> that gives the 
best approximation to f must vanish on Z (!). On the other hand, if cI> E D is a 
function such that cI>lzcn = 0, then for c > 0 sufficiently small eel> is a function 
of the best approximation to f. It remains to refer to Lemma 6.28 while setting 
R = Z(f). 

Uniqueness of the best approximation. 

THEOREM 6.30. Let X and Y be finite sets and f be a function defined on 
Q = X x Y. The function f has a unique best approximation in the class D 
provided that Z = Q or, in other words, if the smallest of the sets that contain 
N(f) and satisfy (6.48) is all of Q. 

PROOF. Uniqueness of the best approximation means that the dimension of a 
set defined by {6.48) equals zero. This implies that m = n = 0 and k = 1, i.e., 
Z(f) =Xx Y. Indeed, k ~ 1, m ~ O, n ~ 0 always. 

Lightning bolts and an upper estimate of best approximation. Until 
now closed lightning bolts have provided a lower estimate of the best approximation. 
However, they can also be used to obtain estimates of the best approximation from 
above. 

LEMMA 6.31 (61]. Let Q = X x Y, f(x, y) = fo(x, y) + 'l/J(y), where Jo is a 
vertically levelled function(!, / 0, 'l/J are in B(Q)). Then for any xi, x2 in X 

{6.51) sup[/ {x1, y) - f (x2, y)] ~ 0. 
yEY 

PROOF. Assume the opposite, i.e., that there exist x1 and x2 such that f ( x1, y) 
< f (x2, y) for all y. But then / 0 (xi, y) < Jo (x2, y) for all y, also. Therefore, 
Myfo (xi, y) < Myfo (x2, y), contrary to Jo being a vertically levelled function, 
implying My [fo(x, y)] = 0 for all x. 
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THEOREM 6.32 (61]. Let X, Y be compact spaces, 1 E C(X x Y). Then 

(6.52) 
m 

E(f) ~ --1 sup lre2m (!)I , 
m- t2m 

where the supremum is taken over all closed lightning bolts l2m that have no more 
than 2m points. 

PROOF. According to Theorem 6.14, we can assume 1 to be a levelled func
tion. Then E(f) = 11111· Let l = (po,pi, ... ], l(pi) = (-l)illlll, be the light
ning bolt mentioned in Theorem 3.1. If i has 2m vertices, then (6.52) is obvi
ous, since re = 11111· If the number is larger than 2m we can take the vertices 
Po.Pi. ... ,P2m-3 and add to that lightning bolt vertices q2m-2 and q2m-1 so that 
l2m = (po, .. · 1P2m-31 q2m-21 q2m-d is closed and also 1 (q2m-2) - 1 (q2m-1) ~ 0. 
The latter is possible in view of Lemma 6.31 (using the fact that 1 is levelled 
vertically and horizontally). We have 

1 [2m-3 . l 
re2m (<P) = 2m ~ (-lrlllll + 1 (q2m-2) - 1 (q2m-1) 

~ 2m - 2 lllll = m - 1 E(f). 
2m m 

§7. The levelling algorithm 

In this section we study a natural algorithm for constructing the best approxi
mation to a function 1 by the function cp(x) + 'lj;(y). 

The levelling algorithm of Diliberto and Straus ([138]}. Assume for 
now that Q =Xx Y, X and Y are compact spaces and l(x,y) E C(Q). Set 

lo(x,y) = l(x,y), 

gn(x) = ~ [mif'ln-1(x,y) + mJnln-1(x, y)] =My Un-1)(x), 

(7.1) ln(x, y) = ln-1(x, y) - gn(x) if n is odd, 

hn(Y) = ~ [m:Xln-1(x, y) + m1nln-1(x, y)] = Mx Un-1) (y), 

ln(x, y) = ln-1 (x, y) - hn(Y) if n is even. 

Thus, in accordance with Corollary 1.5, at the first step of the algorithm we con
struct the best approximation g1 (x) to the function l(x, y) by functions cp(x). 
At the second step we construct the best approximation h2 (y) of the difference 
Ji ( x, y) = 1 ( x, y) - g1 ( x) by functions 'lj; (y); at the third, the best approximar 
tion ga(x) of the function h(x, y) = Ji (x, y) - h2(Y) by functions cp(x), etc. Now, 
Ji ( x, y) is a vertically levelled function, h ( x, y) is horizontally levelled, and in gen
eral, ln(x, y) is vertically levelled if n is odd and horizontally levelled if n is even. 
Clearly, 

(7.2) ln(X, y) = l(x, y) - Gn(x) - Hn(y), 



where 

(7.3) 
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Gn(x) = 91(x) + 9a(x) + · · · + 9n(x), 
Hn(Y) = h2(Y) + h4(Y) + · · · + hn-1(y), if n is odd; 

Gn(x) = 91(x) + · · · + 9n-1(x), 
Hn(Y) = h2(Y) + · · · + hni (y), if n is even. 
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We show that when we alternate between the best approximations by functions 
depending either on x or y, this process leads to the solution of the problem of best 
approximation by the sums <p(x) + 'l/;(y). Set 

{7.4) Mn =max lfn(x, Y)I = 11/nll · 
x,y 

Clearly, 

(7.5) 

where, as above, E(f) is the distance from f to the functions <p(x) + 'l/;(y) E D. 
Hence, there exists the limit 

(7.6) M = lim Mn 2: E(f). 
n-+oo 

THEOREM 7.1. We have 

(7.7) lim Mn= E(f). 
n-+oo 

PROOF. Following [38], let us prove both (7.7) and the formula 

(7.8) sup Ire{!) I= E(f), 
ecQ 

where the supremum is taken over all closed lightning bolts f.. Formula (7.8) is, 
of course, familiar to us-it is the duality theorem proved earlier (even in a more 
general form) in Theorem 4.8, formula (4.14). Thus, the duality formula will get a 
new proof here. 

On one hand, since re E D.l.., we have 

(7.9) sup lre{f)I =sup Ire(/- <p -1/l)I :5 inf II/ - <p-1/111 = E(f) :5 M. 
ecQ ecQ ip+1/JED 

On the other hand, we shall show that for each e > 0 we can choose a closed 
lightning bolt f. such that 

(7.10) llre(/)11 2: M - e. 

Formulas (7.7) and (7.8) immediately follow from (7.9) and (7.10). Thus, let e > 0 
be arbitrary. Choose a natural number M and a number e1 > 0 so that 

(7.11) II/II < :_ 2m +IM> M - :_ 22m.,. e 
2m+2 4' 2m+2 2' "1 = 4· 

There exists a number N such that for n 2: N 

(7.12) 

To fix the ideas, assume that N is odd and analyze the levelling process at the 
stages N, N + 1, ... , N + 2m, going from the larger indices to the smaller ones. 
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Since N + 2m is odd together with N, fN+2m is a vertically levelled function. 
Therefore, there exist points (xi. y1) and (xi, Y2) such that 

f N+2m (x1, Y1) = MN+2m• 

This means that 

(7.13) 

Therefore, 
(7.14) 

/N+2m-1 (xi. Y1) - 9N+2m (x1) = MN+2mi 

fN+2m-1 (xi. Y2) - 9N+2m (x1) = -MN+2m· 

9N+2m (x1) = !N+2m-1 (xi,y1)- MN+2m ~ MN+2m-1 - MN+2m < e1j 

9N+2m (x1) = f N+2m-1 (xi. Y2) + MN+2M 2:: - (MN+2m-1 - MN+2m) > -e1 · 

From (7.14) we have 

(7.15) 
/N+2m-1 (x1, Y1) > M - e1; 
/N+2m-1 (x1,Y2) < -M +e1. 

Since fN+2m-1(x,y) is a horizontally levelled function, there exist points (x2,Y2) 
and ( x~, Y1) such that 

(7.16) 

We have 

f N+2m-1 (x2, Y2) > M - e1; 

/N+2m-1 (x~,y1) < -M +e1. 

fN+2m-1(x,y) = fN+2m-2(x,y)- hN+2m-1(y). 
Substitute this into (7.15) and (7.16), and then replace the values of !N+2m-2 at 
(xi. Y1) and (x2, Y2) by M + ei, and at (xi. Y2) and (x~, Y1) by -M - e1 (this will 
only strengthen the inequalities (7.15) and (7.16)). From the new inequality we 
obtain the following estimate: 

-2e1 < hN+2m-1 (yi) < 2e1; 
-2e1 < hN+2m-1 (y2) < 2e1. 

(7.17) 

Now come back to the inequalities (7.15) and (7.16), where again we set /N+2m-1 
= fN+2m-2 - hN+2m-1· We obtain: 

(7.18) 
f N+2m-2 (xi. Y1) > M - 3e1; 

f N+2m-2 (xi. Y2) < -M + 3e1; 
!N+2m-2 (x2,y2) > M - 3e1. 

(A similar inequality for (x~, Y1) will not be needed.) Since f N+2m-2 is a vertically 
levelled function, there exists a point (x2, y3) such that 

(7.19) 

Again, take into account that !N+2m-2(x, y) = !N+2m-3(x, y) - 9N+2m-3(x), etc. 
As a result of this "backward" motion from !N+2m to fN we obtain the points 
(2m + 1 of them) 

(7.20) (xi, Y1), (xi. Y2), (x2, y3), · · · , (xm, Ym+1), (xm+l• Ym+i) · 

Note that in each step of such "backward" motion at which functions hk(Y) appear 
in addition to the point listed in (7.20), there also appears one more point (similar 
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to the point ( x~, Y1) above) that is only needed for the estimate of the function 
hk(Y) but is not included in (7.20). At those points inequalities similar to (7.16), 
(7.18) will hold: 

(7.21) 
fN (xs,Ys) > M - (22<m-l) -1) c1 > M - 2mc1 > M - ~i 

fN (xs-i. Ys) < -M + ( 22<m-l) - 1) c1 < -M + 2mc1 < -M + ~· 

Add the point (xm+l, y1) to the lightning bolt (7.20). We obtain a closed lightning 
bolt l. At the point (xm+l• Y1) we have a trivial estimate: 

(7.22) 

On the closed lightning bolt l construct the functional r1. (the number of vertices 
is equal to 2m + 2). Using the inequalities (7.21) and (7.22), and the choice of m, 
we obtain 

2m+ 1 ( c) II/II 
lr1.(f)I = lr1.(/N)I > 2m+2 M-4 - 2m+2 ~ M-c. 

This inequality completes the proof. 

Levelled functions and the algorithm. 

COROLLARY 7.2. If f(x, y) is a levelled function, then E(f) = II/II· 

PROOF. For this case the Diliberto-Straus algorithm gives Jo= Ji = · · · = f, 
and in view of Theorem 7.1 E(f) =II/II· 

Corollary 7.2 repeats Corollary 6.4, obtained by a different argument. 
Before passing to estimates associated with the levelling algorithm let us give 

an instructive example. If f is a levelled function, the levelling algorithm is not 
running and there is no need for it. However, if f is not levelled, the algorithm still 
may not diminish its norm after the first several steps. 

EXAMPLE 7.3 [61]. For any natural number k there exists a function f such 
that the functions {/n} in the levelling tlgorithm satisfy 

11111 =II/ill=···= llfk-111>11/kll · 

Let Q = [a, b] x [c, d] C IR2. Take the lightning bolt [pi,p2,. .. ,p2k] and define a 
function f on the rectangle Q as follows: f (Pi)= (-l)i, i = 1, ... , 2k, and l/(p)I < 
1 at all remaining points. The function Ji is vertically levelled, so Iii (p1)1 < 1 and 
Iii (p2k)I < 1, yet Iii (pi)I = 1, i = 2, ... , 2k - 1. The function h is horizontally 
levelled, so lh (pi)I < 1, i = 1, 2, ... , 2k-1, 2k, and lh (pi)I = 1, i = 3, ... , 2k-2, 
etc. Clearly, l/k(p)I < 1 at all points of Q. 

Estimates in the levelling algorithm ([38]}. 

LEMMA 7.4. The following equalities hold: 

max lfn(x, Y)I =max lfn-1(x, Y)l - IYn(x)I, 
y y 

maxlfn(x,y)I = maxlfn-1(x,y)l- lhn(Y)I, 
x x 

(7.23) 
n = 2k + 1, 

n= 2k. 

The proof is contained in (6.15) if we recall the definitions of fn in terms of 
fn-1 (see (7.1)). 
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LEMMA 7.5. Let 

(7.24) q>(x, y) = '11(x, y) - a(x) - f3(y). 

If q> and '11 are vertically (horizontally) levelled functions, then 

(7.25) llall :5 llf311 (11(311 :5 llall) · 

PROOF. Consider the case of vertically levelled q> and '11. Since q> is vertically 
levelled, we have 

a(x) =~ [m:X ('11(x,y) - f3(y)) + ~n ('11(x,y) - f3(y))] 

:5~ [ m:X '11(x, y) + llf311 + mJn '11(x, y) + llf311] = ~ · 211(311 = llf311. 

(7.26) 

We have used here that ma.xy '11(x, y) = - miny '11(x, y) due to our assumption that 
'11 is vertically levelled. Similarly, we have 

(7.27) a(x) ;:::: ~ [ m:X '11(x, y) - llf311 + mJn '11(x, y) - 11!311] = -llf311. 

From (7.26) and (7.27) it follows that ia(x)I :5 llf311, hence llall :5 llf311. 

Monotone decrease of norms of 9n and hn• 

LEMMA 7.6. Fork;:::: 1, the functions gn(x) and hn(y) in the levelling algorithm 
satisfy the inequalities 

(7.28) 

PROOF. Consider the functions Un} in (4.1). Then, 

(7.29) hk+i(x,y) = hk-1(x,y)- g2k+i(x)- h2k(Y) 

and f2.+i, hk-1 are vertically levelled. In view of Lemma 7.4 we obtain from (7.29) 
the first inequality in (7.28). Considering the equality 

hk+2(x, y) = hk(x, y) - g2k+I(x) - h2k+2(Y) 

in which hk+2 and hk are horizontally levelled, we obtain the second inequality in 
(7.28). Thus, we have the monotone decrease of the norms 

(7.30) 

Using Lemma 7.4 we can derive by a similar argument the inequalities 

llga+gs+ .. ·+92k+ill :5 llh2+h4+ .. ·+h2kll, 

llh4 + ... + h2kll :5 1193 + ... + g2k-1ll' 

and even more general inequalities for all natural k ands :5 k - 1: 

ll92k+l-2s + g2k+l-2s+2 + · · · + 92kHll :5 llh2k-2s + · · · + h2kll j 

llh2k-2s+2 + · · · + h2kll :5 llg2k+l-2s + · · · + 92k-lll · 
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LEMMA 7.7. Let n 2:: 1, and let X2n be a point in X. If a point y2n-l E Y is 
such that 

(7.31) 

then 

(7.32) 

and 

(7.33) max lhn-1 (x, Y2n-1)I 2:: max lhn (X2n, Y)I + lh2n (Y2n-1)j. 
x y 

Let n 2:: 2 and let Y2n-1 be a point in Y. If a point X2n-2 EX is such that 

(7.34) 

then 

(7.35) 

and 

(7.36) max lhn-2 (x2n-21 Y)I 2:: max lhn-1 (x, Y2n-1)I + lg2n-l (x2n-2)j. y x 

PROOF. Introduce the notation 

R2n =max lhn (x2n, y)j, R2n-1 =max lhn-1 (x, Y2n-1)I, 
y x 

(7.37) R2n-2 =max lhn-2 (x2n-21 y)j, q2n = jg2n+l (x2n)I, 
y 

q2n-1 = lh2n (Y2n-1)I, q2n-2 = lg2n-l (X2n-2)j. 

Since both statements of the lemma are proved in a similar fashion, we shall con
centrate on the first one. First of all, we show that 

(7.38) 

According to (7.1) we have 

(7.39) q2n = lg2n+i (x2n)I = ~ lm;xf2n (x2n,Y) +mJnf2n (X2n,Y),. 

Assume that g2n+l (x2n) > 0. Then we can drop the absolute value sign in (7.39). 
We have, furthermore, 
(7.40) 

min hn (x2n, y) =min [hn-1 (x2n, y) - h2n(Y)] 
y y 

:::; minf2n-1 (x2n,y) + llh2nll = -maxf2n-1 (X2n-i.Y) + llh2nll · y y 

The last equality in (7.40) appeared since hn-1 is vertically levelled. From (7.39) 
and (7.40) we obtain 

(7.41) q2n :::; ~ [ m:x hn (X2n, y) - m;x hn-1 (x2n, y)] + llh2nll · 
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Since again max lhn-1 (x2n, y)I = maxhn-1 (x2n, y) because hn-1 is vertically 
y y 

levelled, formula (7.41) implies (7.38). Similar considerations yield (7.38) for the 
case when 92n+i (x2n) < 0. In view of the choice of Y2n-1 1 we obtain from (7.38) 

R2n - 2q2n + llh2ntll ~max lhn-1(x2n1 y)I 
y 

~ lhn-1 (X2n1 Y2n-1)I = lhn(X2n1 Y2n-1) + h2n(Y2n-i)I 

~ lhn(X2n1Y2n-i)l - lh2n(Y2n-i)I = R2n - q2n-1· 

This inequality coincides with (7.38). Furthermore, according to (7.23) we have 

max lhn-1 (x, Y2n-1)l - lh2n (Y2n-1)I =max lhn (x, Y2n-i)I 
x x 

~ lhn (x2niY2n-i)I =max If (x2n1Y)I = R2n1 
y 

i.e., we obtain (7.33). 

We change the notation to a more symmetric one, denoting h2n(Y) by 92n(Y), 
n = 1, 2, ... (so 92n+l is a function of x, whereas 92n is a function of y). 

The main estimate of Diliberto and Straus. 

THEOREM 7.8. For all indices N > 1 and m ~ 0 the following inequality holds: 

(7.42) II/II~ m ll9Nll - 2 (2m -1) (llgNll - ll9N+mll) · 

PROOF. We give a proof for the case when N and m are even. Set m = 2k 
and N = 2n - 2k. The inequality (7.42) becomes 

(7.43) llJll ~ 2k ll92n-2kll - 2 (22k - 1) (llg2n-2kll - ll92nll) · 

We use notation similar to (7.37), keeping in mind that now 92k = h2k· Choose 
a point Y2n-1 so that q2n-1 = ll92nll· According to Lemma 7.7 there exists 
a point X2n-2 for which (7.35) and (7.36) hold. According to Lemma 7.7, for 
x2n_2 there exists Y2n-3 such that inequalities (7.32) and (7.33) hold with ob
vious adjustments of indices. Proceeding in a similar fashion, we obtain points 
Y2n-i.X2n-21Y2n-31X2n-41··. 1Y2n-2k-1 and numbers q2n-i.q2n-21··· ,q2n-2k-li 
R2n-li ... , R2n-2m-1· The inequalities similar to (7.32), (7.33), (7.35), and (7.36) 
hold for these numbers with obvious adjustments of indices. Let us prove that 

(7.44) q2n-i ~ ll92n-2k II - 2i-l (llg2n-2k II - ll92n II) · 
We use induction. For i = 1 we have 

q2n-1 = ll92nll = ll92n-2kll - 2° (llg2n-2kll - ll92nll) • 

Then (7.44) holds for i = 1. Let (7.44) hold for some i < 2k + 1. Then, by (7.32) 
or (7.35) (depending on i being even or odd), we obtain 
(7.45) 

q2n-i-l ~ 2q2n-i - ll92n-ill ~ 2llg2n-2kll - 2i(llg2n-2kll - ll92nll) - ll92n-ill 

~ ll92n-2kll - 2i(llg2n-2kll - ll92nll). 

We took into account that ll92n-2kll ~ ll92n-ill, according to Lemma 7.6. The 
inequality (7.45) is obtained from (7.44) by replacing i with i + 1, and therefore 
(7.44) holds for i = 1, ... , k + 1. 
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By (7.33) and (7.35) (again making obvious adjustments of indices) we also 
have: 

(7.46) R2n-i-l 2:: R2n-i + q2n-i-l1 i = 1, ... ,2k. 

Using (7.46) and (7.44) we find 

R2n-2k-1 2:'.R2n-2k + q2n-2k-1 2:: R2n-2k+l + q2n-2k-1 + q2n-2k 

2k+l 2k+l 

(7.47) 
2:: ' ' ' 2:: R2n+l + L q2n-i 2:: L q2n-i 

i=2 i=2 

2k+l 
2:'.2k llg2n-2kll - L 2i-l (llg2n-2kll - llg2nll) · 

i=2 

Inequality (7.43) follows from (7.47) in view of the obvious inequality II/II > 
ll'2n-2k-lll 2:: R2n-2k-1· 

Tending to zero of llgNll· 

COROLLARY 7.9. lim llgNll = 0. 
N-+oo 

PROOF. Take an arbitrary e > 0 and choose a natural number m so that 

II/II+ 1 < e. Since llgNll is monotone decreasing, there exists lim llgNll, so there 
m 

exists a number N such that 2 (2m - 1) (llgNll - llgN+mll) ~ 1. Then, from the 
inequality (7.42) it follows that 

(7.48) llgNll ~ II/II+ 1 < e. 
m 

Convergence of the levelling algorithm. Lemmas. 

LEMMA 7.10. Let f(x,y) E C(Q), while Gn(x) and Hn(Y) are defined by the 
formulas (7.3). Then 

(7.49) 

(7.50) 

Gn(x) =My [f - Hn-1] (x), 

Hn(Y) = Mx [f - Gn-il (y), 

(n is odd), 

(n is even); 

In particular, Gn gives the best approximation to f(x,y) - Hn-1(Y) among all 
functions <p(x) (n = 2m + 1), while Hn(Y) (n = 2m) gives the best approximation 
to f(x, y) - Gn-1 (x) among all functions 'l/J(y). 

PROOF. Let n be an odd number. Then the function fn(x,y) = f(x,y) -
Hn-1 (y) - Gn(x) is vertically levelled. Yet, in order to level the function f(x, y) -
Hn-1(y) vertically, the function Gn(x) must be defined as in the formula (7.49). 
However, in this case, Gn(x) also gives the best approximation to f-Hn-1 among 
all functions cp(x). The case when n is even is treated similarly. The identities 
(7.50) are obvious in view of (7.3). 
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LEMMA 7.11. Let Gn(x) and Hn(Y) be defined by formulas (7.3). Let c > 0, 
X1 EX, and X2 EX be fixed. If 

(7.51) If (xi,y) - f (x2,y)I < c for all y E Y, 

then 

(7.52) 

Similarly, if Y1 E Y and Y2 E Y are fixed and 

(7.51') If (x, Y1) - f (x, Y2)I < c for all x E X, 

then 

(7.52') 

PROOF. We prove the statement regarding Gn(x) (in that case, n is an odd 
number). In view of (7.51) we have 

(7.53) If (xi, y) - Hn-1 (y) - (! (x2, y) - Hn-1 (y))I < c. 

Consider two functions of y: V1 = f (x1,y)-Hn-1(Y) and V2 = f (x2,y)-Hn-1(y). 
The inequality (7.53) gives 

llv1 -v2ll < c. 
Now apply the estimate (6.14) from Lemma 6.13 and formula (7.49): 

(7.54) IGn (xi) - Gn (x2)I = IMv1 - Mv2I :::; llv1 - v2ll < c. 

LEMMA 7.12 [38]. There exists a subsequence of functions 

fnk(x,y) = f(x,y) -Gnk(x)- Hnk(y) 

converging uniformly on Q to the levelled function 

(7.55) J*(x, y) = f(x, y) - cp*(x) - 'lf;*(y), cp* E C(X), 'If;* E C(Y). 

PROOF. In view of Lemma 7.1 the sequences offunctions {Gn(x)} and {Hn(y)} 
are equicontinuous. Therefore, the sequence of functions of two variables 

is equicontinuous (in two variables) on Q =Xx Y. Since 

the sequence {Gn(x) + Hn(y)} is uniformly bounded. According to Arzela's theo
rem (for functions of two variables) there exists a subsequence 

{Gnk(x) + Hnk(y)} 

uniformly converging on Q to a function F(x, y). In view of Corollary 2.7 D(Q) is 
closed in C(Q), and therefore f(x, y) ED, i.e., F(x, y) = cp*(x) + 'lf;*(y). 

It remains to show that f*(x, y) = f(x, y)-cp*(x)-'lj;*(y) is a levelled function. 
This is obvious when among the sequence of indices { nk} there are infinite sequences 
of both even and odd indices: indeed, f* = lim f nk, where f nk is vertically levelled 
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when nk is odd and horizontally levelled when nk is even. If {nk} consists, say, 
exclusively of even indices, we have 

lim J n1c+i = lim J nk 

because fn1c+i = fnk - gnk+i and ll9nll ---+ 0 in view of Corollary 4.8. However, the 
fnk are horizontally levelled and the fnk+i are vertically levelled, and we once again 
arrive at the desired result. 

One more monotonicity property for norms of the best approxima
tions. 

LEMMA 7.13 [10]. Let fo(x,y) = f(x,y) - <po(x) -1/Jo(y) be a levelled func
tion (e.g., Jo= f* in Lemma 7.12). The following inequalities hold for sequences 
{Gn(x)} and {Hn(Y)} defined by (7.3): 

(7.56) llG1 - 'Poll ~ llH2 -1/Joll ~ llG3 - 'Poll ~ llH4 -1/Joll ~ · · · · 

(According to (7.50), G1 = G2, G3 = G4, ... ; H2 = H3, .... ) 

PROOF. Let n ~ 2 be an even number. Then fn(x, y) = f(x, y) - Gn(x) -
Hn(Y) = J(x,y)-Gn-1(x)-Hn(Y) is a horizontally levelled function. Furthermore, 

(7.57) fn(x, y) = fo(x, y) + <po(x) + 1/Jo(Y) - Gn-1(x) - Hn(y), 

where fo(x, y) is also a horizontally levelled function. According to Lemma 7.5, we 
obtain the inequality 

llGn-1 - 'Poll ~ llHn -1/Joll · 
Similarly, in case n is odd we show that 

llGn - 'Poll $ llHn-1 -1/Joll · 

COROLLARY i14. Each one of the sequences {Gn(x)} and {Hn(y)} is uni-
formly bounded. 

Now we can essentially strengthen Lemma 7.12. 

The final theorem (Aumann) on the convergence of the algorithm. 

THEOREM 7.15 [10]. Let Q =Xx Y. The sequences {Gn(x)} and {Hn(Y)} 
defined in the levelling algorithm by (7.3) converge in C(Q) to the functions <p*(x) 
and 1/J*(y), respectively. Moreover, the function <p*(x) + 1/J*(y) gives the best ap
proximation to f(x, y) among all functions <p(x) + ,,P(y). The function J*(x, y) = 
f(x, y) - <p*(x) - 1/J*(y) is levelled. The functions <p*(x) and ,,P*(y) also satisfy 
the following uniform continuity properties: given c > 0 and assuming that (7.51) 
holds, we have 

(7.58) 

whereas assuming that (7.51') holds, we have 

(7.58') 
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PROOF. By Corollary 7.14 and Lemma 7.11 we can, according to Arzela's 
theorem, extract uniformly converging subsequences {Gnk(x)} and {Hnk(y)} from 
the sequences {Gn(x)} and {Hn(y)}. Let cp*(x) and 1/J*(y) be the limits of those 
subsequences. According to Lemma 7.12, the function f*(x, y) = f(x, y) - c,o*(x) -
1/J*(y) is levelled. In view of the inequalities (7.56) in Lemma 7.13, where we replace 
c,oo by cp* and 'I/Jo by 1/J*, we obtain 

(7.59) c,o*(x) = lim Gn(x), 1/J*(y) = lim Hn(y), 
n-+oo n-+oo 

i.e., instead of limits of subsequences, we have limits of the sequences themselves. 
According to Corollary 7.2 we obtain 

E(f) = E (f*) = llf*ll. 

Therefore, c,o*(x)+'l/J*(y) provides the best approximation to f(x, y) in the subspace 
D(Q). Inequalities (7.58) and (7.58') follow from Lemma 7.11 and (7.59). 

Properties (7.58) and (7.58') of our best approximant c,o*(x) + 1/J*(y) can also 
be expressed as follows: the modulus of continuity of c,o*(x) is not worse than the 
partial modulus of continuity of f(x, y) with respect to the variable x, and the 
modulus of continuity of 1/J* (y) is not worse than the partial modulus of continuity 
of f(x, y) with respect to y. 

Discontinuous functions. Now let Q C Xx Y, where X and Y are arbitrary 
sets. For a function f E B(Q), consider the problem of best approximation: 

(7.60) E(f) = inf II/ - C,O -1/JllB(Q)· 
ipEB(X) 
1/JEB(Y) 

As an attempt to solve this problem, we may try to set up the same levelling 
algorithm described by the formulas (7.1). Max and min in these formulas now 
have to be replaced by sup and inf. 

THEOREM 7.16. Let Q contain a bar. Then the statement of Theorem 7.1 and 
formula (7.8) with E(f) replaced by E(f) hold for f E B(Q). Any function F(x, y) 
that is a limit point of a sequence {Gn(x) + Hn(Y)} in the weak (*) topology of 
the space B(Q) belongs to BD(Q) and gives the best approximation in the problem 
(7.60). 

PROOF. For definiteness, assume that Q contains a horizontal bar passing 
through the point (x0 , y0 ). As in the proof of Theorem 7.1, construct a sequence of 
points (xi, Y1), (xi, Y2), (x2, Y2), ... , (xm+i. Ym+1). Form a closed lightning bolt l 
out of the points (x1, Yo), (xi, Y2), ... , (xm+l• Ym+1), (xm+l• Yo). The rest is as in 
Theorem 7.1. Now let F(x, y) be a limit point of the sequence {Gn(x) + Hn(y)} in 
the weak(*) topology of B(Q). (Since fn = f - Gn - Hn, we have llGn + Hnll ~ 
211/11; hence the sequence {Gn + Hn} has a limit point.) For any closed light
ning bolt L we then have rL(F) = 0, because rL(Gn+Hn) = 0. If 'lj;(x,y) = 
F(x,y) - F(x,yo), then rL('l/J) = rL(F) - rL (F(x,yo)) = 0. Taking two points 
and constructing a closed lightning bolt L: (x1, Yo), (xi, y), (x2, y), (x2, y0 ), we find 
that 1/J (xi, y) = 1/J (x2, y), and so 1/J only depends on y. Thus, F(x, y) = cp(x) +1/J(y) 
(cp(x) = F(x,yo)). Since/- Fis a weak(*) limit point for f-Gn -Hn, then 
11/-Fll ~ lim II/ - Gn - Hnll = E(f) and hence F provides the best approximation 
to fin BD(Q). 
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Estimate of the rate of decrease of ll9nll• Again, we keep the notation 
92n+l (x), 92n(Y) for the functions in (7.1). 

THEOREM 7 .17. For any c > 0 there exists no such that for n > no 

(7.61) ll9nll < {1 + c)ll/11. 
log2n 

PROOF. Assume that (7.61) is false. Then there exist c > 0 and an infinite set 
of indices J such that 

(7.62) ll9nll ~ {1 + c)llfll, 
log2n 

nE J. 

We take c1, 0 < c1 < c, and show that there exist sequences k3 --+ oo and m3 such 
that 

(7.63) 

and 

(7.64) 

where 

ll9k; II ~ [{1 - c)ll/11- 0(1)]/ log2 k3 

lm·-log2k31<2. 
3 1 + c1 -

If such sequences are constructed, then taking N = k3, m = m3 in the inequality 
{7.42) we obtain 

(7.65) 
II/II >[1

1°g2 kj - 2][{1 + c)ll/11- 0(1)]/ log2 k3 
+c1 

- 2{22k}'(l+ei) - l)O{kjl/(l+ei)). 

Clearly, when k3 --+ oo the right-hand side in (7.65) tends to {l + c)llfll > II/II· 
1 +c1 

This contradiction proves the theorem. 

Thus, everything is reduced to constructing {k3} and {m3}. Choose an arbi
trary index N, and choose n > N so that n E J. Insert between N and n a finite 
number of indices Q1, ... , QM as follows. Set Q1 = n. If Q1 > Q2 > · · · > Qi are 
constructed, choose Q~+l such that 

) I log2 Q~+l 
(7.66 Qi+l + l +Cl = Qi· 

After that, set Qi+i = [ Q~+i] + 1 ( [] denotes the integral part). Terminate the process 
at a point QM such that QM+i < N ~QM· Changing the notation, renumber all the 
natural numbers Qj according to their growth: N ~ Pl < · · · < p M = n. In view of 
{7.66) it is clear that 

(7.67) 

From (7.67) we obtain 

(7.68) 

log2pi 
0 <p· +-- -p·+1<2. 

- i 1 + c1 i -
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Hence 

(7.69) M > ( n - N) log2 n and Pi < N + i log2 n. 

Choose c:2, 0 < c:2 < c:1. Let 

(7.70) Pi+l E J, 

Then from (7.62) and (7.70) we obtain for N > No(c:2) 

(7.71) 

Indeed, for N > No (c:2) using (7.68) we obtain 

(1 + c:)llfll (-1 -
1- - 1 

1 ) < (1 + c:)llfll log2 Pi+l /log~pi 
og2 Pi og2 Pi+i Pi 

<(1 + c:)llfll log2 e · Pi+l -pi /log~pi 
Pi 

<(1 + c:)llfll log2 e · log2Pi/Pi log~pi < Pil/(l+e2 >. 

So, if Pi+l E J and (7.70) holds, then Pi E J. Since PM = n E J, we have the 
following alternative: either 

(a) all numbers p1, ... ,PM belong to J, or 
(b) there exists Pi+ 1 such that 

(7.72) Pi+l E J. 

Let us show that for sufficiently large n (a) is impossible. Otherwise, adding 
all the inequalities (7.70) we would have obtained using (7.69) (/3 = -1/(1 + c2)): 
(7.73) 

M-1 M-1 M 

llYP1 II ~ £:t if > £:t (N + i log2 n)/J > 1 (N + x log2 n)/J dx 

= (/3 + 1)-1 (log2 n)-1 { [N + Mlog2 n]/J+l - [N + log2 n]/JH} 

~ (/3+1)-1 (log2 n)-1 { 1- [NN+ +~ol!~~ nr+l} [n + (n - N)]/JH · 

As n--+ oo, the expression in braces in (7.73) tends to 1, whereas the entire right
hand side of (7.73) tends to oo. Thus, for sufficiently large n the inequality (7.73) 
yields a contradiction. Therefore, for all sufficiently large n > N the possibility (b) 
holds. Take a sequence of indices { Nj} j +oo. In view of our construction, there 
exists a sequence {pf} j +oo such that 

(7.74) 

Set k; =pf, m; = pf+1 - pf. In view of (7.74) and the fact that pf+l/pf --+ 1 
(due to (7.68)), we obtain the inequalities (7.63). From (7.74) we also get the first 
relation in (7.64). The second inequality in (7.64) follows from (7.67). The theorem 
is proved. 
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Bibliographical notes. The levelling algorithm for f E C(X x Y) and f E 

B(X x Y) was studied in the paper [38] by Diliberto and Straus. Strictly speaking, 
they considered X =[a, b] C JR1 and Y = [c, d] C JR1, but this is not important. As 
noted in (38], the question of studying the problem of the best approximation of a 
function of two variables by functions c,o(x) + 1/J(y) was (in a slightly different form) 
posed by Rand Corporation. In that paper, the authors proved Theorem 7.1 and 
the formula (7.9). Convergence of a sequence of functions obtained along the steps 
of the algorithm to functions that solve the best approximation problem and simul
taneously levelling the initial function was established somewhat later by Aumann 
(10]. Diliberto and Straus only showed convergence of subsequences. Aumann 
(9-11] had arrived at the study of this approximation problem independently of 
(38]. Also, in (38] the authors showed that the best approximation c,o*(x) + 1/J*(y) 
obtained by the levelling process for a continuous function f(x, y) has continuity 
properties that are not worse than those of the function itself . 

. We have already pointed out in §3,6 that the existence of the best approxima
tion c,o*(x) + 1/J*(y) and continuity properties of c,o*(x) + 1/J*(y) for f E C(X x Y) 
had also been established by Kolmogorov (cf. the exposition in [113]). Although 
[113] contains no systematic study of the levelling algorithm, this very natural idea 
can be clearly seen in the proofs in [113]. 

In [38] there are given the estimates (7.42) and 

(7.75) llYnll:::; (2+e)ll/ll/log2n, for all e > 0, n > no(e). 

Both estimates are given without proof. (The authors point out that the proofs 
were omitted in accordance with the referee's suggestion, in view of the possibility 
that those estimates were not sharp and yet required tedious calculations.) The 
proofs of (7.42) and (7.61) given here are due to Eiderman [43]; the estimate (7.61) 
is somewhat better than (7.75). In (38] it was conjectured that 

(7.76) 

but this is false (at least for bounded functions). In (91] an example is given for 
which the estimate (7.76) does not hold. In the preprint (44] Eiderman proved the 
following estimate for bounded functions on an arbitrary set Q C JR2: 

(7.77) llY2n+ill:::; II/II(~) r 2n rv ll/11(11'n)-! 

(the same asymptotic estimate holds for llY2n+2IJ) and constructed a bounded func
tion for which equality holds in (7.77) for all n = 1, 2, .... We chose not to present 
these cumbersome results here. 

In addition to the papers quoted in this section, let us mention the papers (64], 
[56], [3], [132], and [23]. The monograph (94, Chapter 5] studies the levelling 
algorithm but without estimates of the error terms (formulas (7.42), (7.61), and 
(7.77)). Chapters 3,4,6,7 of [94] contain results (both positive and negative) on 
generalizations of the levelling algorithm in other metrics, together with an exten
sive bibliography. 

In [38], Diliberto and Straus described (without detailed proofs; "by similar
ity") a "natural" extension of the levelling algorithm to several variables. A similar 
extension is suggested in Golomb's paper (64] in a more abstract situation. How
ever, Aumann [13] showed that in three variables the levelling algorithm need not 
lead to the best approximation. Unfortunately, this important negative result is 
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not contained in [94]. Unaware of Aumann's work, Medvedev [104] also showed 
that when the number of variables n > 2, the Diliberto-Straus algorithm does not 
always lead to the desired goal. (I learned about Aumann's work from Professor 
Pinkus at the Haifa conference in 1994, and use this opportunity to express my 
sincere gratitude to him; cf. §3 in Chapter 3 below.) 



CHAPTER 3 

Problems of Approximation 
by Linear Superpositions 

§1. Properties of the sJbspace of linear 
superpositions and its annihilator 

Types of linear superpositions. Let X, Xi, ... , XN be compact sets, and 
q>i : X ---+ Xi continuous mappings (cf. (1.1), §1, Chapter 2). Also, assume there 
are given functions hi(x) E C(X). We consider in C(X) a subspace D(X) = D of 
functions 

(1.1) 

where 9i E C (Xi), i = 1, ... , N, are arbitrary functions. The functions (1.1) will 
be called linear superpositions. In C(X), consider the problem of approximation by 
functions in the subspace D. If x, Xi, ... 'XN are arbitrary sets and q>i : x ---+ xi, 
i = 1, ... , N, are mappings, then instead of continuous functions we may consider 
bounded ones, and then in (1.1) hi(x) E B(X), 9i(x) E B (Xi) and we denote the 
subspace of functions (1.1) by BD. In the subspace B(X) consider the problem of 
approximation by functions in BD. For the moment we shall discuss the situation 
with continuous functions, indicating the needed alterations for the case of bounded 
functions at the end of the section. 

Consider the product of compact sets Xi: 

(1.2) 

If the mapping 

(1.3) W':X---+Y, 

is injective (or, equivalently, the system (q>1(x), ... , q>N(x)) separates points in X), 
the subspace D consists of functions 

N 

(1.4) h1(x) [91 o 7r1 (x)] + .. · + hN (x) [gN o 7rN(x)] = L hi(x)gi(xi), 
i=l 

where x =(xi, ... ,xN) is a point in Y, 11"i(x) =Xi is the natural projection of Y 
onto Xi, 9i E C (Xi) are arbitrary, hi(x) E C(Y). We shall sometimes call the sets 
xi a basis. 

The approximation problem then reduces to the following: in the space C(Q), 
where Q c Y ( Q = "111 ( X)), study approximation by functions of the subspace D 

127 
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(i.e., by functions {1.4)). Let j = 1, ... ,m be some indices, each corresponding to 
a set (j) of indices i: 

{1.5) 

Form partial {with respect to {1.2)) products 

{1.6) 

Denote by Y; = (xi1 , ••• ,xi,.i) points in lj. If hk(x) E C(Y) are given functions, 
then the subspace D of functions 

{1.7) 
m 

Lh;(x)9;(xi1 , ••• ,xi,.i), 
j=l 

9; E C{lj), 

is of a more general nature than {1.4). The space {1.4) is obtained from {1.7) by 
letting m = N, (j) = j, Y; = X;. The functions {1.7) (in particular, those in {1.4)) 
are also called linear superpositions. The functions hi(x) will sometimes be called 
basis functions, and the 9; will be called the coefficients in linear superpositions 
{1.1), {1.4), or {1.7). The representation (1.7) for a given function w E D is, in 
general, not unique. 

Proper bases. A system of basis functions {h;(x)}, j = 1, ... , m, in {1.7) is 
called proper in C( Q) if there exists a number c > 0 such that for any function 
w(x) of the form {1.7) the coefficients 9; in the representation {1.7) of w on Q can 
be chosen so that the inequality 

m 

{1.8) L 119; II $ cllwllQ 
j=l 

holds. 

PROPOSITION 1.1. A system of basis functions is proper in C( Q) if and only 
if the subspace D(Q) is closed in C(Q). 

PROOF. Introduce another norm in D(Q) by setting 

m 

{1.9) lwlQ = infL ll9ill, 
j=l 

where the infimum is taken over all choices of {9;} that provide the representation 
{1.7) for w on Q. It is easy to check that lwlQ is indeed a norm. In particular, 
to check that lwlQ = 0 <=> w = 0, one has to use the estimate llwllQ $ ClwlQ, 
where C = maxllhill· That D(Q) is complete with respect to the norm {1.9) can 
be proved along the same scheme as, e.g., the proof of completeness of quotient 
spaces. For completeness we sketch the arguments here. 

Let {wn} CD be a fundamental sequence with respect to the norm {1.9). We 
can always extract a subsequence wn,. so that the series 

00 

L lwn,.+ 1 - Wn,.IQ < +oo. 
k=l 
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Let functions 9n1,;, j = 1, ... ,m, be taken from the representation (1.7) for Wnp 
while functions 'Pnk,i• j = 1, ... , m, are taken from that for Wnk+i - Wnk. We can 
assume that 

00 

:~:)'Pnk ,;I < +oo, j= 1, ... ,m. 
k=l 

Then the series 
00 

9n1,j + L 'Pnk,i = 9i> 
k=l 

j = 1, ... , m, converge in C (Yj) to functions f; E C (Yj). If w E D( Q) is a function 
representable in the form (1.7) with the coefficients 9i• then lw - WnklQ ---+ 0 and 
hence lw - wnlQ ---+ 0. This proves that D( Q) is a Banach space with respect to the 
norm (1.9). 

Now let D(Q) be closed in C(Q). The identity operator mapping (D, I· IQ) into 
(D, II · llQ) is continuous and according to the Banach theorem so is its converse, 
i.e., the operator from (D, II· llQ) into (D, I· IQ), which is equivalent to (1.8), and 
so the system of basis functions is proper in C(Q). Let us show the converse: a 
system of basis functions is proper. We need to show that D(Q) is closed in C(Q). 
Let {wn} CD and Wn---+ win C(Q). Since the system {hi} is proper, by (1.8) it 
follows that {wn} is a fundamental sequence with respect to the norm I· IQ· Hence 
it converges with respect to this norm to a limit wo ED; but then {wn} ---+ wo in 
C(Q) as well. Hence w = wo, and the proposition is proved. 

Examples of proper and improper systems. In C(X1 x X2) consider the 
subspace D consisting of functions 91 (xi)+ 92 (x2). Set h1(x) = h2(x) = 1 in 
(1.1). From §2 in Chapter 2 it follows that the subspace Dis closed, and therefore 
the system {1, 1} is proper. Now take N = 1, x1 = [O, 2], and h1(x) = 0 for 
1 :::; x :::; 2, h1(x) > 0 when 0 :::; x < l. The subspace D = {h1(x)91(x)} with 
the basis function h1(x) gives an example of a linearly independent but improper 
system: there exist functions 91 (x) with an arbitrary large norm so that llh191 II :::; 1. 
This example also shows that for linearly independent basis systems the properness 
requirement does not reduce to the well-known equivalence of all norms on a finite
dimensional space. Yet, if the variables in the basis functions hi and functions 9i 
(see below) are separated, linear independence implies properness of the system 
(Lemma 1.10 below.). 

Separated variables. The most common case is when a basis function hi(x) 
only depends on those coordinates of a point x that are not used in forming points 
Yi in }j. Denote by(}) the complementary set of indices to (j). So, (})consists of 
all indices i, 1 :::; i:::; N, that are not used in (j). By Yj = Y(;) denote the product 

of all Xi for which i E (J); Yi are points in Yj. Then 

(1.10) 

provided that from now on we agree on the following. In the expansion of the 
product (1.10) factors Xi in }j and Yj are written in the same.order as they appear 
in Y (i.e., in order of increase of indices i) independently of whether they belong to 
Xi in }j, or in Yj. Similarly, when writing x = (Yi, Yi) = (Yi, Yi), the coordinates Xi 

are written in the natural order without paying attention to whether a coordinate 
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is taken from y;, or iii· For example, if Yi = (x2, X5, x5), ii; = (x1, X3, X4, X1 ), then 
(y;, ii;) = (y;, Yj) = (xi, X2, X3, X4, X5, X5, X7 ). 

Let us denote by 'lr(j) a natural projection of Y onto Y; = Y(;) and by fi"(j) = 7r (J) 

a natural projection on Yj. Thus, if x = (y;,fJ;), then 'lr(j)(x) = y;, ii"(j)(x) = 
1r(3)(x) =Yi· Let Hi= Hi('Yj), j = 1,. .. ,m, be a finite-dimensional subspace in 

C(YJ). Consider in C(Y) a subspace D defined by 

m 

(1.11) D = LHi ®C(Yj). 
j=l 

Here,® denotes the tensor product, while again, when forming from the functions 
Ii (ii;) E Hi and h (y;) E C (Y;) a function F(x) = Ii® h = h ®Ii E C(Y), 
coordinates of a point x appear in their natural order irrespectively to whether a 
coordinate comes from Y;, or ii;· Therefore, in particular, for us Ji (ii;)® h (Y;) = 
h (y;) ® Ji (ii;) and Hi (YJ) ® C (Y;) = C (Y;) ® Hi (YJ). From now on whenever 
we form tensor products we shall follow these rules. 

The formula (1.11) even covers a more general situation when (j) and (3) in 
it do not necessarily compliment each other, but are simply disjoint sets of indices. 
To see that, it suffices to assume that functions in Hi in fact depend only on some 
of the variables forming Yc.1>. Let hJ (ii;), 6 = 1, ... , n;, be a basis of the subspace 
Hi, j = 1, ... , m. Then the subspace (1.11) consists of the functions 

m ni 

(1.12) L:L:hJ (ii;)gJ (y;)' gJ (Y;) E C (Yj) . 
j=16=1 

The functions (1.12) are a special case of the functions (1.7). 
The functions {hj}, j = 1, ... ,m, 6 = 1, ... ,n;, serve as basis functions for 

the subspace (1.12). In each term of (1.12) the arguments y of a basis function 
hJ (ii;) and of a coefficient gJ (Y;) are separated. We call this case the case with 
separated variables. 

Totally separated variables. In many situations it is convenient to admit 
the following structure for the basis subspaces Hi. There are finite-dimensional 
subspaces Hi c C (Xi), i = 1, ... , N, and if (j) = (ii, ... , i;.;.), i.e., Yj = Xi1 x 

3 

· · · x Xi- then 
ki' 

(1.13) 

The case when the Hi (YJ) have this structure is called the case of totally separated 
variables. 

The following situation is even more general. Let Zi, ... , Zs be some partial 
products out of the product (1.2) and moreover, any two of them, Zk and Ze, 
consist of different factors. Let Hk be a finite-dimensional subspace in C (Zk), 
k = 1, ... , s. Further, assume that each Yj is a product of some of the Zk, whereas 
H(YJ) is the tensor product of the corresponding Hk: 

(1.14) y;3. = zk x ... x zk 
1 Rj' 



§1. THE SUBSPACE OF LINEAR SUPERPOSITIONS 131 

Clearly, the seemingly greater generality of (1.14) compared to (1.13) is an illusion. 
If, from the very beginning, while forming products (1.2) one uses the blocks Zk 
instead of the factors Xi then (1.14) coincides with (1.13). The case (1.14) will also 
be called the situation with totally separated variables. 

The annihilator of the subspace of linear superpositions. 

LEMMA 1.2. Let D consist of functions (1.1). In order that a regular Borel 
measure µ on X belong to D1-, it is necessary and sufficient that 

(1.15) i = 1, ... ,N. 

In essence, this lemma repeats Lemma 4.1 in Chapter 2. A special case of 
Lemma 1.2 is the following lemma. 

LEMMA 1.3. Let D consist of functions (1.7) andµ E C(Q)*. In order that 
µ E D(Q)1-, it is necessary and sufficient that 

(1.16) j=l, ... ,m. 

Another characterization of D1- when the variables are separated. In 
case of separated variables, a condition for a measure to belong to D1- can be 
expressed in a different form. Denote by µ IE the restriction of a measure µ to a 
set E. 

LEMMA 1.4 ([93]). Let the subspace D have the structure (1.11). In order that 
µ E [Hi (Yj)@ C(}j )]1-, it is necessary and sufficient that for any Borel set A C }j 
the measure 

(1.17) A [ I ] . - J_ vi = 11'(j) o µ AxY; E H 3 (}j) . 

PROOF. For a function h (ih) E C(Yj) we have 

(1.18) f _ hdµ = ~ hdvf. 
JAxY; }y; 

Now if h E Hi(Yj) andµ E [Hi(Yj) @C(}j)]1-, then 11'(i) o [hµ] = 0 and hence 

(1.19) f _ hdµ = 11'(i) [hµ] (A) = 0. 
lAxY; 

Therefore, 

(1.20) 1 hd A · A (Hi)1-- vi = O, i.e. vi E . 
Y; 

Conversely, if vf E (Hi)1- for all Ac Y, the integrals in (1.18) vanish, and hence 

11'(i) [hµ] (A)= 0 for all A andµ E [Hi @C(Y,)]1-. 
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Product-measures in D.l.. when the variables are separated. 

LEMMA 1.5. Let a subspace D be defined by (1.11) and (1.13). Let 

(1.21) 

be a collection of basis sets Xi, i = 1, ... ,N, so that each product Y;, j = 1, ... , m, 
includes at least one set (1.20) as a factor. If measures Ak, E C(Xk,)*, f, = 1, ... , s, 
satisfy )..kt E Hk1 (Xk,).l.. and).. is an arbitrary measure defined on a product of sets 
that are not included in (1.21), then 

(1.22) 

PROOF. Consider the subspace 

(1.23) D; = H; ® C(}j), 

where Y; and H;(°Y;) are defined by (1.13). Let {hfi_(xiJ,a = 1, ... ,nii} be a 

basis in Hi1 (Xii), ... , {ht , f3 = 1, ... , ni-.} be a basis in Hi;;; (Xi-.). A basis in 
~ ~ ~ 

H; (°Y;) generates various products 

(1.24) 

and D; consists of all sums 

(1.25) L h1(Y;)96(Y;), 
6 

To fix the ideas, assume that the set Xi1 is included into (1.21), e.g., Xi1 = Xk1 • 

Then Ak1 ( hfi.) = Ai1 ( hfi.) = 0 by the hypothesis. Moreover, we have 

Ak ® · · · ® Ak ® >-.[h~ ® · · · ® h~ ] 
1 • t1 'le; 

=Ak1 (hfi )[>-.k2 ® · · · ® >-.k. ® >-.(h~ ®···®hf;;. x 96)] = 0. 
3 

Obviously, Lemma 1.5 can be deduced from Lemma 1.4. For example, for any 
A c Xk1 we have 

Thus, we obtained a measure that differs from Ak1 only by a constant factor and 
hence is orthogonal to Hk 1 (XkJ· 

"Domino"-measures. If each measure in the product (1.22) has a finite sup
port, then we shall call such a product a "domino"-measure (the term was sug
gested in [93]). The simplicity of the structure of "domino"-measures makes them 
attractive, whereas the fact that they form a sufficiently rich set is ensured by the 
following proposition. 
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PROPOSITION 1.6. Let a subspace D be of the form 

N 

(1.26) D = LHi(Xi) ® C(Xi), 
i=l 
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where the Hi(Xi) are finite-dimensional subspaces in C(theXi) (Xi, i = 1, ... , N, 
are basis sets). In order that w ED it is necessary and sufficient that µ(w) = 0 for 
any "domino"-measure µ: 

(1.27) 

where >.i E Hi(Xi)l., i = 1, ... , N. 

Necessity is contained in Lemma 1.5. Sufficiency will be proved later on. 

Approximation of measures in Dl. by measures with a finite sup
port. As usual, to avoid extra notation we shall denote by the same letter a linear 
functional and the measure representing it. Together with the usual characteristic 
of a measure µ 

(1.28) lµID = sup lµ(f)I, 
JED 

llJll:51 

its action on D can be estimated by the quantity 

(1.29) lµID = sup lµ(f)I. 
JED 
IJl:51 

Since II/II::; Cl/I, we always have lµI::; ~11µ11, and in case of a proper basis system 

the converse inequality also holds with an appropriate constant. 

PROPOSITION 1. 7. Let D be a subspace in C(Y) that consists of functions (1. 7), 
µ E Dl., 11µ11=1, andµ+(µ-) the positive (negative) variations ofµ. There exist 
nets of measures {µt} and {µ9} with the following properties: 

1. µt, µ9 are positive measures with finite supports and, moreover, llµt II + 
11µ911=1. 

2. {µt} ({µ9}) converges in the weak(*) topology of C(Y)* toµ+ (µ-). 

3. There exist nets of functions {h~+} c C(Y) and {h~-} c C(Y), j = 
1, ... , m, each of which converges in C(Y) to the function hi and 

(1.30) 1f(j) 0 [h~+ µtJ = 1r(j) 0 [h~-µ9]· 

4. For each c > 0 there exists Oo(c) such that for() > Oo(c) 

(1.31) lµelD < c, µe = µt - µ9 · 

5. If a basis {hi, j = 1, . . . , m} is proper, then for each c > 0 there exists Oo ( c) 
such that 

(1.32) llµellD < c when 8 > Oo(c), 

Thus, a set of finitely-supported measures {µe} that approximates µ consists, 
according to part 3 of the proposition, of measures "almost" orthogonal to D, while 
parts 4 and 5 guarantee that such "almost" orthogonality holds uniformly on D. 
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For the case of separated variables, we shall construct approximating measures that 
are exactly, not "almost,'' orthogonal to D. 

PROOF. Consider all possible finite partitions of the basis sets Xi, ... ,XN into 
Borel subsets. Let 08 = (Ui, ... , u;e.) be a partition of X 8 • For indices 0 we use 
the set 0 = (Oi. ... , ON) of such partitions of all basis sets. On the set 0 we define 
the partial order relation similarly to how it was done in §4 of Chapter 2. With 
this, {O} becomes a directed set. For a given 0 consider all "parallelepipeds" 

(1.33) A 'Yl···'YN _ U"ll X X U'Yn 
u.9 - 1 ''' N • UJ• E 08 , s =I, ... ,N, 

that form a partition of the space Y. Inside each set UJ• choose (arbitrarily) a 
point x]• and consider the system of points in Y 

(1.34) X'Y1· .. "fN - x'Y1 x x'Y2 x · · · x x'YN - (x'Y1 x'Y2 x'YN) 
8 -1 2 N- 1•2"'"N' 

At every point xJ1 .. ·'YN insert an atom µt and an atom µ9: 

so that JlµtJI + 11µ911 = llµ+JI + Jlµ-JI = 11µ11 = 1. Also, it is clear that {µt} 
converges toµ+ in the weak(*) topology while {µ9} converges weak (*)toµ-. 

Relations (1.16) forµ E D.l.. can be rewritten as follows: 

(1.35) j= I, ... ,m. 

Let (j) = (i1,. .. ,in)· For a given 0 consider all parallelepipeds b..J1 "·'YN with the 
indices 1'?1 , ••• , 1't being fixed (taking certain admissible values) while the others 
are arbitrary. Equations (1.35) yield 

(1.36) 

where the sum is taken over all ( 1'1, ... , 1'N) such that 1'i1 = 1'?1 , ••• , 1'in = 1't. 
Equalities (1.36) hold for all choices of 1'?11 ••• , 1'?,.. Define h~+ (h~-) at a point 
xJ1 .. ·'YN to be the mean value on b..J1 • .. "fN of hi with respect to the measure µ+ 
(µ-). Then (1.36) becomes 

(1.37) 

and this is equivalent to (1.30). For each e > 0 there exists 00 (e) such that for 
0 > 00 (e) the oscillation of the function hi on any of the parallelepipeds b..J1 • .. "fN is 
smaller than e. Hence 

(1.38) 
lh~+(xJ1 .. ·'YN) - hi(xJ1 .. ·'YN)I < e; 

lh~-(xJ1 .. ·'YN) - hi(xJ1 .. ·'YN)I < e. 

So far, the functions h~+ and h~- are only defined at the points xJ1· .. "fN. We can 
extend them continuously in such a way that at every point x the inequalities 
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hold. Now it remains to prove parts 4 and 5. For a function w E D (of the form 
(4.7)) we have 

m 

Jµ9(w)I = L L hi (xJ1 .. ·-YN)g3 (1l'(j)xJ1· .. -YN) µ9 (xJi .. ·-YN) 
j=l -y1 .. ·'YN 
m 

= I:I:" :l:'hj (xJl .. ·'YN)gj (11'(j)XJ1"·-YN) [µt (xJl .. ·'YN) 
j=l 

Here, E' is taken over all ('Yi. ... , 'YN) with fixed (-yf1 , ... , -yfN), whereas E" is 
taken over all (-yf1 , ••• , -yfn). Continuing the calculation and using (1.35)-(1.38), 
we obtain 
(1.39) 

m 

= I:I:"gj (11'(j)XJ1 ... "(N) :l:'hj (xJl .. ·'YN) [µt (xJl .. ·'YN)- µ9 (xJl· .. "fN)] 
j=l 

m 

= I:I:"gj (1l'(j)XJ1 ... "(N) :l:'hj (xJl .. ·'YN) [µt (xJl .. ·'YN) - µ9 (xJl .. ·'YN)] 
j=l 

m 

- I:I:"gj (1l'(j)XJ1 ... "(N) I:' [hi+ (xJl .. ·'YN)µt (xJl• .. "fN) 
j=l 

m 

:5 L JJg3 II · E: (llµt II + 11µ9 II) :5 GJwJc. 
j=l 

The inequality (1.39) means that Jµ9Jv < GE:. If the basis system is proper, (1.39) 
also implies the estimate l1µ9Jlv < G1E:. The proof of Proposition 1.7 is now com
plete. 

REMARK 1.8. Clearly, one can assume that i1µ91l = llµt-µ911=1. Indeed, on 
one side 11µ811:5llµtll+11µ911=1. On the other side, JJµll $ liml1µ91l and therefore 
for an arbitrary E: > 0 there exists Oo(c) such that 0 > Oo => i1µ9JJ > 1 - E:. Hence, 
instead of {µ9} we could use ji,9 = µ9/JJµ9JJ. (In general, the equality µ9 = µt- µ9 
is not the Jordan decomposition of the measure µ9.) 

A reminder on projections. Let B be a Banach space and E C B a subspace 
of B. A continuous linear operator P: B---+ Eis called a projection (of B onto E) 
if 

(1.40) P(B) = E, P2 =PoP=P 
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{idempotence). If we set R = I - P, where I is, as usual, the identity operator, 
then R is also a projection, and if we set e = R(B), then 

{l.41) B=E+e 
( + means that every x E B can be represented in the form x = x' + x", where 
x' E E, x" E e, and such a representation is unique). Moreover, 

{l.42) E={x:Rx=O}, e = {x : Px = O}; 

hence E and e are closed subspaces. Conversely, if {l.41) holds with closed sub
spaces E and e, then P : B ---+ E (Px = P(x' + x") = x') and R : B ---+ e 
(Rx= R(x' + x") = x") are projections. Thus, for existence of a projection onto a 
subspace it is necessary and sufficient that the subspace be closed and have a closed 
complement (with respect to the sum {l.41)). 

The projections P and R = I - P are called complementary. The projection R 
is also called residual with respect to P. 

LEMMA 1.9. Let Pi : B ---+ Ei, i = 1, ... , n, be projections, commuting with 
each other: PiPj = P3Pi, 1::::; i::::; j::::; n. Then the operator 

{l.43) P = LPi - LPiPj + L PiPjPk + "· + {-l)n-lpl .. . Pn 
i<j i<j<k 

is a projection of B onto 

{l.44) 

If Ri denotes the complementary projections for Pi, i = 1, ... , n, then 

{l.45) 

is the complementary projection for P. 

Lemma 1.9 is commonly used for n = 2 (cf., e.g., (40, p. 518]); the general case 
follows by induction. It allows us to characterize the subspace D in our problems 
by some finite difference-like conditions. Let us illustrate this by a simple example. 

EXAMPLE. In the space C(Y) consider a subspace D that consists of functions 

{l.46) 91(x2, ... ,XN) + 92(Xi,X3, ... ,xN) + ... + 9N(Xi. ... ,XN-1). 

Let Dj, j = 1, ... , N, consist of all functions of the form 

{l.47) 

Fix a point ( x~, ... , x~) and consider an operator Pj : C(Y) ---+ D3 defined by 

{l.48) P3 : f (xi. ... , Xn) ---+ f (xi. •.. , xJ, ... , Xn)· 

Pj is a projection of C(Y) onto Di. The complementary projection R3 =I - P3 is 
defined by 

{l.49) /(xi. ... ,xN)---+ f(xi. ... ,xN) - /(xi. ... ,xJ, ... ,xN) 

and Dj consists of all f E C(Y) for which the finite difference {l.49) vanishes. The 
operators P3, j = 1, ... , N, commute, so that D consists of all functions f E C(Y) 
for which 

{l.50) 
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Moreover, the operator Rl ... RN turns out to be a finite difference of order N. 

Separated variables. Projections on Di. Consider the subspace D (1.11). 
Let Di be the subspace 

(1.51) j=l, ... ,m. 

Take an arbitrary basis hJ(ij;), 8 = 1, ... , ni, for Hi("f;). The subspace Di consists 
of functions 

n; 

(1.52) L:, hJ(iiJ)gJ(Yi), gJ E C(Yj). 
6=1 

Denote by >.J linear functionals that are biorthogonal to the basis {hff}. A functional 

>.J is represented by a measure on¥;. Consider a linear operator P =Pi : C(Y)--+ 
Di defined by 

(1.53) f E C(Y) ~ t.>.J [f (Yi·~)] hJ (iii), 

where~ indicates the variables that are assumed constant (parameters) under 

the action of the functional >.J. 

LEMMA 1.10. The operator P =Pi is a projection ofC(Y) onto Di. Moreover, 
for any f E C(Y) the function F = Pf satisfies the interpolational conditions 

(1.54) 

and is the unique function in Di satisfying (1.54). The system of the basis functions 
{hJ}, 8 = 1, ... , ni, is proper in C(Y). 

PROOF. Let i) be an arbitrary function in Di, 

(1.55) g6 EC (Yj). 

We have 

(1.56) n; 

= L:,l (Yi) >.J0 (hJ (iii))= g6o (Yi)· 
6=1 

From (1.56) it follows that the representation (1.55) of any function i) E Di is 
unique and the coefficients g6 (Yi) at hJ (iii) are found by the formula (1.56). There
fore, for an arbitrary i) E Di we have 

pi)= I: >.J [() (iii• Yi )] hff (iii) =I: hJ (iii) 96 (Yi) = (), 
6=1 ~ 1 

Thus, P[C(Y)] = Di and P2 = P. Combining (1.53) and (1.56) we get (1.54). Since 
the representation (1.55) is unique, Pf is the unique function in Di that satisfies 
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the interpolational conditions {l.54). From the uniqueness of the representation 
{l.55) and formulas {l.56) it also follows that the system { hH is proper. 

Commutativity of projections. Let (j) and {k) be two sets of indices {1.5). 
Assume that they may overlap but cannot completely contain one another. There
fore, the same holds for the complementary sets {]) and {k). Denote 

{l.57) 
(s) = {]) n {k), 

{3)\(s) = (j2), 

(a) = (j) n {k), 

(k)\(a) = {k1), 

(j)\(a) = (j1), 

(k)\(s) = (k2). 

A complete set of indices N can now be represented as follows: 

(1.58) (N) = {s) U {h) U (a) U (j1) = {s) U {k2) U {a) U {k1). 

It is easy to see that 

{l.59) (h) = {k1), 

Indeed, {k2) n (h) = 0; otherwise, (s) could not be the intersection of{]) with {k). 
Therefore, {k2) C (j). If there existed an index i E (a) n {k2), then i E {k), which 
cannot happen because {k2) c (k). So, {k2) c (j)\(a) = (j1). Yet, along the same 
lines (j1)n{k1) = 0 and {ii) C (k)\(s) = (k2). We have proved one of the equalities 
{l.59); the second is proved similarly. 

Consider in C(Y) the subspaces 

{l.60) 
D = D; = H(Yc;>) ® C(Y(;))i 

D = Dk = H(Y(k)) ® C(Y(k))· 

The subspaces H are assumed to have the following structure: 

{l.61) 
H(Yc;>) = H(Y(3)) = H(Y(s)) ® H(Y(h))i 

h(Y(k)) = H{Y(;;:)) = H(Y(s)) ® H(Y(k2 )), 

where all H are finite-dimensional subspaces of continuous functions of the variables 
in parentheses. Consider some bases in those subspaces: 

{l.621) 

{l.622) 

{l.623) 

The systems 

{c°'(Y(s))}, 

{ d.B (Y(i2))}, 

{e'Y(YCk2))}, 

a= 1, ... ,l- a basis in H(Y(s))i 

f3 = 1, ... , n - a basis in H{Y(h))i 

'Y = 1, ... , r - a basis in H(Y(k2 ))· 

{c°'(Y(s)) @d.B(Y(i2))} and {c°'(Y(s))@ e'Y(Y(k2))} 

are bases in H(Yc;>) and H(Y(k)), respectively. Also, let{>.°'}, a= 1, ... ,l, {µ.B}, 
/3 = 1, ... , n, {v'Y}, 'Y = 1, ... , r, be the systems of linear functionals biorthogonal 
to the bases {l.621), {l.622), and {l.623), respectively. The functionals >.°' are 
represented by measures on Y(s)i µ.8 are represented by measures on Y(h)i v'Y are 
represented by measures on Y(k2 ). Measures { >. °' @ µ.8} form a system biorthogonal 

to the basis chosen in H(Yc;>), while{>.°'@ v'Y} form a system biorthogonal to the 
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basis in H(Yck))· Consider projections P : C(Y) ---+ D = D; and 'P : C(Y) ---+ D = 
Dk defined by 

P: IE C(Y) ~ ~ N" ® µf3 [1 (Y(s)• Y(h)• ~)] c°' (Y(s)) df3 (Y(h)); 

'P: IE C(Y) ~ ~>.'5 ®1/Y [1 (Y(s)•Y(k2)•e)] c6 (Y(s)) e'Y (Y(k2)) · 

{l.63) 

LEMMA 1.11. Whenever H(Y(;)) and H(Yck)) have the structure {l.61), the 
projections P and 'P commute · 

First of all, note that we can permute actions of the linear functionals >. °', µf3, 
v'Y. To see that, it suffices to take their Riesz representations and apply the Fubini 
theorem. Set 

Using biorthogonality of{>.°'} and {c°'}, we have 
{l.65) 

'P(P f) = L >.6 ® v'Y {L cp°'f3 (y(j)) ®c°'(Y(s)) ®df3 (Y(h))} ®c6 (Y(s)) ®e'Y (Y(k2)) 
6,-y a,{3 

= _L v'Y { cp6f3 (~· Y(k2 ))} ® c6 (Y(s)) ® df3 (Y(h)) ® e'Y (Y(k2)) · 
u,-y,{3 

But 

{l.66) v'Y { cp6f3 (~, Y(k2))} = v'Y ® .A6 ® µf3 [1 (~, Y(s)• Y(h)• Y(k2))] · 

Calculating P ('Pf) and using {l.65)-(1.66) (with an opposite order of action of 
functionals), we arrive at the same result. Since actions of functionals commute, 
P'P ='PP. 

Totally separated variables. Projections onto D. Consider the situation 
{l.13) with totally separated variables. If {hf (xi)}, a = 1, ... , ni, is a basis of 
Hi (Xi), i = 1, ... , N, then bases Hi CYJ) are formed by the functions h~ (iJ;) that 
are given by products {l.24). If { >.f}, a = 1, ... , ni, are linear functionals in 
C(Xi)* biorthogonal to the basis {hf},{])= (ii, ... ,ik3), then all possible tensor 
products · 

{l.67) 

give the system of linear functionals in C(Yj )* which is biorthogonal to the basis 
{l.24). As above, set 

{l.68) 
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and define P; : C(Y) ---t D;, j = 1, ... , m, by formulas similar to (1.53): 

(1.69) f E C(Y) ---t P;(f) = ~L1 [1 (11;,~)] hJ (Y;) · 

THEOREM 1.12. P; is a projection of C(Y) onto D;, j = 1, ... , m. Any two 
operators P; commute. The operator P defined by (1.43) is a projection of C(Y) 
onto D. If the R; are complementary projections for the P;, then the operator R 
defined by (1.45) is the complementary projection for P. For any f E C(Y) the 
function F = Pf satisfies the interpolational conditions 

(1.70) 

and is the unique function in D satisfying (1.70). The system of basis functions 
{h1(Y;),j=1, ... ,m, 8 = 1, ... ,N;} is proper in C(Yj). 

PROOF. The fact that P; is a projection from C(Y) onto D; is proved in 
Lemma 1.10. Since the variables are totally separated for each pair P; and Pk, the 
assumptions of Lemma 1.11 hold and therefore P; and Pk commute. The operator 
P defined in (1.43) is a projection onto D by Lemma 1.9, whereas R in (1.45) is the 
projection complementary to P. To establish the interpolation identities (1.70), fix 
an index j. The equalities {1.54) of Lemma 1.10 can be rewritten in the following 
form: for each f E C(Y) we have L1[<I>] = 0, where we set <I> = f - P;f = R;f. 
Now, for all f E C(Y) let <I>= f - Pf= Rf. In view of (1.45), 

<I> = R; [R1 ... R;-1R;+1 ... Rm!] = R~ [R1 ... R;-1R;+i ... Rmf] 

= R; [R1 ... R;-1R;R;+1 ... Rmf] = R;[Rf], 

so either L1[RJ] = 0 or L1[f - Pf]= 0. We have proved (1.70) by using idempo
tency of the projection R; and commutativity of the projections under considera
tion. To prove the remaining statements, turn to the identity (1.43) and rewrite it 
as follows: 

P = P1 + P2 (I - P1) +Pa (I - P1 - P2 + P1P2) 

+ · · · + Pm[I - P1 - · · · - Pm-1 + P1P2 + · · · + Pm-2Pm-1 - P1P2Pa 

- · · · - Pm-aPm-2Pm-1 + · · · + (-1r-2 P1 ... Pm-1]. 

Using (1.45) for complementary projections, we can rewrite the latter identity in 
the following form: 

(1.71) P = P1 + P2R1 + PaR1R2 + · · · + PmR1R2 ... Rm-1· 

Therefore, for all f E C(Y) we have 

w = Pf = W1 + W2 + · · · + Wm, where 

W1 =Pd E Di, 
w2 = P2Rif E D2 1 ••• ,w; = P;R1 ... R;-if ED;, ... 

(1.72) 

Wm = PmR1 • .. Rm-if E Dm. 

Whenever f = w ED, instead off everywhere in (1.72) we can put w = Pw. 
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Repeating the arguments in the derivation of the interpolation identities ( 1. 70) 
we obtain, in view of the structure of terms Wj in {1.72), the following formula: 

Lf (w2) = Lf(wa) = .. · = Lf(wm) = 0, 8 = 1, ... ,N1; 

{1.73) L~ (wa) = L~ (w4) = .. · = L~ (wm) = 0, 8 = 1, ... , N2; 

L~-l (wm) = 0, 8 = 1, ... ,Nm-1· 

Now let w* ED be an element such that 

{1.74) 

and let 

{1. 75) 

LJ (w*) = LJ(!), j=l, ... ,m, 8=1, ... ,Ni, 

w* = wt + w2 + · · · + w~ 
be its {1.72) decomposition into D;-components. Since Lf (f) = Lf (w*) and the 
values of the functionals Lf completely determine an element in D 1, w1 = wt. Also, 

L~(f) = L~ (wi) + L~ (w2) = L~ (w*) = L~ (wt)+ L~ (w2), 

and so Lg (w*) = Lg (w2). However, the values of the functional Lg uniquely 
determine elements in D2; hence w2 = w2 • Continuing in this fashion with the 
functionals Lg, we see that w3 = wa, etc. (In all arguments with L1 the index 8 
runs over all the values 1, ... ,Nj.) Thus, w =Pf= w* and we have proved that 
Pf is the unique element in D satisfying the interpolational conditions {1.70). 

Now, let us show that a combined system of bases { h1} is proper. From {1.72) 
it follows, in particular, that 

{1.76) j=l, ... ,m, 
with an appropriate constant C. Since for all j the system { h1}, 8 = 1, ... , Nj, is 
proper {Lemma 1.10), {1.76) yields that the combined system {h1}, j = 1, ... , m, 
8 = 1, ... , Nj, is also proper. The latter could also be proven by a simpler argument 
based on Proposition 1.1: if there is a projection from C(Y) onto D, then Dis a 
closed subspace and hence the system of basis functions is proper; 

A special case: point-evaluation functionals. For the linear functionals 
in the formulas considered above one can take point-evaluations. A linear functional 
relating to a function f its value at a fixed point x in its domain of definition will 
be, for brevity, denoted by x, or xA. So, 

{1.77) x(f) = f(x). 

Such a functional is represented by the delta-measure Dx supported at the point x. 
The following two facts are almost obvious and well-known. 

LEMMA 1.13. Let cp1 ( x), . . . , 'Pn ( x) be linearly independent functions on a set 
X. Then there exist n points Xi E x, i = 1, ... , n, such that 

{1.78) 



142 3. PROBLEMS OF APPROXIMATION BY LINEAR SUPERPOSITIONS 

PROOF. Since <p1(x) '¢. 0, take x1 with <p1 (x1) "I- 0. Consider the determinant 

A2(x) =I "°1 (x1) <p1(x) I· 
<p2 (x1) <p2(x) 

If A 2(x) = 0, <p2(x) would be a scalar multiple of <p1(x), which cannot happen. 
Hence, there exists a point x2 with A2 (x2) "I- 0. Consider the determinant 

A3(x) = 
I <p1(x) 

A2 (x2) <p2(x) 
<p3 (x1) <p3 (x2) <p3(x) 

and, similarly, find a point X3 at which A3 (x3) "I- 0, etc. 

COROLLARY 1.14. Let H be an n-dimensional space of functions defined on 
a set X. There exist n points Xi E X, i = 1, ... , n, such that the linear func
tionals X1, . . . , Xn are linearly independent over H and there exists a basis in H 
biorthogonal to {xi, i = 1, ... , n}. 

PROOF. The points where (1.78) holds satisfy the corollary. A basis biorthog
onal to {xi} is found among linear combinations of a given basis {ipi(x)} by solving 
a system of equations expressing biorthogonality. 

COROLLARY 1.15. The statement of Lemma 1.10 holds if >..j = 'fff, a = 

1,. .. ,n;, yj E Yj, while {hj (Y;)} is a basis in Hi('Yj) biorthogonal to linearly 
independent functionals :Yj. The statement of Theorem 1.12 also holds when >..f = 
xf are linearly independent functionals, xf E Xi, and {hf (xi)}, i = 1, ... , N, 
a = 1, ... , ni, is a basis in Hi (Xi) biorthogonal to it. 

Thus, in (1.54) and (1. 70) we are now dealing with the ordinary point interpo
lation. 

The nature of continuity and smoothness of projections on D. Let >..j 
be a linear functional on C (Yj). Then, the function 

. (1.79) 

obviously has continuity with respect to the variables Y; (the parameter, with re
spect to the action of >..j) that is not worse than the original function. Thus, under 
projections (1.53) or (1.72), characteristics (moduli) of continuity are inherited by 
properties of a function f and basis functions { hj}. The same can be said about 
smoothness properties whenever f and { hj} have any. 

PROOF OF PROPOSITION 1.6 ON "DOMINO"-MEASURES. As noted above, ne
cessity follows from Lemma 1. 5. Let us prove sufficiency. Let xf, a = 1, . . . , ni, 
i = 1, ... , N, be points in the basis sets Xi such that the functionals Xf are linearly 
independent over Hi (Xi), and let {hf(xi)} be a biorthogonal basis in Hi(Xi)· Let 
the projection P from C(Y) onto D be defined by (1.45) and (1.69), where now 
>..f = Xf. Construct the measure µion Xi (i = 1, ... , N) as follows: 

(1.80) 
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where x? is an arbitrary point in Xi. This can always be done so that a? =f. 0. Then 
the measureµ= µ 1 ® µ2 ® · · · ® µN is a domino-measure. 

Apply Theorem 1.12, setting 

6 = 1, ... ,ni; 

Let the function f E C(Y) be orthogonal to µ. But in view of Lemma 1.5 the 
function F = Pf is always orthogonal to µ. Therefore, ~ = f - Pf 1-µ. We have 

(1.81) 0 = µ(~) = l:af ... a~~(xf x xg x · · · x xj..) + a~ag ... a~~(x~ ... x~), 

where the summation is extended over all admissible sets of indices (a, /3, ... , -y) =f. 
(0, 0, ... ). The interpolation conditions (1.70) now imply that~ vanishes on each of 
the hyperplanes X1=xr,a=1, ... ,n1j X2 = Xg, /3 = 1, ... ,n2j ... jXN = xj.., 'Y = 
1, ... ,nN. Therefore, the first sum in (1.81) vanishes. Hence,~ (x~, ... ,x~) = 0 
at every point ( x~, ... , x~) and f - Pf = 0. 

COROLLARY 1.16. Under the assumptions of Proposition 1.6 any measureµ E 
Dl. is a weak(*) limit of a net {µ9} of measures that are (finite) linear combinations 
of "domino"-measures. 

The statement follows from general functional-analytic considerations (e.g., 
[40), or [118)). Unfortunately, general considerations cannot guarantee that a net 
{µ9} can be chosen so that 11µ911 ---+ 11µ11 (cf., e.g., [118)), which is important for 
applications. 

Interpolation and norms on subsets. Functions in the unit ball of the 
subspace D need not, generally speaking, be equicontinuous. However, as we shall 
show below, there still exist some substitutes for this obvious (when compared with 
the case of separated variables) loss. Recall that FIE denote the restriction of a 
function F to a set E. 

LEMMA 1.17. Let a subspace Dj have the form (1.51), and let R be an arbitrary 
subset in Y(j). There exists a linear operator T : C(Y) ---+ C(Y) with the following 
properties: 

1. (Tf - !) IRxYi = O; 

(1.82) 2. llT f II :::; llf llRxYi i 

3. T(Di) c Di. 

PROOF. Let R = {Yt, ... , yj}. Take disjoint neighborhoods yk, k = 1, ... , v, 
of the points yj E Vk. Construct functions ~k (Yi) c C (Yj) with the following 
properties: 

(1.83) ~k (yJ) = 1, 

and define an operator T by setting 

v 

(1.84) f E C(Y) ---+ T f = L ~k (Yi) ® f (ih' yJ} . 
k=l 
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Let us verify that the properties (1.82) hold. If y = (ih,yj), then according 
to (1.83) T f (iii, yj) = f (iii, yj) and property 1 is proved. Let us prove prop

erty 2 in (1.82). If (Yi, Yi) (j. Yj x LJvk, then cI>k(yj) = 0, k = 1, ... ,11, so that 
k 

T f (iij, Yi) = 0. If Yi E Vk (yj), then cps (Y;) = 0, s =f. k. Therefore, IT f (ii;, Yi) I = 
lcI>k(y;)l IJ(ii;,yj)I :5 II! (ii;,YJ)llY; :5 llf(Yi,Yi)llRxY;' So, llTJll :5 llJllRxY;· 
Now, let f ED;, i.e., 

n; 

f = L h1 (ii;) cp6 (y;) for some cp6 (y;) EC (Yj). 
i 

Therefore 
n; 

f (ii;, yj) = L h1 (ii;) cp6 (yj) E Hi (YJ), 
i 

and Tf E D;. The lemma is proved. (The operator T, generally speaking, need 
not be a projection.) 

Now let us consider the subspace D assuming that variables are totally sep
arated: D is defined by the formulas (1.12)-(1.13). In each basic set Xs find 
points x!, ... ,x~; and a corresponding basis {h~}, a= 1, ... ,ns, in Hs, so that 
the functionals X'; and {h~} are biorthogonal. As in Proposition 1.7, considering 
partitions es of the set Xs, es = {U!•} and taking a point x~· in each U!• we 
agree to include among those points the fixed points x!, ... ,x~·. Clearly, when 
es is sufficiently large, i.e., for sufficiently fine partitions, this can be done. Sim
ilarly to Proposition 1.7, as the set of indices we consider the set of all partitions 
e = (ei, ... , es, ... 'eN) of the basis sets Xs. 

Fix e and let As be a (finite) set of points in Xs obtained by taking a point 
in each U!• (with the above agreement concerning inclusion of the set A: = 
{xf, ... ,x~·} into As : A: C A 8 ). Denote A= Ai x · .. x AN. Let us prove 
the following theorem on interpolation. 

THEOREM 1.18. In the structure of D, let the variables be totally separated. 
There exist an absolute constant M and e0 such that for all e > e0 and all w E D 
one can find w' E D with the following properties: 

(1.85) A= Ai x ... x AN, 

PROOF. Take an index j, j = 1, ... , m, and let 

(])=(ii, ... ,i;;;.), 
3 

Consider the products 

(1.86) 

Ac;) = Am = Ai1 x · · · x Ai;;; , 

Ac ·) = At x · .. x At · J 1 k;' 

A*(') = Ai x · · · x Ai. , J 1 k; 

A*< ·) = Ai x .. · x Ai . J 1 k; 
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Clearly, A(l> c AG» A(;> c Ac;>• Am x A(j) =A. Define projections P; : C(Y)---+ 
D;, j = 1, ... , m, according to the formulas (1.67)-(1.69), where we now set 

-A~ = ~ ® · .. ® ~ = ~ X .. • X x'?' Xa,1 X · · • X xlk-. E A*(J') C A(J')· 3 i1 i;;,; i1 i;;,; ' 3 

First of all, using the fact that the support of P; is A(l>, let is establish the following 
statement. 

ASSERTION. Let B be an arbitrary subset in Y(;)' For all f E C(Y) we have 

(1.87) llP;fllii;xB:::; llP;llll/llA(.i>xs :::; llP;llllfllA(3)xB· 

First, let f E C(Y{;))· In this case, let us establish the inequality 

(1.88) llP;/lly, = sup IP;/I :::; llP;llll/llA•, · 
(j) - v (J) 

Y; E • (;) 

Surround points x1, 8 = 1, ... , N; in the set Afo by disjoint neighborhoods V/. 

Define a function FE C(Y{j)) that coincides with f on A(l>' vanishes on He;) \LJV;6 

6 

and is such that llFllY; = 11/llA(.t>. Then, P;f = PjF and 

llP;fll¥; = 11PiF11¥;:::; llP;llllFll = llP;llll/llA(.t>' 
Now, let f(y) = f(Y;.ii;) E C(Y). We have 

llP;/llY;xB = Y~~~; IP;/ (Yi•~) I= Y~~~ llP;/ (Yi•~) II 
Y;EB 

:::; sup llP;ll 11/ (11;, Yi ) II = llP;llll/llAhxs' 
Y;EB ~ A*- 3 

(j) 

The assertion is proved. 
In particular, for B = A(j) as in (1.87) we obtain 

(1.89) llP;f 11¥; xA(;) :::; llP; 1111/llA (A= A(3) x A(j)) 

and, moreover, 

(1.90) 

Now, let P be a projection from C(Y) onto D obtained from P; according to the 
formula (1.43). For all w ED in view of the formulas (1.71)-(1.72) we obtain 

w = w1 + · · · +wm, where 

w1 = P1w, 
(1.91) w2 = P2 (w - P1w) = P2 (w - w1), 

wa =Pa (w -w1 -w2), ... , 

w; = P; (w - W1 - · · · - w;-1), ... , 
From (1.90) and (1.91) we obtain that 

j=l, ... ,m. 

llw1llA:::; llP1ll llwi1A, llw2llA:::; llP2ll (llwllA + llw1llA):::; llP2ll (1 + llP1ll) llwll· 
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Continuing this chain, we arrive at a constant Mi such that 

(1.92) 

According to Lemma 1.17 (where we have to take R = A(j)), for all j there exists 
a function w& ED; such that 

(1.93) 

(1.94) 

Consider the function 

(1.95) w' = w~ + · · · + w:n. 
In any case, all equalities (1.93) hold in the set A= A(j) x Am; hence 

w' IA= wlA · 

In view of equicontinui~y of the basis functions 

{h1, j=l, ... ,m; o=l, ... ,N;} 

and properness of the basis, we can assume e to be so large (and consequently all 
partitions of Xi, i = 1, ... , N, and Y(j)' j = 1, ... , m, so fine) that 

(1.96) 

Combining (1.92)-(1.96), we obtain (1.85) with an appropriate constant M. 

REMARK. The role played by points x}, ... , xf' that we are bound to include 
into Ai is not as significant as it may appear from the proof. Indeed, by considering 
the determinant (1.78) it is not hard to see that if we define the operators P; not 
based on those points but on sufficiently close points x~ 1 , •.• , x~n,, then the norms 
of the corresponding operators PJ can be assumed to be bounded by constants that 
do not depend on the choice of points. And only this point is crucial for the proof. 
Therefore, if a partition ei of the set Xi is sufficiently fine, then among the chosen 
points there will necessarily be points sufficiently close to x}, ... , xf' and whence 
we can choose points arbitrarily in each set of the partition ei. 

Totally separated variables. Approximation of measures in DJ. by 
finitely-supported measures. In the case of totally separated variables, Propo
sition 1. 7 can be significantly refined. 

THEOREM 1.19. If in the structure of D = D(Y) the variables are totally 
separated, then every measureµ E DJ., 11µ11 = 1, is a weak(*) limit of a net of 
measures { >.e} c Dl., each of which has a finite support and, moreover, 11>-e II = 1. 

For the proof we shall need the following lemma related to the duality of ex
tremums. 

LEMMA 1.20 ([93]). Let G be a subspace in a Banach space B, let V c B* be 
the linear hull of some linear functionals <I>k, ll<I>kll = 1, k = 1, ... , t, and <I> c V. 
Then, the distance dist (<I>, V n GJ.) from <I> to V n GJ. satisfies the inequality 

(1.97) dist(<!>, V n GJ.) ~ sup l<I>(g)I. 
gEG,l<11k(9)19 
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PROOF. Consider a mapping '11 : B ~ Rt defined by 

(1.98) g EB~ '11(g) = (il>1(g), ... , il>t(g)) 

and let G' = '11(G). In (!Rt)* consider linear functionals u = (ui, ... , Ut) on !Rt that 
form G' .L. Clearly, u E G' .L if and only if 

(1.99) 

t 

Thus, u E G'.L {::} :L:::Uk<I>k E G.L n V. In !Rt, take the £00-norm. Then, (!Rt)* is 
1 

m 

equipped with the £1-norm. Let iI> = Lakil>k. To the functional iI> there corre-
1 

sponds in (!Rt)* the functional a= (ai, ... , at)· Applying the duality relation, we 
obtain 

dist(il>,VnG.L)= inf ll<I>-cpll= inf llt(ak-uk)il>kll 
rpEVnG.L uEG'.l l 

t 

::; inf L lak - ukl =dist (a, G'.L) 
ucG1 .L 1 (£1) 

sup la (g')I = sup lil>(g)I. 
g1EG' gEG,l<l>k(9)l~l,k=l, ... ,t 

119'11009 

PROOF OF THEOREM 1.19. According to Proposition 1.7, forµ E D.L, 11µ11 = 
1, there exists a net of measures {µe}, llµell = 1, weak (*) converging toµ. The 
order of indices is determined by the set of partitions {O} of the basis sets Xi. 
The measure µe is supported on a set that coincides with the set A = A9 in 
Theorem 1.18. Since, in view of Theorem 1.12, the system of basis functions is 
proper, Proposition 1.7 shows that for 0 > 00 (c) we have 

(1.100) 

Estimate the distance din C(Y)* from µe to the subspace of measures supported on 
A9 and annihilating the subspace D. In order to use Lemma 1.20 we set B = C(Y), 
G = D, il>k = Xk, Xk E A9 (t is the number of points in A9 ), iI> = µe. Then, by 
Lemma 1.20 we have 

(1.101) sup lµe(w)I = sup lµe(w)I. 
wED wED 

lwlA99 llwllA99 

According to Theorem 1.18, for w ED there exists w' ED such that 

(1.102) llw'll :S MllwllA9· 

Therefore, if llwllA9 ::; 1, then llw'll ::; Mand in view of (1.101), (1.102) we have 

(1.103) d::; sup lµe(w)I = sup lµe (w')I::; Mc. 
wED ~ED 

llwllA99 llw'll~M 
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Thus, there exists a measure >..e E D.l.. supported on A8 and such that 

It is clear that the net { ll~:ll} satisfies all the requirements. 

Subspaces of sums. Let all H(Yj) be one-dimensional and consist of con
stants, j = 1, ... , m. Then, the subspace D consists of functions 

m 

{1.104) LYi (Y(j)), Yi E C(Yj) · 
j=l 

As above, assume that we cannot have inclusions (j) C (k) for j =f. k, although it is 

possible to have (j) n (~ =f. 0. A system biorthogonal to the basis of H(Yj) consists 

of any measure µi on Yj for which 

{1.105) 

Projections Pj : C(Y) -t Dj = {gj (yj)} and the complimentary projections Ri are 
given by the formulas: 

Ri : f(y) -t f(y) - Pjf· 

In particular, for µi we can take the 6-measure at a fixed point Y(.1) E Yci)• and 

then 

{1.107) 

are extensions of the formulas {1.48)-(1.49). Since the assumption of total separa
tion of variables is obviously satisfied when D has form {1.104), we can formulate 
the following corollary. 

COROLLARY 1.21. The operator P constructed out of operators Pj {{1.106) or 
1.{107)) according to {1.43) is a projection of C(Y) onto D that consists of functions 
{1.104). The subspace D consists of those and only those functions FE C(Y) for 
which (see {1.45)) 

{1.108) RF=O, whereR=R1 •.. Rm, Rj=l-Pi, j=l, ... ,m. 

For all f E C(Y) and F = Pf the interpolational identities hold: 

{1.109) j= 1, ... ,m, 

and, in particular, for the case {1.107), 

{1.110) f (Yi1Y'}) - F (Yi1Y'}) = 0. 
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Bounded functions. Now let us deal with bounded functions instead of con
tinuous ones. B(T) (l00 (T)) is the space of bounded functions with the uniform 
norm on a set T. Let X, Xi, i = 1, ... , N, be arbitrary sets, ~i : X ~ Xi some 
mappings. By BD we denote the subspace in B(X) that consists of functions 

N 

(1.111) L hi(x)gi o ~i(x), 
i=l 

with 9i E B(Xi) and the basis functions hi(x) E B(X). We obtain an analogue 
of the subspace in (1.1). Similarly, we form analogues of the subspace D in the 
situations (1.4), (1.7), (1.11)-(1.12), (1.51), and (1.68): 

The analogue of (1.4): 

N 

(1.112) L hi(x)gi (xi), 

The analogue of (1.7): 

m 

(1.113) Lhi(x)gj (y3), hj E B(Y), gj EB CY;). 
j=l 

The analogue of (1.11), (1.68): 

m 

(1.114) BD = LHj ®B(Yj), 
j=l 

Here, as in (1.11), the H3 are finite dimensional subspaces. 
The analogue of (1.12): 

m m; 

(1.115) LLhJ (ii3)gJ (y3), 
j=16=1 

The analogue of (1.51): 

(1.116) BD· - H3 '°' B (Y.) ,- 'OI 3• 

(We have given a complete list of those subspaces for convenience in future 
references.) The definition of a proper basis system { h3} does not change, nor do 
those of separated and totally separated variables. 

PROPOSITION 1.22. The statements of Proposition 1.1, Lemma 1.10, Theo
rem 1.12, and Corollary 1.2 also hold for the subspace BD. 

Since the space B(T) is dual to l 1(T) (see §2 in Chapter 1), Lemmas 1.2-1.5, 
Propositions 1.6-1.7, and Theorem 1.19 can be applied to the description of the 
annihilator (BD)l. that consists of all µ E l 1 (T) for which (µ, w} = 0, w E BD 
( (µ, w} denotes the action of the functional w on the element µ, i.e., the integral 
of the function w with respect to the measure µ). Weak ( *) convergence in Propo
sition 1.7 and Theorem 1.19 means convergence over every continuous function, 
which is weaker than weak convergence in the space l 1(T) (that is, convergence 
over all bounded functions). 



150 3. PROBLEMS OF APPROXIMATION BY LINEAR SUPERPOSITIONS 

Bibliographical notes. Subspaces like those in (1.12) in connection with 
approximation of functions of several variables (with various goals) have been con
sidered in many papers. In particular, for Hi spaces of ordinary polynomials of a 
given degree and splines were used. 

Consideration of the projections Pi in (1.53), (1.69), and the projection P con
structed from Pj using (1.43) is the essence of the "blending" method developed 
in a number of papers by Gordon; see, e.g., [66], [67]. In these papers formulas 
(1.43), (1.45), (1.71), (1.72) are widely used together with other relations asso
ciated with the Boolean distributive structure of commuting (and in some cases 
even noncommuting-e.g., [68]) projections. Blending (of variables) occurs when 
a projection Pj: C(Xi)--+ Hi(Xi) originally defined in a space of functions of one 
variable is extended to the whole space C(Y) of functions of several variables, and 
the variables different from Xj are treated as parameters. 

For applications to numerical methods in boundary value problems for differ
ential equations, operators similar to Pj and P are considered in spaces of differ
entiable functions. For Dj one can take the subspace of solutions of the ordinary 
differential equation djf = 0 with the linear differential operator dj (with respect 
to the variable Xj); and then, according to (1.45), D consists of the solutions of the 
partial differential equations d1 ... dmf = 0. 

Linear functionals used in constructing the projections Pj are chosen so that in
terpolation conditions (1.54), (1.70) would be helpful for a boundary value problem. 
The method is also used for numerical integration and solving integral equations, 
and some other problems. 

Brudnyi [24] arrived at the considerations associated with the Boolean struc
ture of the set of projections almost at the same time; he was investigating subspaces 
similar to (1.12) in connection with approximation of various classes of functions 
given by their differential properties. The approximation was conducted not only 
in the uniform metric, but in the integral metrics as well. For basis functions hff in 
[24] ordinary algebraic or trigonometric polynomials were taken, and every product 
Y(j) contained the same number of factors Xi that provided a "homogeneity" of 
functions in D. For the latter situation, problems of uniform approximation by 
the subspace D were also studied by Vaindiner [139]. One of the main results 
in [139] was establishing Corollary 1.15 for that case, yet a proof was not given 
there. Theorems 1.18 and 1.19 are most important from our viewpoint. For the 
case of two variables they have been proved by Cheney and Light [93), together 
with Lemmas 1.17 and 1.20, and Proposition 1.6. 

The presentation in this section mainly followed the scheme in [93), although 
the general case naturally turned out to be more complicated. 

§2. On the existence of best approximations 

THEOREM 2.1. If a basis system is proper in B(Q), then the subspaces in 
(1.111)-(1.116) are closed in the weak (*) topology of the space B(Q), Q C Y 
(B(X) for (1.111)), and are proximinal. In particular, the subspace BD (1.114) 
is weak (*) closed and proximinal in B(Y), provided that the variables are totally 
separated. 

PROOF. Since the subspace B(Q) is dual to i 1 (Q), we need only prove weak(*) 
closedness. Keep the notation of (1.113). Let {we} be a net of functions in BD(Q), 



§2. ON THE EXISTENCE OF BEST APPROXIMATIONS 151 

i.e., functions 
m 

WfJ = L hj(x)gj,6 (yj), 9j,6 EB (Y;), 
j=l 

that converges in the weak(*) topology to a function w, and llwell $ M. Since the 
llxell are bounded and the basis hj is a proper system, the ll9j,ell, j = 1, ... , m, 
are also bounded. In view of the Alaoglu theorem, taking a subnet if necessary, 
assume that {9j,9} converges in the weak (*) topology of B (Y;) to 9j E B (Y;), 
j = 1, ... , m. But then it is clear that 

m 

w = Lhj(x)gj (yj) E BD, llwll$M. 
1 

We have proved weak(*) closedness of the intersection of BD(Q) with any closed 
ball. But then BD(Q) is weak(*) closed (see, e.g., (40]), and the proof is complete. 
According to Proposition 1.22 and Theorem 1.12, the assumption (1.114) about 
total separation of variables yields properness of the basis system in B(Y). 

COROLLARY 2.2. The subspace of sums 
m 

(2.1) L9j (Y(j))' 9j E B (Y;), (j) ¢. (k) provided that j =F k 
j=l 

is closed in the weak(*) topology of B(Y) and is proximinal (cf §3 in Chapter 2). 

Approximation by sums on sets Q c Y. Let Q c Y = X 1 x · · · x XN be a 
set. Naturally, properties of the subspace BD(Q) of restrictions to Q of functions 
from BD(Y) depend on geometry of Q. We consider these questions for a subspace 
made out of functions (2.1), thus continuing certain considerations in §§2, 3 in 
Chapter 2. 

Bars (cf. §§ 2.3 in Chapter 2). Let (j) be a set of indices in (1, ... , N) and 
Yfo E Y(j), a fixed point. By QY(;> we denote the cross-section of Q by the hyper
plane Y(j) = Y(j). Thus, 

(2.2) 

(Of course, for a given point Yfo E Y(j)• Qyfo may turn out to be empty.) Let (k) 

be another set of indices and (k) c (3). (Recall that (j) is the complementary set 
to (j).) By a bar of the passport ((j), (k)], or simply a ((j), (k)]-bar, we mean a 
cross-section Qyfo such that 

(2.3) 

Of course, such bars do not necessarily exist. The following lemma is obvious. 

LEMMA 2.3. If a cross-section Qyfo is a bar of the passport [(j), (k)], then it 
is also a bar of a passport [(j), (r)J whenever (r) C (k). 

PROOF. According to the assumptions, (2.3) holds. But since (r) c (k), we 
have 
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THE MAIN LEMMA. Let (j) and (k) be two sets of indices. We shall say that 
there exists a bar of the passport [(j), (k)]* in Q if Q contains at least one bar of 
either the passport [(j)\(k), (k)] or the passport [(k)\(j), (j)] 

LEMMA 2.4. Let Q contain a bar of the passport [(j), (k)]*. Then the following 
hold: 

1. If a net of functions {Fa}, 

(2.4) 

converges to a function Fin the weak(*) topology of the space B(Q), then 'Pa and 
1/Ja can be replaced by functions cp~ (Y(j)) and 1/J~ (Y(k)) such that · 

(2.5) 

and, moreover, { cp~ (Y(i))} and { 1/J~ (Y(k))} weak(*) converge. 
2. A subspace of functions 

(2.6) 

is closed in the weak(*) topology of B(Q), and therefore is proximinal. 

PROOF. Let (r) be a set of indices. First of all, it is clear that if a net of 
functions {<Pa (Y(r))} weak(*) converges in B(Q) to a function <I>, then <I> depends 
on Y(r) only. Indeed, let (Y(r)> YtN)\(r)) and (Y(r)> yrN)\(r)) be two points that differ 
only by coordinates with indices inside (N)\(r). Then 

so that <I> depends only on Y(r)- Now, let {Fa} be a net of the form mentioned in 
the lemma. Consider the functions 

(2.7) 
cp~ (Y(i)> Y(k)\(j)) =Fa (YU)> Y(k)\(i)) -1/J~ (Y(k)), 

1/J~ (Yk) = F (Yfo\(k)> Y(i)n(k)> Y(k)\(j)) · 

Here, Y(j)\(k) is the point for which the cross-section QY(;>\Ck> is a bar of the passport 
[(j)\(k), (k)]. (We conduct the argument for that case. When there exists a bar of 
the passport [(k)\(j), (j)], the arguments follow modulo obvious symmetric changes 
with respect to (k) and (j).) From (2.7) it is clear that 1/J~ (Y(k)) indeed depends 
only on the variable Y(k)- Let us show that the function cp~ in (2.7) depends only 
on Y(i) and not on Y(k)\(i). Take two points in Q where 

ti = (Y(i)> Ytk)\(i)> Yts)) = ( Y(i)\(k)> Y(i)n(k)> Ytk)\i• Yts)) , 

(2.s) t2 = (Y(i» Yrk)\(j)> Yrs>) = ( Y(i)\(k)> Y(j)n(k)> Yrk)\(j)> Yrs>) , 

-----where (s) = (j) U (k) is the complement to (j) U (k). 

These points differ by coordinates with indices in (k)\(j) and (s), but the latter are 
unnimportant in view of the above remark. Since QY(;>\Ck> is a bar of the passport 
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[(j)\(k), (k)], there exist two points 

(2.9) 
ta = ( Y(il\(k)' Y(i)n(k}> Ylkl\Ci» Yrs)) , 

t4 = ( YCn\(k)• Y(i)n(k), Y~k)\(i)• Yts)) , 
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whose coordinates with indices in (k) coincide with those of ti and t2, respectively. 
For a function <Ii on Q set 

(2.10) 

Since 1/J°' and 1/J~ only depend on Y(k)• whereas cp°' depends only on Y(i)• we find at 
once that 

A.cpOI. = 0, 

Therefore, A.cp~ = A.F°' -A.cp~ = 0 as well. But the latter equality can be rewritten 
in the form 

(2.11) 

Thus, cp~ is a function of Y(i) only. Since {F°'} converges weak (*),so does {1/J~}. 
But then { cp~} also converges in this topology. Thus, using once again the remark 
made in the beginning of the argument, we have proved that 

This completes the proof of the lemma. 

Depending on the structure of the sums (2.1), one can by Lemma 2.4 choose 
various geometric requirements on Q that would provide weak ( *) closedness of the 
subspace BD(Q) and hence its proximinality. Let us give one example. 

Geometry of Q and proximinality of a subspace of sums. 

THEOREM 2.5 ([83]). Let Q contain bars of the following passports: 

(2.12) 

[(2) U (3) U · · · U (m), (1)]* : 
[(3) U (4) U · · · U (m), (2)]* : 

[m,m-1]* (2.12m-i) 

Then the subspaces of functions (2.1) is weak(*) closed and proximinal in B(Q). 

PROOF. Let a net of functions {F°'}, 

(2.13) 

converge weak(*) in B(Q). In view of (2.121) and the preceding lemma we have 

where, in view of the structure of F°' (formula (2.13)), F~ has the form 

(2.14) 
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while { cp~ 1 (Y(l))} and { F~} converge in the weak ( *) topology. Because of the 
existence of the bar (2.122), we again apply Lemma 2.4, etc. After the (m - l)st 
step we obtain that 

(1/J~ = cp~ 1, etc.), and each one of the nets { 1/J! (Y(k))}, k = 1, ... , m, converges 
weak(*). 

The universal set of bars. Let us point out a sufficient condition which 
guarantees that for any set of index groups (j), (j) = 1, ... , m, the subspace of 
sums (2.1) is proximinal. 

THEOREM 2.6. For all i = 1, ... , N, let there exist xi such that the cross
section Qxf of the set Q by the hyperplane Xi = xi is a bar of the passport 
(i, (1, ... , i - 1, i + 1, ... , N)]. Then, for any set of index groups (j), the subspace 
BD of functions (2.1) is closed in the weak (*) topology and is proximinal. 

A proof is obtained by using Lemma 2.3 in order to show that in Q there exist 
bars for all passports and then applying Theorem 2.5. 

Approximination of continuous functions by sums. The question con
cerning existence of the best approximation in the space of continuous functions is 
more complicated. 

THEOREM 2.7. The subspace of sums (1.104) is proximinal in C(Y), provided 
that any two sets of indices (j) and (k), j =I k, are disjoint. For a function f E 
C(Y) there exists a best approximation in the subspace (1.104) that has modulus of 
continuity over each group of variables Y(i) not worse than that of f. 

PROOF. Consider approximation off in B(Y) by a subspace (2.1) that differs 
from (1.104) in that it allows bounded, not merely continuous functions. According 
to Theorem 2.5, f has the best approximation 

<p1 (Y(1)) +···+'Pm (Y(m)) E BD(Y). 

Consider a family of functions of Y(l): 

F (Y(1), · · · , Y(m)) = f (Y(1), Y(2), · · · , Y(m)) - f 'Pi (Y(j)) 
'-o,..-". j=2 

for which the variables Y(2), ... , Y(m) are parameters. All functions in the family 
are equicontinuous with respect to Y(l). Set 
(2.15) 

cpt (Y(l)) = -2
1 [ sup F (Y(1), ... , Y(m)) + inf F (Y(1)> ... , Y(m) )] . 

Y(2Jo"' 1Y(m) Y(2)•"' 1Y(m) 

Then, for all Y(l) we have 

sup IF (Y(1)1 · · · , Y(m)) - 'Pt (Y(l)) I 
Y(2) .. ·Y(m) 

< sup IF (Y(1)1 · · · 1Y(m)) - 'Pl (Y(1))I, 
Y(2) .. ·Y(m) 
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and hence 

II/ - cpt (Y{l)) - <p2 (y2) - · · · - <pm (Y(m)) II =sup sup IF - cpt (Y{l)) I 
Y(l) Y(2)' .. Y(m) 

:::; sup sup IF- cp1 (Y(1))I =II/- f cpjll · 
Y(1) Y(2)'"(m) 1 

Therefore, the sum cpt(Y(1)) + cp2(Y(2)) + · · · + cpm(Y(m)) also gives the best approx
imation to f in B(Y). Now, starting with it, we deal with the second group of 
variables Y(2), etc. 

We obtain the best approximation off in B(Y) by a function cpt(Y(i)) + · · · + 
cp~(Y(m)) with continuous summands. Moreover, from {2.15) and similar formulas 
for other summands and properties of the operator M {see Lemma 6.13 in Chapter 
2) follow the statements concerning the nature of continuity of the best approxi
mation. 

Theorem 2.7 was established in (113], and it generalizes the existence theorem 
of Diliberto and Straus, and Kolmogorov for two variables {Theorem 6.14 in Chapter 
2). 

Duality relations. Theorem 1.19 allows us to somewhat simplify ordinary 
duality relations for that situation. 

PROPOSITION 2.8. For the subspace D {1.11) with totally separated variables 
{1.13) and f E C(Y), we have 

{2.16) dist{!, D) = sup lµ{f)I = sup lµ{f)I. 
µED.l. µED.l.nt~ 
11µ119 11µ,ll=l 

Here, dist(!, D) is the distance from f to D, and .el (as in §3 in Chapter 1) is 
the set of measures with finite support. 

Equality of distances from a continuous function to subspaces D and 
BD. In a more general situation than that in Theorem 1.19 one can successfully 
apply the not-so-sophisticated Proposition 1. 7. 

THEOREM 2.9. Let Xi, ... ,XN be compact sets, h1(x), ... ,hM(x) be contin
uous functions on Y that form a basis in D and B D, where D and B D are the 
subspaces defined by (1.7) and {1.112), respectively. For f E C(Y), we have 

{2.17) dist{!, D) = dist{!, BD). 

PROOF. According to the ordinary duality relation, there exists a regular Borel 
measureµ E D.l.., 11µ11=1, such that 

{2.18) µ(!) =dist{!, D). 

According to Proposition 1. 7 we can construct a net {µe} of measures with finite 
supports that converge weak(*) toµ in C(Y)*. Each measure µe is in .e1, hence 
acts on all bounded functions. It is easy to see that the relation {1.32) proven in 
Proposition 1.7, saying that lime lµelD = 0, can be replaced by a stronger one: 

{2.19) limlµelBD = O. 
8 
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Indeed, in the proof of (1.32) we only used continuity of hi and boundedness of Yi· 
Let wo E BD be the best approximation to fin BD. It exists because BD(Y) is 
proximinal (Theorem 2.5). Since 

µe(J) = µe(J-wo) + µe(wo), 

we obtain 

dist(!, D) = µ(!) = limµe(J) = limµe(f - wo) 
(} (} 

~ llµellll/-woll = 11/-woll = dist(J,BD). 

Since the converse inequality is obvious, the theorem is proved. 

REMARK. In (92], (94] the theorem was proved for N = 2 and in a less general 
situation (separated variables for N = 2 are always totally separated) by totally 
different arguments based on the Michael theorem on continuous selections (see, 
e.g., (105-106]). Attempts to apply these arguments to our situation would have 
required more severe restrictions than in Theorem 2.9: it is necessary that any two 
groups of indices (j) and (k) be disjoint when j =f. k. 

FUrther results on existence of best approximations. Convenient re
sults based on properties of a function that would guarantee existence of the best 
approximation in a general subspace (1.1), (1.7), or (1.11)-(1.14) are still lacking 
in the case of N > 2 variables, even for the simplest geometric case when ap
proximation is carried out on a product X1 x · · · x XN. For N = 1 (subspaces 
H (X1) ® C (X2) in C (X1 x X2)) and N = 2, a survey of results can be found 
in Chapter 2 of (94], where metrics different from C and £00 are also considered. 
Among the investigations that have appeared since that book was published, let us 
point out the following negative result. 

THEOREM 2.8 ((46]). The subspace 

D = H 1 (X1) ® C (X2) + H 2 (X2) ® C (Xi), 

where X1 = X2=(0,1], H 1, H 2 are two-dimensional spaces of linear polynomials, 
is not proximinal in C (X1 x X2). 

Also, let us point out a survey (50] where the connection of those problems to 
the theory of Chebyshev centers is given. 

In the case when D and B D consist of sums (all basis functions hi = 1), in 
(54a] geometric conditions for sets QC X1 x · · · x XN that guarantee proximinality 
of D and BD in C(Q) and B(Q), respectively, were studied. These conditions 
generalize criteria from §3 of Chapter 2, where the results of (54] were presented. 
The geometric conditions considered in [54a] are of a different character than those 
used in Theorem 2.5. 

In (88] Konyagin gave a rather general result concerning proximinality in LP, 
1 ~ p ~ oo (in particular, in £00), of sets of a certain class defined by special 
functional equations. Some linear subspaces, linear superpositions, and also some 
nonlinear sets fall into that class. The spaces LP themselves are products and, in 
particular, £00 is considered on X 1 x · · · x XN. 
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§3. Effective construction of best approximations 

On Chebyshev's theorem. The complexity of the geometry of the supports 
of measures in D.l.. is the reason why direct analogues of Theorem 6.1 in Chapter 
2 are lacking for the approximation by the subspaces (1.7)-(1.13), or even by sub
spaces of sums (1.104) when the number of variables N > 2. Of course, general 
methods of characterization of the best approximation via functionals in D.l.. apply 
(see Theorem 6.2 in Chapter 2); however, their specialization that would take into 
account the structure of the subspace D is hampered by the geometry of the sup
ports of measures in D.l... Let us give an e-version of a characterization of the best 
approximi:i.tion that may be useful in view of Lemmas 1.2-1.4. 

PROPOSITION 3.1. Let D satisfy the assumptions of Theorem 1.19. In order 
that a function cp E D give the best approximation to a given function f E C(Y) 
it is necessary and sufficient that for each e > 0 there exists a measure µe E D.l.., 
llµell = 1, that has a fin~te support Sµ. and satisfies the condition 

(3.1) 

PROOF. If cp E D is the best approximation to f, then according to Theo
rem 6.2 in Chapter 2 there exists a measureµ E D.l.., 11µ11 = 1, withµ(!) = II/ -cpll · 
For µe it suffices to take a measure with an appropriate index from the sequence 
{µ9} described by Theorem 1.1 weak(*) converging toµ. If for µe (3.1) holds and 
llµell = 1, then for all cp ED we have 

(3.2) 

and combining (3.2) and (3.1) yields that II/ - cpll ~ II/ -1/Jll. 

In the general theory of best approximation there is another type of character
ization theorem different from Theorem 6.2 in Chapter 2, the Kolmogorov criterion 
(see, e.g., (120]). Naturally, it applies to our problems as well. However, its spe
cialization that would use effectively the specific structure of the subspace D is still 
difficult. 

For certain classes of functions in case of a subspace of sums one can directly 
point out best approximations. We now present an interesting result of Babaev 
([19], (21]). 

Monotonicity . of functions of severai variables. Let Y be an m-dimen
sional parallelepiped in IR.m: 

(3.3) Y = { x E IR.m : ai ~ x ~ bi, i = 1, ... , m}, 

which we shall denote by II( a, b) or, in a more expanded form, 

Let P1, ... , P2m be the vertices of IT( a, b). For functions f E C(IT(a, b)) consider 
the linear functional 

m 

(3.4) L(f,IT(a,b)) =rm 2)-1)6(Pk) f(Pk), 
k=l 
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where 8(Pk) is the number of coordinates ai for the vertex Pk. (For example, 
8(bi. ... , bm) = 0, 8(ai, ... , am) = m, 8(a1, a2, a3, b4, ... , bm) = 3.) Clearly, llLll = 
1. 

For an arbitrary parallel piped II( a:, /3) C II( a, b) we can similarly construct a 
functional L(f, II(a:, /3)). If we set hi =bi - ai, i = 1, ... , m, it is easy to calculate 
that 

(3.5) 

where l::i..h1 h2 ... hm (!) is the mixed finite difference of order m of the function fat the 
point a = ( ai, ... , am) determined by the increments of the variables h1, ... , hm. 
A function f E C(II(a, b)) is called monotone if 

(3.6) L(f,II(a,/3)) ~ 0 for all II(a:,/3) c II(a,b). 

We denote the class of such functions by M (II( a, b)). 

An extension of the class of monotone functions. Now we introduce a 
weaker monotonicity condition extending the class of monotone functions. Intro
duce the notation 

m=l, ... ,m, lp={ii, ... 1 ip},i1< .. ·<ip, 

Jq={j1, ... ,jq},j1<···<jq, lp,JqCm, pq=m\(IpUJq)· 
(3.7) 

Therefore Ip and Jq are ordered subsets in m containing p and q numbers, respec
tively. Set 

(3.8) 

where x = (xi. ... , Xm) E II( a, b). Let us comment on these formulas. Each one of 
the parallelepipeds used in (3.8) has a ("running") fixed point x as one of its vertices, 
while all other vertices are located on the faces of the main parallelepiped II( a, b) 
and one of them coincide with a vertex of II( a, b). For k = 0 the corresponding 
term in (3.8) has the form 

L (t, [bi, ... ,bm ]) . 
Xi, ... 1 Xm 

We consider a class W of functions in C(II(a, b)) for which 

x x 

(3.9) I E w {::} ~)!) ~ 0, ~)!) ~ 0 for all x E II( a, b). 
1 2 

Clearly, M ~ W. 

The subspace D. The subspace D of approximants consists of sums of func
tions, each depending on m - 1 variables 

(3.10) D = {'Pl (x2, ... , Xm) + 'P2 (xi, X3, ... , Xm) + · · · +'Pm (xi, ... , Xm-1)}. 
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LEMMA 3.2. The following conditions are equivalent: 

(1) FED. 

(2) L(F,II(a,,B)) = 0, II(a,,B) c II( a, b). 
x 

(3.11) {3) LU) =O. 

x 

(4) LU) =O. 
2 

PROOF. The implication 1 => 2 follows at once from our previous results con
cerning the structure of measuresµ E D.l.. {cf. Lemma 4.1 in Chapter 2, and Lem
mas 1.2-1.4). Clearly, 2 => 3 and 2 => 4. We show that 3 => 1. In parallelepipeds 

x 

participating in the formula (3.8) for L(F) the vertex x = (xi, ... , Xm) appears 
1 

[m/2] 

L (;:c) times, and in any such parallelepiped 6(x) = m-2k, {-1)6(x) = {-l)m. 
k=O 

x [m/2] 

Hence, L (F) contains the term ( -1 r ;2m L (;:c) F (Xi, •.• ' Xm)' while each of 
1 k=O 

x 

the remaining terms depends on fewer than m variables. Hence L(F) = 0 implies 
1 

FED. Similarly, one can prove that 4 => 1. 

The best approximation of monotone functions. Let E(f) = dist{!, D) 
be the distance from f E CII(a, b)) to the subspace D (3.10). 

THEOREM 3.3. If f E w, then 

{3.12) E(f) = L(f, II( a, b)), 

and the function 

{3.13) <p(x) = f(x)- f)-l)s+m LL (1, [bi,.·· ,Xi.i•··· ,x~ • ... ,bm ]) 
- X1' ... ' ai1' ... ' ai • ... ' Xm 

s=O l 8 Cm 

gives the best approximation to f. 

This theorem is due to M.-B. A. Babaev. For the proof we need the following 
lemmas. 

LEMMA 3.4 {Additivity of L as a· function on parallelepipeds). If a paral
lelepiped II( a, b) is represented as a union of parallelepipeds II(ai, .Bi), 

8 

II( a, b) = LJ II(ai, .Bi), 
i=l 

with pairwise disjoint interiors, then 
8 

(3.14) L(f,II(a,b)) = LL(f,II(ai,.Bi)). 
i=l 
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The proof is elementary, so we omit it. 

LEMMA 3.5. The following identity holds for all x E II( a, b): 

LU,IT(a,b)) = f LL(!, [bi, ... ,xi.1 1··· ,x~····· ,bm ]) . 
Xi, .•. , ai1 , ••• , ~ , ••• , Xm 

s=OI.cm • 

(3.15) 

PROOF. Fix x. Any two parallelepipeds appearing on the right-hand side of 
(3.15) do not have common interior points, since there is at least one coordinate for 
which the intervals in those two parallelepipeds in which it varies have no common 
interior points. Moreover, the union of all those parallelepipeds is II( a, b), and it 
remains to refer to Lemma 3.4. 

PROOF OF THEOREM 3.4. Let f E w. Consider the function 

(3.16) F = f(-l)s+m LL(! [bi, ... ,xi.1 1··· ,x~····· ,bm ]) . 
- Xi' ... ' ai1 ' ••• ' ai.' ... 'Xm s=O I.cm 

From the proof of Lemma 3.2 (3 => 1) it follows that 

(3.17) F(x) = f(x) - cp(x), cp(x) ED. 

Indeed, the number of parallelepipeds in (3.16) equals~(:)= 2m, and each of 

them contributes a term 2-m f(x) to (3.17) while the remaining terms belong to D. 
The minus sign in front of cp(x) is of no importance. Let us show that 

(3.18) l!Fll = LU,IT(a,b)) = L(F,IT(a,b)). 

The latter equality in (3.18) follows because 

(3.19) L(F, IT( a, b)) =LU, IT( a, b)) - L(cp, IT( a, b)) =LU, IT( a, b)) 

since cp E D and L E D1- according to Lemma 3.2. For convenience, denote 
LU,IT(a,b)) = E. In view of (3.15) we have 

:z: :z: 

(3.20) E = L:U) + L:U) ~ 0, x E II( a, b), 
i 2 

whereas from (3.16) it follows that 

(3.21) F(x) = (-1r (tu) -tu)). 
Using (3.20) in (3.21), we obtain 

Let m be even. Using the definition of the class W, we conclude from (3.22) that 

:z: :z: 

-F(x) + E = 2 LU)~ O, F(x) + E = 2 LU) ~ o, 
2 i 
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whence jF(x)I ~ E. If mis odd, then (3.22) gives 

x x 

F(x) + E = 2 I)n ~ o, F(x)- E = 2 ~)!) ~ 0, 
2 1 

and again IF(x)I ~ E. So, 

(3.23) l!Fll ~ E = L(f,II(a,b)) = L(F,II(a,b)) ~ llLlll!Fll = llFll· 

From (3.23) we obtain that 

(3.24) llFll =II/- 'Pll = L(f,II(a,b)) 

and, according to the general characterization of the best approximation, cp E D is 
the best approximation to f in D. Thus, we have proved (3.12) and (3.13) (which 
follows from (3.16) and (3.17)), and Theorem 3.3 follows. 

Note that (3.24) implies that II/ - cpll is attained at all vertices of II( a, b) with 
alternation of indices in accordance with factors (-1)6(Pi) in (3.4). 

An alternative expression for the best approximation. Let Ip and Jq 
be two intersecting subsets of m. By 

we denote a point whose coordinates with indices in Ip coincide with those of 
a = (al, ... , am), whose coordinates with indices in Jq coincide with those of 
b = (bi, ... , bm), and the rest of whose coordinates coincide with the coordinates 
of the running point x =(xi, ... , Xm) with indices in m\(Ip U Jq)· The expression 
for the best approximation (3.13) now becomes 

m 

(3.25) cp(x) = L (-l)P+q+1r<p+q) L f [(a)I",bJ9 ,Xpq]. 
p+q=l lpJ9 Cm 

Corollaries. 

COROLLARY 3.6 (A characteristic property of the class M(II(a, b))). In order 
that f E M(II(a, b)), it is necessary and sufficient that for any II( a, /3) C II( a, b) 
we have 

(3.26) E(J)n(a,(3) = L(J,II(a,/3)). 

Here, E(J)n(a,(3) is the best approximation off by the subspace D (3.11) in 
the C(II(a,/3))-metric. 

PROOF. If f E M(II(a,b)), then, of course, f E M(II(a,/3)) and, in view 
of Theorem 3.3, (3.26) holds. If (3.26) holds, then L(J, II( a, /3)) ~ 0 and f E 
M(II(a, b)). 
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THEOREM 3.7 (Flatto (48]). Let a function f defined on IT( a, b) have a con
tinuous mixed partial derivative 

(3.27) <rf > o. 
8x1 ... 8xm -

Then the statements of Theorem 3.3 hold. 

Indeed, 

-min amf L(f, II( a, {3)) = 2 a a dxi ... dxm, 
Il(a,{3) X1 • • · Xm 

so f E M(II(a, b)). Theorem 3.7 generalizes Corollary 6.12 in Chapter 2. 
Note in conclusion that for Xi, i = 1, ... , m, in Theorem 3.7 we can take not 

merely coordinates but disjoint groups of coordinates. By means of the function L 
in (21] a two-sided estimate of E(f) was also obtained for all f E C[a, b]. 

Approximation of products. Let D have the structure {1.11): 

m 

(3.28) D= LHi(i/j)®C(Yj), 
j=l 

where the sets Yj are pairwise disjoint (the Hi are still finite dimensional subspaces 
in C(i/j)). 

THEOREM 3.8. Let 

m 

(3.29) 1 =II fj W;), f;(Y;)EC(Yj), j=l, ... ,m, 

and let the 'Pi (ii;) E Hi be the best approximations to fj in C(Yj) by subspaces H;, 
whereas Ei = II!; - 'Pill is the magnitude of that approximation for j = 1, ... , m. 
Let E(f) be the magnitude of the best approximation of the function f by the sub
space Din C(Y). Then 

m 

(3.30) E(f) =II Ej, 
j=l 

and 

m 

(3.31) 'P = f - II {!j - 'P;) ED 
1 

is the best approximation to f. 

PROOF. First of all, it is clear that ip indeed belongs to D. Furthermore, ac
cording to the general criterion for the best approximation (Theorem 6.2 in Chapter 
2) there exist linear functionals >..; E Hil. c C (Yj) with the following properties: 

11>.ill = 1, >..; Ui) =II!; - 'Pille(~)= Ei, j=l, ... ,m. 
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The functional >. = >.1 ® · · · ®Am belongs to C(Y)*, II.XII = 1, and by Lemma 1.5, 
>. E D.l.. We have 

m 

0 =>.(cp) = >.[/] - II Aj [/; - cpj] 
1 

m 

=>.[/] - II II/; - cpillc(f;) = >.(!) - II/ - cpllc(Y)• 
1 

i.e., 

(3.32) >.[/] = II! - 'Pllc(Y)· 

From (3.32) all statements of the theorem follow. 

Theorem 3.8 is due to Shapiro [118a]. A more abstract version can be found 
in [24]. 

A problem in L2 • Digressing from our earlier agreement not to consider 
metrics other than C and f/X>, we now consider a problem of approximation by 
sums in the L2-metric. The reason is that a beautiful result obtained in that 
problem stems from the Boolean properties of projections closely related to the 
approach developed in §1 of this chapter. Only this time we are speaking about 
orthogonal projections-a natural object in the Hilbert space theory (see, e.g., [118], 
[40]). The above-mentioned result also deserves our attention here because it was 
probably the first for which an explicit formula for the solution was obtain in a 
rather general problem of approximation by sums of functions of a smaller number 
of variables. 

Let Xi, ... , XN be sets, and on each Xi, i = 1, ... , N, let there be a a-algebra 
of subsets Mi on which there is defined a probability measure µi: 

(3.33) 

So, (Xi, Mi, µi) are measure spaces with probability measures. If Y = X1 x · · · x 
X N, then we define a measure on Y by setting 

(3.34) 

If (j) = (ii, ... , iN) is a subset of indices in N = {1, ... , N}, Y(j) = Xi1 x · · · x Xi;, 
then there is an induced measure on Y(i) 

(3.35) 

(When considering different products we keep the same conventions about the order 
as in §1.) As in §1, (}) denotes the set of complementary indices to (j). The spaces 
L2 (Y(j)• µ(j)) can be naturally embedded as subspaces into L2 (Y, µ). For a function 

f E L2 (y,µ), f(Y(i)) denotes its mean over Yeil: 

(3.36) f (Y(j)) = { fdµ(J). 
}y(]) 

A direct calculation (here and below everything is based on the Fubini theorem) 
yields: 
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LEMMA 3.9. The formula {3.36) defines an orthogonal projection Pj : L2{Y, µ) 
--+ £ 2 (Y(j), µ(j)). The complementary orthogonal projection Rj is defined by the 
formula f - f (Y(3))· 

LEMMA 3 .10. Let E be a Hilbert space, Ei, ... , Em c E closed subspaces, 
Pk : E --+ Ek orthogonal projections, and Rk orthogonal projections complementary 
to Pk, k = 1, ... , m. If the projections Pk, k = 1, ... , m, commute pairwise, then 
{1.43) defines an orthogonal projection P of E onto Ei +···+Em, while {1.44) 
defines the complementary projection. 

The proof is obtained by induction, making use of elementary properties of 
orthogonal projections. 

LEMMA 3.11. Let (j) and (k) be two sets of indices inN and, moreover, (j) c/. 
(k), (k) c/. (j). Then, the projections P3 and Pk defined by the formula (4.46) 
commute, and for f E L2 (Y,µ) we have 

{3.37) PkP3(f) = PjPk(f) = f (Y(3)n(k)) = { _ _ fdµ(J)u(k)· 
lY(j)U(k) 

In particular, if (j) n {k) = 0, then f (Y(j)n(k)) = const = [ fdµ. 

Let (ji), ... , Um) be subsets in N such that (jk) c/. (it) when k =I l, k, l = 
1, ... , m. Consider in L 2 (Y, µ) the problem of best approximation to a function 
f(y) E L2{Y, µ) by functions from the subspace 

{3.38) L2 D = {'Pl (Y(Ji)) + ... +'Pm (Y(jm))}. 

THEOREM 3.12 (Mordashev (106-107]). The unique function in the subspace 
£ 2 D with the least deviation from a function f E £ 2 (Y, µ) is given by 
{3.39) 

F(y) = L f (Y(jk)) - L f (Y(jk)n(je)) 
1:5k:5l:5m 

f (Y(3k)n(3e)n(ir)) + · · · + {-1 r-i f (Y(3i)n(32)n···n(jm)) · 

A proof follows at once from the fact that the function least deviating from f 
must be an orthogonal projection off on the approximating subspace {this follows 
from well-known properties of Hilbert spaces) and, according to preceding lemmas, 
must be of the form (3.39). Uniqueness of the best approximation in a Hilbert 
space is also well known. 

Let dµ 1 = dµ 2 = dx = dy be the ordinary Lebesgue measure on I= (0, l]. For 
£ 2 (I2 , dx ® dy) consider the problem of best approximation by functions cp(x) + 
1/J(y). 

COROLLARY 3.13 {Denisyuk (37]). The function least deviating from a given 
function f(x, y) is unique and is given by the formula 

F = { f(x, y)dy + { f(x, y)dx - { fdxdy. 
11 11 112 

In [69], [70], certain problems of the best approximation in the £ 1-metric were 
more effectively solved by using ideas similar to those presented above. 
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On the Diliberto-Straus algorithm when the number of variables is 
greater than 2. The levelling algorithm of Diliberto and Straus studied in §7 of 
Chapter 2 gives an effective method of constructing the best approximation of a 
function of two variables by sums <p(x)+'l/J(y). In the case of three or more variables 
it may not succeed. This was first discovered by Aumann [13], whose paper does 
not appear to be widely known, and was repeated in (104]. 

A counterexample to the algorithm in IR.3 {[104]). For the sake of clarity, 
first consider the problem of approximating a continuous function f (xi, x2, x3) on 
the unit cube ! 3, I= [O; 1], by sums <p(x1)+1/J(x2)+x(x3). Our goal is to construct 
a function f (xi, x2, X3) for which a natural extension of the levelling algorithm does 
not lead to the construction of a best approximation. Define a continuous function 
on [O, 3] by setting 

{
-1, 0$t$1; 

F(t) = linear, 1 :$ t :$ 2; 
1, 2 :$ t :$ 3 

and let f (x1, x2, X3) = F (x1 + x2 + x3) on ! 3 (IJJll = 1). Also, define a function 
F(t) = F(t) - (t - 3/2). Then 

f (xi. x2, x3) = P (x1 + x2 + x3) = f (xi, x2, x3) - [(x1 - 3/2) + (x2 + x3)]. 

Let us show that the sum 

<p (xi) + 1/J (x2) + x (x3) = (x1 - 3/2) + x2 + X3 

is the best approximation to f (xi, x2, x3) among all sums <p(xi) + 1/J(x2) + x(x3). 
Note that llFll = 1, and if we construct the functional L(f, ! 3 ) by (3.4), then 

L(f, I 3 ) = ~ = llfll 

which proves the above assertion, since L E { <p + 1/J + x} .L. (The values of f at the 
vertices of the cube equal ±!, and the signs coincide with those of the charges at 
these vertices.) The function f takes the value -1 on all the edges emanating from 
the vertex (0, 0, 0) and the value 1 on the edges emanating from the vertex (1, 1, 1). 
Therefore, on any cross-section of ! 3 by a plane x1 = x~ its maximum equals 1, 
while the minimum equals -1. Therefore, it is levelled with respect to the variables 
(x2, x3). (Similarly, it is levelled with respect to (xi, x2) and (x2, X3).) Starting the 
levelling process, we have to take 

<p (x1) = -2
1 [ max f (xi, x2, x3) + min f (xi, x2, x3)] = 0, f - <p = f, 

(x2,x3) (x2,x3) 

and, similarly, 1/J (x2) =· 0 and x (x3) = 0. So, the levelling process will not move 
away from the already-levelled function f and we will not approach the magnitude 
of the best approximation, equal to ! . 

A counterexample to the algorithm in JR.N [104]. Consider an extension 
of the above example to JN. Consider on [O, NJ a continuous function 

{
-1, 0$t$1, 

F(t) = a linear function ( = 2k-=._~), 1 :$ t :$ N - 1, 

1, N-1 :$ t :$ N 
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and 

Set 

Clearly, 

F(t) = F(t) - 2Nt - N' 
-1 

A 1 
llFll = N-l· 

f (x1, ... ,xN) = F(x1 + · · · +xN); 

l(xi, ... ,xN) = F{x1 + · · · + XN). 

N 

l = f - Lgi(xi) 
1 

and we show that l has the least norm among all functions that have such a form 
(11111 = N~l ). To do that, construct a functional L with the following properties: 

{3.40) L(l) = 11111· 
To construct L, place nonnegative charges a, a1, ... , aN at the vertices 

{O, 0, ... , 0), (0, 1, ... , 1), {1, 0, 1, ... , 1), ... , {1, 1, ... , 1, 0) 

(at these vertices l assumes its maximum N~1 ) and nonpositive charges -b,-bi, 
... , -b N at the vertices 

{1, ... , 1), {1, 0, ... , 0), {O, 1, 0, ... , 0), ... , {O, 0, ... , 1), 

where l assumes its minimum (equal to - N~l ). To satisfy the requirements in 
{3.40) we set 

{3.41) 
N-2 

a = b = 4(N - 1)' 

For the functional L corresponding to these charges we obtain 

N N-2 N 
11£11 =a+ b + ~ (ai +bi) = 2{N - 1) + 2{N - 1) = 1. 

The second requirement in {3.40) holds, provided that in every hyperplane Xi = 
const, i = 1, ... , N, the total charge equals zero (cf. Lemma 4.1 in Chapter 2 and 
Lemmas 1.2-1.4 in this chapter). There are no charges in a hyperplane Xi = c, 
0 < c < 1. Calculate the charge in the hyperplane Xi = 0. In view of {3.41) it 
equals 

N N-2 1 N-1 
a+ ai - . ~- bj = 4(N - 1) + 4(N - 1) - 4(N - 1) = O. 

J#i,3-l 

Similarly, in the hyperplane Xi = 1 we have 

N 

-b - bi + L aj = O. 
j#i,j=l 

So, L E {ipi(x1) + · · · + <pN (xN )}1-. Finally, in view of the choice of signs of 
charges in L we obtain 

A 1 A 

L(f) = N - l =II/II. 
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However, for the same reasons as in the case N = 3 the levelling algorithm for 
the function f cannot change that function. Hence, it does not lead to finding the 
magnitude of the best approximation. 

Discussion. From the above example it follows that for a function f to be 
levelled with respect to all groups of (N - 1) variables, it is not sufficient that f 
have the minimal norm among among all functions/- (g1(x1) + · · · + 9N(XN)) as 
was the case for N = 2 (cf. §6 in Chapter 2). Nevertheless, it would be interesting to 
know whether every function can be levelled. In other words, we ask if an arbitrary 
function f can be represented in the form 

N 

/(xi, ... ,xN) =F(xi, ... ,xN)+ L9i(xi), 
1 

where F is a corresponding levelled function. In Aumann's paper [13] it is also 
shown that even for approximation in C(J3) by functions 

C,O(Xi, X2) + 1/i(Xi, X3) + X(X2, X3) 

the levelling algorithm need not be successful. 
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