
    

 
  

 
Title  The History and Development of Nomography 

 

Name Harold Ainsley Evesham 

 
 

 

 

 

 

This is a digitised version of a dissertation submitted to the University of 
Bedfordshire.  

It is available to view only.  

This item is subject to copyright. 

 

 

 

 

 

 

 

 



p 

THE HISTORY AND DEVELOPMENT OF NOMOGRAPHY. 

Harold Ainsley EVESHAM. 

Thesis for the degree of Doctor of Philosophy 

of the University of London. 

1. 




The History and Development of Nomography. Abstract of the Thesis. 

That body of knowledge which has the name Nomography consists 

of the theory and practice by which the results of Geometry are 

used to facilitate numerical calculation. The subject existed 

under various titles before 1891 when d'Ocagne coined its present 

name. 

Methods in use before 1840 are examined to determine the 

foundations on which the subsequent structure was erected. In 

particular, the development of analytical geometry and of the 

concept of level curves, or contours, are noted. 

for the main period of development, up to 1900, the works of 

lalanne, Massau and d'Ocagne are examined with that of other less 

important contributors. Lalanne published his ideas in 1843 giving 

the first indication of a related theoretical problem, that of 

anamorphosis or the replacement of curves difficult to construct 

by others more regular, preferably straight lines. Massau published 

many important results in 1884 including the form of a determinant 

equation which must be satisfied by components of a function of 

three variables if that function is to be represented by three 

systems of straight lines. Also in 1884, d'Ocagne described a new 

type of nomogram depending on the alignment of points; previous 

nomograms had depended on the intersection of curves. The possibility 

of alignment in the case of three variables is seen to be related 

to Massau's determinant equation and thus to the problem of anamorphosi 

for the period from 1900 two main themes are followed. The 

major theme examines the attempts to solve the problem of anamorphosis 

for functions of three variables. Surprisingly, this requires the 

examination of comparatively recent material and it is found that 

there is no neat and tidy solution; at least not one that has yet 

been found. The second theme considers the propagation and USB of 

nomographic ideas with special reference to Britain, where they 

were not readily adopted. finally, some recent developments in the 

subject are examined. 
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Introduction. 

That body of knowledge to which, in 1891, M.P. dtOcagne 

gave the name of Nomography, consists of the theory and methods 

by which numerical calculations can be accomplished through the 

use of the results of Geometry. The discipline was not created 

by the act of naming, many fundamental results had been obtained 

before this occured, but d'Ocagne was a most influential figure 

within the subject and the name Nomography is rarely limited only 

to describing the subject after 1891. In this thesis it refers 

to the entire discipline. 

No history of the subject exists. DtOcagne and Lallemand 

both wrote on historical aspects but their writings tend to have 

a personal bias and in any case do not cover the whole period of 

the subject's existence, (3), (26), (71). Those short historical 

notes found in encyclopedias seem often to have been compiled from 

these same writings of d'Ocagne and lallemand. There would seem 

to be a place for a history of the subject written from an indep

endent viewpoint. This thesis attempts to fill that place. 

Having said that I must justify the scope of my thesis. 

That which could have been written under the title 'The History 

and Development of Nomography' would perhaps contain enough material 

for many theses. As the first in the field I have been in the 

happy position of being able to select the period covered and the 

particular bias of my thesis. As for the period, I very soon 

saw that it would be possible to cover from the 1840's to the 

present, which generally speaking is the period during which 

nomography has existed, and also to give a little of the earlier 

developments which led to the birth of the discipline. As a 

mathematician the choice of a bias was easy_ I would attempt to 

trace t~e theoretical development of the subject viewed as a 

branch of mathematics. It was the necessary development of a 

practical idea into a theoretical structure which interested me. 

This development was necessary because the improvements of the 
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practical idea, necessary to make its use more effective, gave 

rise to theoretical problems of some complexity. To those who 

believe that much of Pure Mathematics origin~tes as the refinement 

of practical ideas, the history of nomography makes an interesting 

case study. 80th the content and the time span are limited enough 

to enable the student of such matters to picture the whole 

development. 

Although the approach is mathematical, I am conscious that 

the subject may be of interest to those historians of science who 

are not mathematicians. I have therefore tried to confine the 

mathematical arguments to the minimum consistent with a full 

understanding of the underlying ideas. For a fuller mathematical 

treatment the reader is referred to the original papers listed 

in the reference section but in just a few cases it seemed desirable 

to give some amplification within this thesis and I have added some 

appendices with this in mind. 

At this stage it is worth indicating how theoretical problems 

arise in nomography. They arise as a result of a search for eleganci 

and simpliCity. The most elegant nomograms are alignment nomograms 

in three variables for they are easy to read and to construct, when 

they can be constructed. If they consist of straight lines rather 

than curves, then so much the better. In this we have two problems 

of fundamental importance to nomography; firstly, how can we 

transform a curve into a straight line and, secondly, how can we fin 

out whether a relationship between three variables can be represent~ 

as an alignment nomogram? Investigation of this type of question 

leads into the realms of very interesting mathematics. A further 

consequence of the idea that relationships in three variables are 

to be preferred to relationships in four or more variables leads us 

to c~sider the possibility of the superposition of functions~ to 

be specific can we represent functions of n variables as super

positions of functions of m<~ variables? This suggestion is due 

to Hilbert and is the substance of the thirteenth of his famous 
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twenty three problems posed at the beginning of this century (1). 

A further interesting consideration is the following. Once 

we have produced a nomogram suppose that the frame in which it 

lies is of an inconvenient shape causing some of the scales to 

be too small or too large to be read sensibly. How can we 

transform the frame so that it is more convenient and so that 

the nomogram gives more meaningful results? 

In recording the history of nomography this thesis places 

special emphasis on attempts to resolve these theoretical problems, 

for not only are they of value to nomography, but they have an 

intrinsic mathematical interest of their own. 

One final point. Although claims of priority should not 

play a very important role in the history of science, their role 

becomes more important when one worker appears to take the idea 

of another and claim it as his own. . The evidence suggests that 

d'Ocagne might have done this twice; with an idea of Massau's which 

led to d'Ocagne's notion of critical points and with Soreau's notion 

of nomographic order which led to the d'Ocagne genus classification 

of nomograms. The alternative explanation is ignorance of the 

results of other workers in the field. In d'Ocagnets day this 

could be forgiven; it is less acceptable today yet it seems to 

have happened. R.C. Buck, in work sponsored by the U.S. Army 

Research OFfice, gave in 1976 results which had been obtained by 

the Russian T. Steyskalova in 1959. Admittedly they used different 

methods and had'different aims but Buck should have known of 

Steyskalova's results. The evidence in these cases is presented. 
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CHAPTER 1. 

The Origins of Geometric Computation. 

Examples of the early use of diagrams as an aid to 

computation ~re not difficult to find. Whether they can be considered 

as early examples of Nomography depends upon ones interpretation of 

the word Nomography. The interpretation accepted here is that a 

Nomographic method is one which leads to solutions of a class of 

similar problems rather than to a solution of a single problem. As 

an illustration of this we may consider the Greek method of solving 

x2 c2the equation + = bx described by Sayer (2), in which the 

construction is a specific one for a particular pair or values of 

band c. This method cannot be called Nomographic. A truly 

Nomographic method would be one which allowed, at the time of reading 

the diagram, a choice of values for the variables band c and then 

gave x. 

The early precursors of Nomograms were invariably concerned 

with computations related to Navigation or Astronomy and usually 

featured a moving element. DtOcagne cites the Quadratum Horarum Generale 

of Regiomontanus* which appeared in the last quarter of the fifteenth 

century and which was used to find the solar time at the instant of 

observation (3). 

Many diagrams with moving elements are to be found in 


Sir R. Dudley's "Del l'arcano del Mare" which was published in Florence 


in 1661 and of which a fine copy is to be found at the National Maritima 


Museum (4). These diagrams, known as tvolvelle t diagrams are intended 


*Regiomontanu~ was Johann MnllBr who, after the fashion of the times, 

was known by the Latin form of his birthplace KBnigsberg (Kingts Mountain: 

He lived from 1436-1476 and amongst other trigonometric achievements 

seems to have been responsible for the law of sines of spherical trianglaj 

This would confirm his interest in the mathematics of Astronomy and 

NaVigation. 
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for such purposes as "to find the age of the moon" (p3f3) or 

"to observe and compute the altitude of the Pole Star" (p23 f107). 

One should consider the examples cited so far as special 

cases in that they do not arise out of a general theory of geometric 

computation. An important step in the development of such a theory 

was made when Fermat and Des Cartes developed coordinate geometry. 

However, the step from development to application was a long one, for 

both developed computational procedures which almost entirely depended 

upon the straight lines, circles and conics of the older geometry 

but ignored the multitude of other curves which the new geometry had 

made available. Furthermore, their methods for determining the roots 

of equations of the third and fourth degrees suffer from the same failing 

as does the Greek method fo'r solving the quadratic in that they are 

specific to an individual equation and not general. 

In addition to coordinate geometry certain other ideas 

needed to become accepted before Nomography could begin to establish 

itself as a useful discipline. The first was that of the graphical 

representation of data for the purposes of estimation and prediction 

which depended in part on the development of Statistics. Curves for 

the representation of numerical laws of population and mortality by 

age appear to have been in use towards the middle of the eighteenth 

century. The German statistician Pfeiffer is known to have produced 

such graphical tableaux. Later an application of this type to the 

statistics of the consumption and maintenance of paving stones in Paris 

was made by Minard in 1820 in a paper with the title nPlan for canal 

and railway for the transport of paving stones to Paris" (5). A second 

important concept required was that of the representation of three 

variables on a two dimensional plane. This concept is important since 

it permits the graphical representation of a double entry table. A 

double entry table is nothing more than a table of values entered by... 
selecting a row, which designates one of the variables, and a column 

which designates a second variable. The intersection of this raw and 

Column give the value of the third variable. Such a table is the one 

known as the Table of Pythagoras which gives the result of multiplying 

10. 




two integers. An example is shown in figure 1.1. 

1 2 3 4 5 6 7 8 9 10 


2 4 6 8 10 12 14 16 18 20 


3 6 9 12 15 18 21 24 27 30 


4 8 12 16 20 24 28 32 36 40 


5 10 15 20 25 30 35 40 45 50 


6 12 18 24 30 36 42 48 54 60 


7 14 21 28 35 42 49 56 63 70 


8 16 24 32 40 48 56 64 72 80 


9 18 27 36 45 54 63 72 81 90 


10 20 30 	 40 50 60 70 80 90 100 


f~gure 1.1 


Some special cases of the graphical representation of 

three variables on a plane are of quite early origin. They arise 

from geographical or geophysical conSiderations, two of the variables 

being the coordinates which fix a position on the sutface of the 

earth and the third representing the measure of some phenomenon 

at that point. At the beginning of the seventeenth century, Halley 

recorded lines of equal magnetic declination in this manner and 

later Euler plotted the line of the magnetic meridian. 

The first general application of the idea that three 

variables could be represented on a two dimensional plane is due 

to Philippe Buache who, In his "Essai de geographie physique" published 

in 1752, described how, by taking soundings, one can chart submarine 

channels and the slope of the sea bed in coastal waters. In particular 

he did this for the English Channel, recording depths from 10 fathoms 

increasing by units of 10 fathoms (6). The idea of level lines 

representing topographic surfaces is clearly present in this work but 

Buache does not take it to the logical conclusion of drawing contour 

lines on land. This step was taken in 1780 by Ducarla of Geneva (7). 

The works of Buache and Ducarla were descriptive in nature 

and in no way represented attempts to calculate anything. for an early 

application of the idea present in the concept of topographic surfaces 
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to calculation one can note the Horary Tables of Margetts published 

in london in 1790 (B), but the first purely mathematical application 

is due to Louis Pouchet. The event which was to lead to this 

application was the decision in France to convert weights and measures 

to the metric system. Such conversion is greatly helped by the use 

of double entry tables to convert, for example, the weight of a given 

quantity of a substance in the old system to the weight of the same 

quantity in the new system. The authorities did indeed publish such 

tables but an article of law dated under the Republican calendar as 

"Germinal an IV"* states "in place of tables of relationship between 

old and new measures, which had been provided by the order of 8th. 

May 1790, will be graphical scales to estimate these relationships 

without having need of any calculation". 

Pouchet, who was a member of the Council of Arts and 

Manufacture, published in 1795 a work on graphical scales for the new 

weights, measures and monies of the French Republic which included an 

appendix called "Arithmetique Lineare". In this appendix he gave 

graphical methods for the elementary arithmetic procedures of addition, 

subtraction, multiplication and diVision, for squaring and for the 

extraction of roots. The method for multiplication is a graphical 

equivalent of the Table of Pythagoras of figure 1.1 and is given as 

figure 1.2. 

It will be seen that the curves are the family of 

equilateral hyperbolae xy=c, where the constant c determines a particular 

member of the family. Elementary though the idea may be it represents 

an important conceptual step forward. However, it is not clear whether 

this advance follows in the footsteps of Buache and Ducarla in the 

sense that Pouchet has plotted the projection of level lines of a 

hyperboloid on to a surface or whether the hyperbolae are merely the 

results of thg variation of the products of two factors. The latter 

appears to be the case. 

* March /April 1795. 
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An area in which speedy calculations are required is 

that of Ballistics and these calculations would normally have been 

carried out by means of tables. Graphical procedures, if they are 

accurate enough, may well produce a faster result with less chance 

of a mistake. It is therefore no surprise that in the early nineteenth 

century graphical solutions to problems of Ballistics appeared, and it 

is even less surprising, in view of the development so far, that 

this should have been in france. In 1814 and 1818 d'Obenheim gave 

graphical means for solving problems in Ballistics (9). level lines 

were used by Piobert in 1825 in order to verify firing tables for 

ricochet, which had earlier been calculated by Colonel lyantey (10). 

In 1830, Terquem gave the general prinCiple of graphical double entry 

tables applied to the graphical construction of lombard's tables. 

In the same volume Bellencontre summarises the works of d'Obenheim 

on double entry tables as applied to the problems of artillery (11). 

Curves of the type x2y = constant appear in a work by 

Allix, a naval construction engineer. These curves are used to find, 

without calculation, weights and measures in the metric system. This 

work was published in Paris in 1840 (12). 

with the exception of Piobert's verification of ricochet 

tables, the examples of the use of level lines given above are of 

mathematical laws for which an expression in the form of a function of 

two independent variables was known. The application of the technique 

to laws resulting from experimental observation are less frequent. One 

example of this by Capt. Di.d.ion appears in the "Journal de 1 'Ecole 

Poly technique". The author represents by curves the results af 

experiments on the relative accuracy of bullets of different shapes (13 

The development of railways in france was a spur to the use 

of geometric computati.on. In 1844 fevre produced a topographic type 

plan which related the velocity of a locomotive to the weight of the 

train and the gradient (14). Indeed, railway development had an 

important effect upon the development of Nomography. lalanne and 

14. 
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d'Ocagne in France, and Massau in Belgium, were involved with the 

state organisations connected with railway construction. The 

examples used as illustrations in Lalanne's 1846 paper are concerned 

with railway construction (5). 

The first case of double entry tables and their corres

ponding graphical representations appearing together is found in 

both the French and the English translations of "A Complete Course 

of Meteorology" by L.F. Kaemtz. The French translation appeared 

in 1843 and contained an appendix by Lalanne in which he gave 

graphical representations of 42 of the 113 numerical tables 

contained in the original. The English edition, translated with 

notes and additions by C.V. Walker, appeared in 1845. In the 

preface to this work, reference is made to Lalanne as being the 

first to generalize the representation of three coordinates in 

one plane. In the appendix, reference is made to what is seen as 

a consequence of graphical representation, namely, that interpolation 

can more readily be carried out (15). 

An important type of Nomogram which was developed in the 

1880's is the alignment nomogram, the important feature of which is 

that a line which joins two points on separate scales intersects a 

third scale at a point which gives the solution to the problem 

being investigated. This idea had been expressed by Mobius in 1841 

for multiplication only, but in two different ways. Firstly, he 

noted that the line joining the points with ordinates Y1 and Y2 of 

the parabola y2=x cuts the axis of the parabola at a point with 

abscissa Y1 Y2- The second solution he based on the theorem of 

transversals of Menelaus (16)~ 

By the early 1840's, the as yet unnamed subject that was 

to be called Nomography had been conceived. The development of the 

subject was about to begin in earnest with the work of Lalanne, 

followed by that of Massau and d'Ocagne. 
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CHAPTER 2. 

The Development of Nomography as a Distinct Discipline. 

1. Lalanne and Anamorphosis. 

The first important advance to follow the idea of 

the graphical representation of a double entry table was the 

consideration of ways by which the construction of such a 

representation could be improved without affecting its value 

as a computational tool. This was the principal idea expressed 

in Lalanne's paper of 1846 (5). lalanne states that there is 

no reason why a double entry graphical table should not have 

the sides of its frame graduated according to some non-regular 

scale. Referring to a diagram which is essentially the same as 

figure 1.2, he points out that if it was to be deformed by a cause 

such as the unequal contraction of the paper, or if the sketch 

was moulded on to a geometric surface, the accuracy would in no 

way be altered because the relative position of a point of 

intersection of a vertical and a horizontal with a particular curve 

before deformation would not be changed by that deformation; reading l 

such a chart does not depend upon absolute measurement but on 

relative measurement. He develops this argument by suggesting 

that there would be advantage in replacing the original curves 

by curves ~hich were more simple and more easy to construct, in 

particular by straight lines which could each be fixed by no more 

than two points. 

Recognising that the deformation described has something 

analogous to the effects produced by reflection in curved surfaces, 

to which physicists had already given the name Anamorphosis, 

Lalanne proposes that the new branch of Geometry which he believes 

must result from these considerations should be given the name of 

Anamorphic Geometry. In fact the name Anamorphosis seems to have 

been more widely used. 

The paper referred to here was not the first indication 


of Lalanne's ideas an anamorphosis. In 1843 a paper had been 
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presented by him to the Paris Academy of SCiences, on the 

subject of 'the substitution of topographic planes for double 

entry tables t and 'a new method of transformation of the 

coordinates' (17). The I Commisaires I were Cauchy, Elie de Beaumont 

and Lame, who reported in September 1843 accepting the paper's 

conclusions (18). In an interesting footnote to their report the 

commissioners say 'In effect, supposing that X and Yare functions 

of x and y respectively, one can generally reduce to the 

construction of straight lines the solution of an equation of 

the form 

fez} = xcp(z) + Yx(z) 

f(z),cp(z), X(z) designating three functions of the variable z 

which one supposes a function of x and of y'. This is intended 

as an extension to lalanne's treatment and is taken up by Lalanne 

in the 1846 paper. 

Thus we have clearly expressed by lalanne in 1843 the 

idea of anamorphosis, an apparently simple idea but one which would 

still be the subject of learned papers more than one hundred years 

later. 

Before considering the method by which he proposes to 

achieve anamorphosis, Lalanne makes some comments on graphical 

methods. Certainly, some of what he has to say might seem rather 

trivial today but this is because the construction of graphs is 

now commonplace. For example, he explains how one may plot a 

relation of the form CP(x,y,z,) = 0 by giving z the successive 

values of 0, a, 2a, 3a, ••• and plotting the plane curve relation 

between x and y in each case. In the development of this theme 

he acknowledges the influence of Monge's Descriptive Geometry. 

In stating the virtues of graphical representation he makes the 

point that sometimes more information may result than was originally 

expected and he gives the following example. 
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The 	 surface area of a cutting or embankment is given by 

(A .:!: y)2 
z = c 


2( B "+ x) 


(where y is the axial length and x is the gradient). 

+The depth of the section is given by A_Y , 
B"+x 

which he notes is 	dZ and thus, for a constant x, may be 
dy 

interpreted as the slope of a curve. This, however, does seem to 

be something of a special case. 

Another advantage claimed for the graphical method is 

that it can show properties of a function that are not shown 

explicitly when the function is written. To illustrate this he 

x3takes the example of finding the roots of + px + q = 0, where 

p and q are both less than 1. The approach is to consider x as 

a parameter and p and q as rectangular cartesian coordinates. 

The graph, figure 2.1, consists of a sat of straight lines, each 

line corresponding to one value of x. Lalanne observes that the 
3 2

envelope of these lines is given by 4p + 27q = 0 and that the 

real roots of the equation number one, three with two equal, or 

three unequal as the point (p,q) lies outSide, on, or inside the 

envelope, i.e. as 4p3 + 27q2 is greater than, equal to, or less 

than zero. He also notes that the same figure can determine the 

x3probability that + px + q = 0 has three real roots when the 

only knowledge of p and q is that p < P and q < Q. This problem is 

resolved by comparing two areas, one given by the curve 
:3 24p 	 + 27q = 0, the other being 4PQ. 

Lalanne attempts to explain how one may bring about 

anamorphosis for the given relationship f(x,y,z,) = 0, but 

succeeds only in expressing in mathematical symbols what he has 

already said in words. 
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Figure 2.1 


Lalanne's graphical procedure to find the roots of 


x3 + px + q = o. P is measured along the horizontal 


axis in the range -1 to +1 , q along the vertical axis 


in the same range. The numbers on the straight lines 


are the values of x. It is a curiou!? fact that on 


Lalanne's original the lines for the X values ± 1 .1 


+ 1.2, + 1.3 are posi t.ioned incorrectly. 
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His argument is as follows, 

given f(x,y,z,) = 0 •••• 2.1.1 

and suppose a transformation which sxpresses 2.1.1 as 

F (q,(x),1jJ(y),7T(Z)) = a 04002.1.2 

then, if we put x1 =¢(x), Y1 =1jJ(y), z1 = 7T(z) ••• 2.1.3 

2.1.2 becomes F(x y z) - 0 2 1 4l' l' 1 - •••.• •• 

If the axes of coordinates are graduated according to 

x1 =q,(x) and Y1 =1jJ(y), instead of equal parts then the projections 

of the z1 level curves will be straight lines if 2.1.4 is of the 

first degree in x1 and Y1' conic sections if of the second degree 

and so on. He concludes by pointing out that the degree of 2.1.4 in 

x1 and ~1 can be considerably less than the degree of 2.1.1 in 

x and y, a statement with which fe~ would disagree but of little 

practical US8. 

The illustration given by Lalann8 of anamorphosis are all 

rather special in the sense that they owe much to insight and 

intuition and little to mathematical analysis. The graphical 

representation of z = xy is transformed from hyperbolae into 

straight lines by letting = log x and Y1 = log y, with thex 1 
result that x1 + Y1 = log z. lalanne's original diagrams are 

reproduced in figure 2.2. The natural extension to functions of 

the type z = cp (x) 1jJ(y) and z = q, (x) + 1jJ (y) is made and the idea 

of a class of functions with separable variables is expressed. 

Furthermore, it is pointed out that, even if variables are not 

separable, they may become so by the substitution x1 = ~(x,y), 

Y 1 = 1jJ (x, y) and the following example is given as illustration. 

As with many of Lalannefs examples it is taken from his experience 

as a civil engineer working on railway construction and in this 

case gives the volume of a cutting. 

2
The expression is z = ..;;;a:.:..;x,-_ 

x + Y 

and the suggested substitutions are 

Y1 = x + y and x1 = ax2 
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Figure 2.2 

lalanne's illustration of anamorphosis. The 

graph on the left is of' ~ == xy, tbe values 

of z being ~ritten on the hyperbolae, while 

!!lat on the right is of log z = log x + log y •. 
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giving , 

then, by fixing z successively as a, 2 a, 3 a, ••••••••• , 

we get Y1 = ~ x1, Y1 = l-x" Y1::; _1_x1 •••••••••• , 

20. 30. 

i.e. a set of straight lines passing through the origin of 

the coordinates x 1' Y1. 

Without giving any details Lalanne advocates the use of 

projective transformations in conjunction with anamorphosis to 

deduce 'an infinity of other analogous figures'. By qoing so 

he is anticipating something which has become an important 

feature of Nomography. 

lalanne points out a few of the mathematical consequences 

of anamorphosis. The most obvious of these is that the substitution 

x1 = log x will lead to a shift of the origin since x1 = 0 will 

correspond to x = 1. He also points out that there is no reason 

to suppose that the functions <flex) and 1jJ (y), used to graduate 

the axes, should increase or decrease in a constant manner and that 

it is possible that they have a maximum or a minimum. To illustrate 

he. uses y = a + bx + cx2 and applies anamorphosis to reduce it to a 
2

straight line by the SUbstitution x1 = a + bx + cx. The straight 

line is thus y = x1, but the parabola is not represented by the 

whole of this line for, if we assume for the purpose of illustration 

that b > 0 and c > 0 then x1 = a + bx + cx2 will have a minimum when 

X -b . h _ b2= , ~ •e. w en x 1 '" a 

2c 4c. 

A further point that he makes, and which is worthy of note, 

is that for a function z of x and y in which the two independent 

variables are separable, anamorphosis is not unique. Returning to 

the example z = xy and the anamorphosis already considered which 

produced z = x + y , he points out that a further anamorphosis
1 1 1 

applied to the straight lines can produce concentric circles. 
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The anamorphosis required is to let x2 =/X1, Y2 =1Y1 and z2 =/zl 

.. 2 2 2 
glv~ng z2 = x2 + Y2; 

fixing z2 in turn as a., f3 , Y ..... 
we have the concentric circles 

2 2 !l.. 2 2 2. 
x + Y = a. x + y =8 ,

2 2 ' 2 2 

Taking up the general point made by Cauchy in 1843 (18), 

Lalanne contents hi~self by taking the expression 

fez) = X(x) ¢ (z) + Y(y) lJ! (z), 

and making the substitutions 

x(x), 

and pointing out that, for fixed values of z, 

fez) = xl ¢ (z) + Y1 ~ (z) 
are straight lines. 

Lalanne also makes the important point that anamorphosis is 

not confined to cartesian coordinates but can be applied to polar 

coordinates or indeed to any coordinate system and he illustrates 

the point with reference to the hyperbolic spiral pw= a 2 which, 

wi th the substi tution PI =10gp, WI = - 109Ul becomes an Archimedian 

spiral. 

So convinced is Lalanne of the merits of geometric computation 

that he advocates a Universal Calculator to replace I the slide 

rule, the use of which is so common in England'. His Universal 

Calculator is reproduced as figure 2.3. Amongst the calculations 

which can be carried out using it are multiplication and division; 

raiSing to the powers of 2,3 and higher powers and finding the 

corresponding roots; multiplication and division by 2 TI; the 

calculation of 1T r2, (4/3) 1T r3; .simplification of calculations 

containing g, (1/2)9, 29, Ig, /2g; and the solution of ratios to 

find chemical equivalents. The advantages that he sees for his 

device over the slide rule include the following. Results depend 

only on reading, there being no mo~ing parts, and any shrinkage or 

deformation cannot influence the result (presumably shrinkage or 
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Elgure 2.3 

Lalanne's Universal Calculator as it appeared in his 

1846 paper t ( 5) • 
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deformation of a slide rule may be of part of the rule only); 

there are physical difficulties over the use of the rule which 

he claims is not really portable while the chart is portable and 

cheap_ In these views, and others that he expresses, he does 

seem to have abandoned rationality in order to advance his idea. 

His final comment on the Universal Calculator is that he looks 

forward to the time when it will appear in school rooms and in 

public squares alongside clocks and sundials assisting in 

calculations as the clock and sundial assist in the measurement 

of time. 

lalanne includes in his paper a short section on the 

application of graphical representation to certain natural laws, 

by which he means laws governing population size and mortality. 

The point that he makes in this connection is that ignorance of 

the explicit form of the function of a natural law need not inhibit 

the construction of a graph. To illustrate this point I take a 

simplified version of his example. 

Suppose, for some species of living creature in a well 

defined area, we have the following table giving the number living 

at each age. 

Age 0 1 2 3 4 5 


No. living 0 100 50 40 30 20 


The problem is to find the number of individuals between the ages 

of a and 8 1, (a1 > a). 

If x is the number of individuals between a and a 

and y is the number of individuals between 0 and a1 

then, if z is the number of individuals between a and 81 

z = Y - x, which will be represented by straight lines although 

x = f(a) and y = f(a1) are unknown. 

x and y can be tabulated as follows: 

Age 0 1 2 3 4 5 


x(or y) 0 100 150 190 220 240 
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lalanne's chart, figure 2.4, is constructed in the 

following way_ Two unsealed perpendicular lines of equal length 

are drawn, one for the x axis the other for the y axis. The z 

lines are then constructed; z = 0 is the line joining the free ends 

of the x and y axes and the other z lines are parallel to it and 

at suitable intervals to provide a regular scale for z. The y 

scale is now marked using the information given by the table. 

The x scale is identical to the y scale. 

To find the number of individuals between two ages one 

takes the horizontal through the lower age, the vertical through 

the higher age and takes the value of the sloping line on which 

they intersect. Interpolation is possible. 

By 1846 many profound ideas on geometric computation had 

been expressed by lalanne. The ideas had not been explored in great 

depth but nevertheless they constituted a body of knowledge which, 

on the one hand provided useful computational tools, and on the other 

gave a foundation for Nomography on which those who followed 

could build. 
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Eigure 2.4 

Lalanne type chart for a natural law in 

a case for which the explicit form of 

the law is not known. 
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2. Saint-Robert's Criterion. 

At the meeting of the Academy of Sciences of Turin on the 

7th April 1867, Paul de Saint-Robert read a paper which represented 

the first truly mathematical attempt to determine whether a given 

equation F(x,y,z) = 0 could be transformed into an equation of the 

form Z(z) = X(x) + Y(y), thus facilitating anamorphosis (19). 

Ironically, in view of Lalanne's slightly contemptuous attitude 

to the slide rule, Saint-Robert was led to his analysis by 

consideration of a slide rule. 

Saint-Robert was engaged in editing tables for the 

calculation of difference in altitude based on the variations of 

barometric pressure and temperatura when he conceived the notion 

of a slide rule, analogous to the logarithmic rule, by means of 

which he could obtain mechanically the required results. He wrote 

"In reflecting on this reduction of double entry tables into a slide 

rule, I saw that one can, in certain cases, solve certain equations 

with three variables by means of a slide rule graduated in a 

convenient manner". 

He states the problem in the following way_ 

Given the equation in three variables 

F(x,y,z,) = 0 ••••••••••••••••••••••••••••••••••• 2.2.1 

is it possible to construct three parallel scales, two fixed 

and one moveable,. in such a manner that in any position of the 

three scales the corresponding values satisfy equation 2.2.1? 

If the three scales AB, CD and EF are positioned as in figure 2.5, 

Ef being the moveable scale 

d 
C,r---------------------~.---------,I 0 

I 

b 
I 

E F 
c 

A~!--------------~---------------- 8 
a 

Figure 2.5 
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and a,b,c,d specific points on the scales, then Cd Aa + bc 

or, letting X = Aa, Y = bc and Z = Cd, then _ 

If we suppose that Z is a function of z only, X of x 

only and Y of y only then, in. order that the slide rule may be 

used to solve the given equation, it is necessary that the two 

equations 2.2.1 and 2.2.2 give the same value of z for the same 

pair of values of the independent variables x and y. 

Thus, the problem he sets out to solve is this, 

Given an equation in three variables 

F(x,y,z) = 0 ••••••••••.••••••••••••••••• 2.2.1 

can it be transformed into an equation 

z( z) :: x( x) + Y ( y) .......•...........•. 2.2.2 

such' that the values of z given by both equations are equal for the 

same pair of values of x and y ? 

In his solution, Saint-Robert firstly observes that which 

Lalanne had noted, that there.is no problem in the case of z = xy, 

which reduces to log z = log x + log y, nor in the case of 

<P (z) = l/J (x) X (y), which reduces to Z = X + Y when Z :: log cf> (z), 

X = log l/J ex) and 'Y :: log X (y). 

The barometric pressure formula with which he was concerned 

is of the type shown above, for it can be written as 

1:. (2-az) = (274 + x) (Yo/y - 1) 

A 1-az 


and transformed into Z = X + Y by 


Z 2 - az f
Z=log(- ), X=10g(274+x), y=log(Yoy-1) 
. A 1 - az 

He notes in passing that he has constructed a device on these lines, 

the trhabdohypsologiste'. 

for those forms of equation 2.2.1 for which the reduction 


to the form 2.2.2 is not apparent by inspection, or after simple 
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rearrangement~ Saint-~obert finds a condition which, if satisfied, 

shows that reduction is possible and gives a method of achieving 

this reduction. 

Starting with equation 2.2.2 and noting that x and yare 

independent variables but that z is a function of both x and y, 

he proceeds as follows: 

given Z(z) = X(x) + Y{y) ••••••••••••••••••••••••••••••• 2.2.2 

and differentiating it partially with respect to x, 

E·~ = X' 

'dz ax 


and with respect to y, 

E..~ = Y' 

dZ ay 


we have:

E. = x'laz = yl/~ 
dZ 'dx dY 

If R = X' , then R :: az/ ax ••••••••••••••••••••••• 2.2.3 
Y' az/'d y 

An expression for R can also be obtained from 2.2.1 

i.e. F(x,y,z) = o. 

Differentiating partially 	with respect to x gives 

0 i.e. II :: - 'dr/ax
::I 

ax 'dz ax ax 'dFlaz 

and with respect to y, 


.a£. a£. U :: 0 i.e.+ • 
a y a z ay 

Therefore R := aFlax 
aF/ay. 

Returning to the equation R'" x'/y' and ,taking logarithms 

to the base e of both sides we have InR ::: lnX' - 1 nY' ; 

30. 



differentiating partially with respect to x gives 

1 X I I 

a x Xi 

and again with r~spect to y gives 

Thus, Saint-Robert's criterion is as follows; 

An equation F(x,y,z) = a 
can be reduced to the form l(z) = X(x) + Y(y) if R satisfies 

') 

the condition a'-( 1m) = a 
ax dy 

where R = aflax (or R , 

If this condition is satisfied, Z{z), X(x) and Y(y) may be found 


as follows; 


for X(x) , integrate a(ln.R) Xt f twice;
= 
a x X' 

for Y(y), integrate yl = X' which contains no Xj 

R 

for Z(z), substitute X and Y in 2.2.2 and use 2.2.1 to eliminate 

x and y. 

Saint-Robert concludes his paper with two well chosen examples, 

well chosen because a knowledge of higher mathematics, in the one 

case of hyperbolic functions and in the other of elliptic functions, 

enables the reader to check the correctness of the method. 

Saint-Robert's criterion is important because it is the first 

step in a line of enquiry which many others followed, and because 

it gives an effective procedure for solving the problem, if it can 

be solved, which leaves nothing to insight or intuition. As an 

illustration of this, consider the case of z = xy referred to so 

often already. 
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r(x,y,z) "" z xy = 0 

dF of= -y, = -x, R = :L 

dX dy x 

InR :: lny - Inx, a(lnR) ::: -~ , 
dX x 

? 
d~~ lnR} 0, so the condition is satisfied; 

dX dy 

hence, X' t 1 1 = , InX' = -lnx, X'=_, x Inx. 
XI X x 

Y' = .1 x Y Iny.=~ , :: 

x y y 

Z = Inx + Iny = In(xy) Inz. 

• . Inz = Inx + Iny. 

The constants of integration have not been ignored; they cancel aut. 
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3. The Contribution of J. Massau. 

The year 1884 has an important place in the history of 

Nomography. It was the year during which d'Ocagne published his 

first paper on the subject, a paper which introduced alignment 

nomogr3ms and therefore marked the beginning of a new phase. 

It was also the year during which a 8elgian engineer, J. Massau, 

published the results of his work, but in his case the work Was 

concerned with intersection nomograms and followed naturally from 

the work of lalanne. Therefore, in one year two papers appeared, 

one of which considerably enhanced existing knowledge while the 

other branched along an entirely novel path. 1884 is also an 

important year in a more general way_ 8efore 1884 publications on, 

or related to, graphical computation were occasional and demonstrated 

good ideas rather than contributions to a growing body of knowledge, 

but after 1884, and in particular from 1884 to 1932, there was a 

steady flow of papers on both practical and theoretical aspects 

and this period must be regarded as the most important for Nomography. 

In passing, it is of interest to note that the subject seems to 

have been dormant between 1932 and 1956 in the sense that there 

were apparently no steps taken to develop it, but that from 1956 onwards 

there has been a renewed interest in it. This renewed interest 

takes two main forms, one the application of computing and approx

imation techniques and the other the application of mathematics 

to the problems of anamorphosis and the superposition of functions. ' 

Throughout the period from 1884 to the present, however, Nomograms 

have been in continuous use whether or not the development of the 

subject was dormant. 

Massau's paper is one which is full of interesting ideas, 

some of which have survived still bearing his name, others have an 

anonymous presence in the literature or are attributed to others, 

while soma have disappeared completely. Massau was a civil engineer 

who was concerned with the construction of railways in Belgium just 

as Lalanne had been in france. His paper was published by the 

association of former students of the Ecoles Speciales de Gand (Ghent) 
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and was part of a series of articles under the general heading 

'l'integration Graphique et ses applications I which appeared at 

intervals between 1878 and 1900 (20). It is the sections numbered 

177 to 207 which are of particular relevance to this study. The 

ideas on which the work is based have origins earlier than 1884, 

for a sub-heading of the paper reads 'Developpement des theses 

presentees au concours universitaire de 1873-74'. 

A part of Massau's work which is well known, is on the 

expression of the equation F(x,y,z) = 0 in the form Z1(z)X(X)+Z2(Z)Y(y)=1. 

I defer consideration of this to a later section where I also examine 

a similar exercise by lecornu which appeared two years after Massau's. 

Massau begins the relevant section of his paper with a 

review of the work of lalanne, which is clearly the starting point 

for his own work. He points out that Lalanne's methods are inconvenient 

in that they require much time for the construction of charts. He 

quotes an engineer named Ricour who, in order to produce four charts 

for a particular problem concerned with railway construction, required 

56 hours of calculation and 112 hours of drawing; i.e. one whole 

week's work. Massau's work, therefore, has a practical object, to 

make improvements which will reduce the total time required for the 

construction of charts. To this end he must look to lalanne's concept 

of anamorphosis. 

Perhaps the most important contribution of Massau to the 

development of nomography was the introduction of determinants 

into the discipline, although at that time he may only have been 

using the tools of a more skilled mathematician. He presented a 

theoretical argument which would be the cause of much mathematical 

activity in the future, raising a problem which will be considered 

at length later. Under the heading tUse of a general system of 

co-ordinates', he poses the problem of representing the variable w 

defined by the equation 

f(u,v,w) ~ 0 •••••••••••••.•••.•••. 2.3.1 
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Without explaining how this could be done, he requires the 

construction of two sets of curves 

f,(x,y,u) o •••••••••••••••••••••••••••••••••• 2.3.2 

f 2(x,y,v) = a .•••..• lIIo •••••••••• eo ............... 2.3.3 

In a rectangular cartesian system having co-ordinates (x,y) 

2.3.2 will represent curves, each one of which is attached to a 

particular value of u; similarly 2.3.3 will represent v curves. 

Thus to each point of the (x,y) plane there will correspond a pair 

of values, one u, one v, which can be considered as curvilinear 

co-ordinates at that point. Therefore equation 2.3.1 can be used 

to obtain a set of curves representing w, expressed in the curvilinear 

co-ordinates u and v, by fixing particular values for w. To obtain 

the equation for w in the rectangular cartesian co-ordinates x and y 

it is only necessary to eliminate u and v between equations 2.3.1, 

2.3.2 and 2.3.3. 

Massau now supposes that u, v and w can be represented by 

straight lines, in which case, 

for the u lines; ax + by + c :: 0, where a,b,c ar~ functions of u, 

11 It" v ; a'x + b'y + c' = 0, " a',b',c' " v," 
11 11 It" w ; a"x + bl'y + c" = 0, a",b",c" " w, 

On eliminating x and y he obtains the condition, 

a b c 


a' b' c' :: 0 


a" b l ' c" 


This can be written as a {uJ b {u} 1 
c (u) c (u) 

-a'{vl b' {v) 
::1 0 

C I (v) c' (v) 

atl{w~ b"{w} 
1c"(w) c"(w) 

a form occasionally referred to as the Massau determinant. 

Massau observes that this determinant contains six functions 

and is more general than the form considered by Lalanne which only 
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contained four functions. He has in mind hers the form 

suggested to lalanne by Cauchy which can be written 

Z1(z) X(x) + Z2(z) V(y) = 1. He further points out that his 

method contains the latter, for if the u lines are given by 

x = ~ (u) and the v lines by y = 1jJ (v), 

then ~(u) 0 1 

0 1jJ(v) 1 :: 0 


A( w) B (w) 1 


giving A(w) 	 1 + Sew) 1 1 
¢( u) I/( v) 

which is of the Cauchy form. 

Massau continues his paper with rather brief notes on 

topics which are so commonplace in later nomography that one accepts 

them as commonsense, giving little thought to their origins. He 

notes lalanne's idea of graphical elimination, that is, if one is given 

f(u,v,t) 0, 

f 1(u,t,t') = 0, 

and f 2(t,t',w) o 
then to find the relationship between u, v ~nd w it is not necessary 

to eliminate analytically t and t' but merely to plot the three 

relationships on the same sheet and carry out the elimination by the 

suppression of the curves t and t'. He also suggests the use of 

transparent sheets, each carrying one set of curves, being superimposed 

on a sheet carrying another set of curves, there being sufficient 

common variables to make this possible. 

Massau devotes considerable space to the discussion of systems 

of straight lines. He defines the degree of a system of lines as 

follows. 

If the lines have for their equation ax + by + c = 0, where 

a, band c are functions of u, then, if the three functions of u 

are each of integer degree n, the system is of degree n. The 

discussion with which he follows this concerns itself with systems of 
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the first and second degrees and, although it is not amongst the 

most durable of Massau's contributions, it is worth some attention 

for its interesting approach. 

In a u-system of the first degree represented by 

ax + by + C = 0 it may be supposed, for convenience, that a = Au-A 1, 

b = Bu-B 1, c = Cu-C 1, where A,A1, 8,81, C and C1 are constants. 

Then ax + by + C = 0 can be written u(Ax + By +C) = A1x + 81Y + C1 

or u CI. "" 8 

It will be observed that if u = 0 then 8 = 0 and if u = 00 then 

CI. = o. Massau then suggests taking a new system of coordinates 

based on the axes ex and CY in which ex is the line 8 = 0, and so 

corresponds to the value u = 0, and CY is the line CI. = a and corresponds 

to the value u = co. Since the equation' for every u-line in terms 

of CI. and f3 is uoc= 8, it is clear that every u-line passes through 

the new origin C. In general, the ,equation of the new system is 

ft. V = uX and the lines can easily be determined by making X = A 

and Y = u. In fact the straight line X = Acarries the scale of u 

which Massau calls the axis of u (figure 2.5). 

A particular concern of Massau is the intersection of any 'straight 

line with the lines of a straight line system. Suppose that the 

system is Xv = uX, ••••••• 2.3.4 

and the straight line is given by:

X = Xo + Ku' •••••• 2.3.5 

y = Yo + Mu ' •••••• 2.3.6 

where u' is the distance along this line from the point (Xo,Yo). 

On substituting 2.3.5 and 2.3.6 into 2.3.4, we have:

2A (Yo + Mu') u(Xo + Ku') 

i.e. Kuu' + X u - AMu' - AVOo 
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or more generally, Auu' + Bu 	 + Cut +0 = a 
which is of the form u 1 = 	 Mu + N 

~1' u + N' 

This last form leads to the theorem given by Massau that any 

straight line is cut by a u-system of the first degree in a 

homographic scale of u. 

The problem of the representation of a function by three 

systems of the first degree is given some attention. If the variables 

are u,v and w then, by a suitable change of axes, one set, say the 

w-set, can have the form:

y - wx = 0 
A 

Let the u lines have the form:

ay + bx = c 

and the v lines the form:

a'y + b'x = c t 

where a, band c are first degree functions of u and aI, b' and c' 

first degree functions of v. 

If we eliminate x and y from these three we have:

w = ,.;;b_'...,;c,--_;;;;.b.;;:.,c I ••••••••••••••••••••.•••.•••••.••• 2.3.7
A ac' a'c 

which has the form:

w = A + 8u + Cv + Duv ••••••••••••••••••••••• 2.3.8
At + B'u + C'v + D'uv 

Massau now poses a more difficult and more practical problem; given 

2.3.8 how can we draw a chart for w by means of three systems of 

straight lines of the first degree? 

Since a comparison of 2.3.7 with 2.3.8 is not possible, as 

2.3.7 contains more coefficients than 2.3.8, Massau resorts to an 


interesting alternative. 


In 2.3.7, w will be indeterminate in the case where c ~ c' = o. 

For w to be similarly indeterminate in 2.3.8 we must have 


A + 8u + Cv + Duv ~ a 

and A' + Btu + Ctv + D'uv = 0 
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These two equations can be combined to form a second 

degree equation in either u or v. Suppose that the roots are real 

and that Uo and Vo are a pair of solutions. With the substitutions, 

u - Uo = u', v - Vo = Vi, C = u', c' = v' , 

we then have 

blu' - bv' 
•.•••••••••••••.•••••.••••••••• 2.3.9

av' - a'u' 

and 

w = 81U' + C1V' + Ou'v' ••••••••••••••••••••• 2.3.10 
8 1 'u' + C1'v' + D'u'v' 

which can be written 

w = (B • + Ev I)U I + v' C •••• 2.3.11 
81 + E'v')u' + 

2.3.9 	and 2.3.11 can now be compared and if we choose E=O, E'=O 

and 	 A=1 then the three systems of lines are:

y - wx ::z a 

C1 'y 	- c1x + u' (Oly - Ox - 1) = 0 

in which C1, C1 ', 81 and 81 ' can be found from the given form, 


and u', v' from the roots of the quadratic equation in u or v. 


Massau also attacks the preceeding problem by means of 

trilinear co-ordinates. Trilinear co-ordinates are a form of 

homogeneous co-ordinates related to a fixed triangle ABC, the triangle 

of reference (figure 2.7). The 

co-ordinates (a,S,Y) of a point Pare 

such that a is the perpendicular 

distance of P from the side BC, 

B 	 S that from AC, and Y that from AB. 

a, eand Y have the form p-xcos6-ysin6 • 

The sides AB, BC, CA therefore corres

pond to y = 0, a = 0, e = 0 

respectively. It is clear that only 

two of the co-ordinates are required 

to determine a point, the third can be 

found from the relationship. a a+b e+cy=211 , 
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where a = BC, b = AC, c = AS and ~ is the area of triangle ABC. 

Massau does not say why he has chosen to use trilinear 

co-ordinates but it is a most appropriate choice for first degree 

systems since, as we have already noted, all lines of a first 

degree system intersect in one point. Three such systems will, 

therefore, in general, give rise to three points which can be used 

as vertices for the triangle of reference, as in figure 2.8. 

figure 2.8 

An equation of the form be - c r = 0, in which band c 

are of the first degree in u, represents a straight line for any 

specified value of u. furthermore, it is always satisfied by e = 0, 

r = 0 showing that all of these lines pass through A. Similar 

reasoning applies to the v lines which converge on 8 and to the w 

lines which converge on C. We have then the following equations:

u lines; be = cr 

v lines; ely = a'a 

w - lines; aHa -b"e 
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and if we eliminate from these three equations the co-ordinates 

a, 8 and Y we have 

a" c' b a' b" c 

It should be noted that each side of the triangle of reference 

will correspond to a line from two of the systems; AS is both a 

u line, say u', and a v line, say v n• Similarly, we can say that 

BC corresponds to Vi and w" and AC to un and w'. 

It follows that if u = u' and v = v", then w is indeterminate since 

an infinity of w lines intersect the straight line of which AB 

forms a part. 

To make use of these results, Massau applies them in the case of 

o + Au + Bv + Cw + A'vw + B'wu + C'uv + Euuw = a ••••• 2.3.12 

which can be seen to be a form equivalent to 2.3.8. 

In order that w should be indeterminate it is necessary that 


o + Au + Bv + C'uv = a ••••••••••• 2.3.13 


and C + A'v + B'u + Euv = 0 ••••••••••• 2.3.14 


We can eliminate v between 2.3.13 and 2.3.14, getting 

u 2(AE - 8 I CI) + u(AA' + DE - BB' - CC') + AID - BC = 0 •• 2.3.15 

The problem is now resolved quite simply. 

2.3.15 is solved, assuming that it can be, for real u. 


The two roots u' and u" are assigned, one to the side AS of the 


triangle of reference, say u t J and one to the side AC, u" • 


2.3.13 will now give corresponding values for V'J 

v", corresponding to u' , is attributed to the side AS 


and v' corresponding to uti, is attributed to the side BC

" 

The values w' and wit are obtained by expressing that which makes v 

indeterminate. One such equation for this Is: 

o + Au + Cw + 8'uw ~ a •••••••••••••••••••••••••• 2.3.16 

Substituting u f in 2.3.16 will give w" which is assigned to the side 

Be and then u" gives w' assigned to the side CA. 
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figure 2.9 

The triangle of reference then gives two lines of each 

system. A system needs three lines to be completely determined. 

To achieve this it is necessary to take a set Df values satisfying 

2.3.12, for example u = 0, v = 0, w = -~ and choose any point M 
C 

to represent these. 

Then the u system is represented by AM, A8, AC corresponding tD 

u = 0, u - u', u = un (figure 2.9). The v and w systems are 

Similarly represented by three straight lines. It should be noted 

that :he triangle of reference and the point M can be freely chosen 

so that the resulting chart is the most convenient. 

This particular approach is of some interest for in 1907 

d'Ocagne published a paper describing his concept of critical 

points (21). Although he was concerned with alignment nomograms 

the same idea of indeterminacy based on a triangle is used. It is 

unfortunate that d'Ocagne, who seems always to have been concerned 

with claiming priority for his own ideas, did not give Massau the 

credit which was his due. Of course, it may have been that d'Ocagne 



had not read Massau's paper himself and was familiar only with 

its major results, but this seems unlikely. 

Massau treats second degree systems also by means of 

trilinear co-ordinates. The equation of aU-line is: 

lCtu 2 + mBu + ny 0 •••••••••••••••••••• 2.3.17 

in which 1, m and n are constants. 

The line u = 0 corresponds to Y : 0, i.e. A8 in the triangle 

of reference and, if we write 2.3.17 in the form 

1 Ct + m81 
u 

+ n y1
-;:;-2 

= 0, 

we see that when = 0, i.e. when u is infinite, Ct ~ a so that 
U 

the line u m corresponds to Be of the triangle of reference. 

If we differentiate 2.3.17 with respect to u we have 

21cru + m8 o .•....•..•..•.....•..••• 2.3.18 

and if we substitute lCtu:; -~ obtained from 2.3.18, in 2.3.17, 
2 

we have -m 8 u + m 8u + n y :; 0 
2 

i.e. m8 u + 2n y = 0 •••••••••••••••.• 2.3.19 

2.3.18 and 2.3.19 each represent straight lines which intersect in a 

point on the envelope of 2.3.17. The equation to the envelope is 

obtained by eliminating u between 2.3.18 and 2.3.19 and is 

m2 8 2 _ 4]n Cty :; a 
which is the condition for 2.3.17 to have equal roots. The equations 

2.3.18 and 2.3.19 give the points of contact of the lines u = o and 

U ::: m with the envelope, for, when u = 0 and Y = 0, we have 8:; 0 

or the point A and, when u ::z co and Ct :; 0, we have B::z 0 or the 

point C. 

Massau states the theorem that each straight line u = Uo 

of a system is cut by the others in a homographic scale of u of 

which the points are found on an auxiliary system of the first degree 

given by luCt + mf3 • o where U :II u + uo • furthermore, the u line 

43. 




parallel to u = 00 is cut in a scale proportional to u and can 

be used as the axis of u. 

lines of a second degree system will not all intersect in 

one common point as do those of a first degree system. Thus, such 

a system may be represented by the whole lines shown in figure 2.10. 

The points of intersection 

referred to in the theorem 

are marked with circles. 

They must satisfy the 

two equations, 

Iu2a + mue + ny = a 
2

luo a + muoS + ny 0 

If we subtract these we have 

1(u + uo)a + m 8 :.: a 2.3.20 

or writing U = u + ua 

1U C1 + m 8 = o. 

\ 
\ 

\ 

Figure 2.10 

This is the equation of a first degree system in U, a system which 

converges on the vertex C of the triangle of reference. It has already 

been shown that such a system would cut a straight line in a homo

graphic scale of U, and, since Uo is a constant in each case, in a 

homographic scale of u. This proves the first part of Massau's 

. theorem. The second part follows from earlier work in which (i) 

the axis of u is shown to be a line parallel to u = ~ and (li) 

the line BC is known to correspond to u = 00. 

The system can be determined analytically in quite an 

easy manner in the case where three particular tangents to the 

envelope are given. If the tangents are CB corresponding to u .. ~ , 
with point of contact C, A8 corresponding to u = 0 with point of 

contact A and DE corresponding to u .. Uo then the trilinear 

co-ordinates a, 8, Yare known since the triangle of reference is known. 
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It is necessary to find 1, m, n for the relationship 

2 


lU a + muS + ny = o 

We suppose that the equation of DE is given in the form 


Pa+qS+Ry = 0 


This must be identic3l with 


=:lu 2 ex + muo S + n y 0
0 

and therefore the equation to any line may be written 
2 

+ + = P (~ex Q(.!d.) S R Y 0 

Uo Uo 


which determines analytically the system. 


It should be noted from earlier results that being given 


the tangent u = ro amounts to being given an axis for u, being 


given the line u = a amounts to being given the origin for u and 


being given the line u = Uo is sufficient to find the scale of u 


(figure 2.11). It follows then 

that if on a tangent to a conic 

a scale for u is set out starting 

from any origin, and if, from 

thepelnts on this scale 

tangents to the conic are 

drawn, a system of the second 

degree i~ obtained. If, on 

another tangent, a scale of 

v is set out, then another 

system of the second degree 

is obtained. Furthermore, 

a tangent will be, at the 

same time, a line of u and 

Figure 2.11 a line of v. There will be 


some relation between u and v and it is easy to see what it is since 


the v line will be cut by the u lines according to a homographic scale 


··· ..Df u.- A relationship of the form 

Auv + Bu + Cv + 0 = a 
must apply, since it can be written in the form v - -(8u + 0) 


Au + C 
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From the foregoing it can be seen that the construction of a 

second degree system need not be difficult. For example, given the 

equation in the form 1 u 2 a + mu S + n y = 0, the envelope is 

given by m2S 2 - 41n ay = o. Given two tangents and their points 

of contact one can make these points of contact C and A of the 

triangle of reference and assign to the tangents the values of 

u = m and u = 0 respectively. They intersect at the point B of 

the triangle of reference (figure 2.12). 

The line 2.3.20, i.e. l(u+u )a + m 13 = 0 o 
becomes iu fj; + m 13 = o when uo= 0, a 

first degree system converging on C 

which will give the points of inter

section of the second degree system with 

u = 0, i.e. AB. If we make a = 0 in 

lu2a + muB + ny = 0 we have 

mu B + n y = 0 

a first order system converging on A, 

which will give the points of inter

section of the second degree system 

with u = 00, i.e. BC. We then have 

two points for each u line. Lines other 

than u =00 and u = 0 could have been 

Figura 2.12 selected. 

Finally, we note that if one of a,S or Y is constant we 

have particular forms of the envelope. If a is constant the envelope 

m2 13 2 = 41n ya becomes a parabola, if 13 is constant it becomes a 

hyperbola with a = 0, y = 0 as asymptotes and if Y is constant it 

becomes another parabola. 

have not encountered the use of trilinear co-ordinates in 

connection with nomography outside Massaurs paper and it seems likely 

that the idea was never fully developed. -Indeed, the evidence suggests 

that his paper may have been more frequently referred to than read. 

The only indication that anyone has taken this part of it seriously 
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is the fact, alr8Gdy mentioned, that d'Ocagne appears to have 

taken Massau's ideas on indeterminate values and adapted them to 

his own work. 

After the digression into trilinear co-ordinates, Massau's 

paper returns to more conventional ideas. He considers the case 

of a function which can be represented by three systems of the 

second degree. He returns to the point which he made early in the 

paper that three systems of straight lines depend upon a relation 

of the form:

a b c 

a' b' c' = o 
a" b" c" 

but in the case of second degree systems a, a' , a" •••• represent 

functions of the second degree in u, v, w. It follows that the 

determinant will give an equation of the sixth degree containing 
222 

u, v, w, u , v , w to the first degree. 

The real problem is the inverse problem and Massau is the 

first writer to express-it. He states it in the particular form 

to which his work has led him, that is, given an equation of the 
222

sixth degree in u, v, w, u , v , w , how can one construct a 

computation chart? He recognizes that the general method would 

consist of identifying the given equation with:

a (u) b (u) c (u) 

at (v) b ' (v) c' (v) = o 
a" (w) b" (w) c" (w) 

Massau states that this leads to laborious calculations which is 

both a perceptive recognition of the nature of the problem and an 

understatement of its difficulties. He does, however, treat some 

particular forms. 

first he considers the case 

w = a + bu + cv + duv •••••••••••••••••••••2.3.21 
a1+ b1u + c 1v + d1uv 



The method is to take rectangular cartesian axes Ox,oy and to 

put 

x = bu + cv + duv 10 $ •• '" •••••••• G •••••• o/!I 2.3.22 

2.3.21 now becomes 

w (y +a1) = x + a 

which shows that the w lines form a system of the first degree. 

We can eliminate from 2.3.22 and 2.3.23 v and u in 

turn, giving 

x -	 bu ••••••••••••••••• 2.3.24 c + du 

x 	 cv = ••••••••••••••••• 2.3.25
b + dv 

, 


2.3.24 represents a second degree system in u and 2.3.25 a second 


degree system in v. The three systems can easily be constructed. 


However, there is an anomaly with which Massau deals at length. 


It arises from the fact that if from 2.3.24 and 2.3.25 one calculates 


x and y one does not return to 2.3.22 and 2.3.23; a denominator is 


present which leads to an extraneous solution of form AUv + Bu + Cv + 0 


= D. Values of u and v satisfying this solution render w indeterminate. 


Massau indicates how to deal with this problem. 


His second example is w2 + wN + P = 0 •••••• 2.3.26 
M M 

in which M, N, P are functions of the first degree in u, v and uv. 

The 	 method proposed is to put 

x = N •••••••••••••••••••••••••••••••••••• 2.3.27 
M 

Y = 	 P •••••••••••••••••••••••••••••••••••• 2.3.28 
M 

These ~ransform 2.3.26 into w2 + wx + y = 0, a system of second 

degree straight lines. Again, from 2.3.27 and 2.3.28, we can 

eliminate u, then v, to get the v and u lines, both of which are 

systems of the second degree. In this case also an extraneous 
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solution presents itself. Massau treats this second example 

a second time and in more depth by mdxin9 use of determinwnts 

because, as he states, the calculations become simple by so doing. 

The importance of this lies not in the particular example but in 

the use of determinants. 

The brief description given here of Massau's contribution 

to the development of nomogr3phy by no means covers the whole 

of the material in his paper for there is much of a practical nature 

concerned with civil engineering. However, the purpose of this 

thesis is to trace the development of the ideas present in nomography 

and the study must be limited to that. 

Massau's contribution to nomography is considerable. His 

paper bristles with ideas, some of which have not stood the test 

of time, but those that have occupy respected positions within 

the discipline. 
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4. The First Papers of Maurice d'Ocagne. 

When d'Ocagne published his first paper on nomography 

he was twenty-two years old and a student engineer; the citation 

refers to him·as lEleve-Ingenieur des Ponts et Chaussees' (22). 

The paper describes "A new method of graphical calculation" and 

attacks ~ problem previously investigated by lalanne, (figure 2.1). 

D'Ocagne approaches the problem in an entirely different manner. 

The problem is that of finding the solution of an equation 
nof the type x + px + q ::: O. 0' Ocagne concentrates in his later 

:::development on the special cases of n 2 and n ::: 3 which are of 

the most practical value. However, the method is developed for a 

general n. His approach is graceful, one is almost tempted to 

say beautiful, in its Simplicity. It could today be of value to 

anyone wishing to solve a large number of cubic equations, since it 

provides good approximations to the roots which can then be improved 

using a computing device. I have not come across any case of it 

being so used. 

The basis of d'Ocagne's method is the use of an unusual 

coordinate system called by him 'Parallel Coordinates'. It will 

be necessary to digress to describe briefly this system. For a 

full account of the system one can do no better than read a set of 

articles by d'Ocagne also published in 1884, in which he describes 

two simple systems of tangential coordinates, the parallel coordinates 

already referred to, and axial coordinates (23). Parallel 

coordinates owe their origin to the line coordinates of Plucker (24). 

The basis of the system of parallel coordinates 18-a pair of 


parallel lines AU, SV and a transversal AB. AS need not be perpend


icular to the parallel lines but in this simple description it 


will be assumed to be. 
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= 0 

In figure 2.13 the co

ordinates u and v are 

me2sured from A along AU 

and B along BV respectively,M 
positive values upwards and 

negative values downwards. 

Thus the pair of coordinates 
~------------------~B 

(u,v) representing the points 

M and N, where AM = u, BN = v, 

define completely the straight 

line MN. 

Figure 2.13 

Certain consequences follow from such a system, those relevant 

to the discussion are: 

(i) If the coordinates of a variable straight line (u,v) are 


connected by a relation F(u,v) ~ 0, then the variable straight 


line is a tangent to a certain curve, the envelope, having F(u,v) 


as its equation. 


(ii) If F(u,v) = 0 is of the first degree then the envelope reduces 


to a point, i.e. the equation v + au + b ~ 0 represents a point p. 


(iii) If through p a line is 
~ N 
U V 


drawn parallel to the axes AU 


and BV to cut A8 at Q, 


then ~ = - 1 (fig. 2.14). 

QB a 

R~------------~~~--~8 
(iv) From (iii) it 

follows that P is between 

AU and BV if a is positive Figure 2.14. 

and outside if a is 

negative. 

(v) If AP cuts 8V in 8' 


then 88' - -b. 


Similarly, if BP cuts AU in A~------------------~B 


A', then AA' • -b (fig. 2.15). 


u 

a Figure 2.15. 
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The above results are applied to the solution of the 

equation x(\,+ p.x + q = 0 as follows. Choose uS variables p and q 

and represent p by u and q by v, also replace X by a particular 

value a.. 

n.
The equation is now v + au + ex. ::; 0 

which represents a point P (in contrast to Lalanne's treatment 

in which the corresponding equation represents a line). This 

point is easy to construct by virtue of (v) above. We only 

need to find the point of intersection of AB' and BA' where 
n-1 nAA' = - a and 88' = - a. • As a check, or alternative to 

one of the lines, we have the result of (iii) that:- QA = - 1 
QB a. 

Taking a sequence of values of a. , all positive in order that the 

points lie between the parallel axes, paints corresponding to the 

values a.1' 0.2' 0.3' •••••• of the parameter are obtained. As each 

point is obtained the corresponding value of a. should be recorded 

near to that point. 

These points will lie on a certain curve C which can be 
n 

drawn when sufficient points have been plotted. Figure 2.16 shows 

the curve for C3 which accompanied d'Ocagne's original paper; the 

same general form applies for other values of n. Note in particular 

that (iii) shows that when a. = 1 the point is always mid-way between 

the parallel axes. 

In order to find the roots of an equation consider the 

example of figure 2.16, x 
3 - 7x + 6 ::; o. 

nWe see, by comparing it with v + a u +0. = 0, that n = 3, 

a. corresponds to x, u ::; -7 and v = +6, so we must align the 

point -7 on the left hand parallel axis (p on the sketch) with +6 

on the right hand parallel axis (q on the sketch). The line 

joining these points intersects C3 at 1 and 2 and these are two 

roots of the equation. There must now be a third root which, in 

view of the sign of 6, must be negative, therefore in the equation 

j./ I 
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3 3 
x - 7x + 6 = 0, replace x by -x giving x - 7x - 6 = D. 

Solving this in the manner indicoted above we find that there 

3is one root, namely +3. Therefore the third root of x - 7x + 6 0 

is -3. 

This method is the first example of an Alignment Nomogram 

although neither word is used in the paper to describe it. The 

superiority of the method of estimating values by aligning two 

points over the method of estimating the point of intersection of 

three lines is undeniable. Great credit is due to d'Dcagne for 

introducing the method. 
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Figure 2.16 

D'Ocagne's alignment nomogram for x 3 + px + q -:::=. O. 

Its simplicity is appreciated by a comparison with Lalanne's 

nomogram of figure 2.1. 
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5. Lallemand's Hex3gonal Nomogram. 

In 1886 a paper was presented to the Paris Academy of 

Sciences by Charles Lallemand in which he described his hexagonal 

nomogram (25). This type of nomogram originated in 1883 when 

Lallemand, employed by the "Nivellement general de la France", 

was preoccupied with the simplification of the calculations carried 

out by that organisation. He was later to become the director of 

the Nivellement general. A brochure describing th~ method appeared 

in 1885 but this was for use within the organisation only, as 

d'Dcagne makes clear in his 'Nomographie' (30). In a paper 

on the origins and state of nomography presented to the Academy 

of Sciences by Lallemand in 1922, the method is referred to with 

some pride (26). 

The basis of the hexagonal method is the following property 

of Geometry - I translate from Lallemand's 1886 paper. 

"The algebraic sum of the projections of a segment 
of a line on two axes having an angle of 120 between 
them is equal to the projection of the same segment 
onto the internal bisector of the angle between 
these axes". 

v 

figure 2.17. 
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In the figure 2.17, au and OV are the axes with OW as 

their internal bisector. If XY is the given line then the result 

states that-AD + DE = CF. A simpler form of the result is 

obtained by making OX the straight line, in which case figure 2.18 

applies and the result is OA + DB = DC. 

v 

Figure 2.18. 

The proof of this is elementary. For the use of figure 2.18 as a 

nomogram OU, OV and OW can be scaled according to the laws 

f 1(u), f 2(v) and f3(w) respectively, in the directions indicated, 

to give the relationship f 1(u) + f 2(v) - f3(w) = D. To read the 

nomogram, given say u and v, it is necessary first to find X, the 

point of intersection of the perpendiculars to OU~and OV at u and 

v respectively. Then from X drop a perpendicular onto OW to find 

the corresponding value of w. Lallemand suggests the use of an 

oriented transparency which takes the form of a regular hexagon 

on which is engraved the three diameters, which he refers to as 

index lines. If the point of intersection of these diameters 

is placed over X, then XA, XB and XC can be made to coincide 

with parts of the diameters and the task of reading the nomogram 

will be greatly eased. Of course, it will also be necessary to 

engrave some parallel sets of lines, perpendicular to the index 

lines, in order to orientate the transparency. 
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The method is of interest partly because it appears 

to be independent of earlier work on Nomograms and partly 

because it is the first example that requires an orientated 

transparency. Other writers had already suggested a transparent 

sheet carrying an engraved line as an aid to reading a nomogram, 

but the reason for this was to keep the nomogram clean rather than 

as an essential part of it. 

Thera is mora flexibility in the' method than may be 

obvious from a cursory inspection. The lines au, OU and OW may 

be displaced in directions perpendicular to themselves without 

changing the positions on the lines of A, Band C in figure 2.18. 

Figure 2.17 shows that the three lines may be displaced parallel 

to themselves which implies that 0 need not be the origin of 

the three variable axes; in this case A, Band C represent the 

corresponding origins for u,v and w. Such flexibility means, 

for example, that if it is convenient to do so, the three scales 

can be the sides of an equilateral triangle, or, that if the range 

of the variables is to be increased, then it can be done without 

unduly increasing the size of the nomogram by displacing the scales 

to accommodate the increased range. In figure 2.19 the increase 

in the range is shown by the broken lines. 

u 
vJ \ 

\ 
\

I /\1J3
I 

I 

"'3" 
/ 

"" 

I \ 

Vj~V"J. 

lT~- - - - _Ju; 
V 

Figure 2.19. 
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Lallemand claimed more for his nomogram. He claimed that 

it was applicable to all equations in which, directly or after 

anamorphosis, the variables could be se~arated into groups, of at 

the most two, in a sum of products of functions such that:

The method by which he proposes to deal with such an expression 

is simply to replace the corresponding linear scales by diagrams 

having two sets of 'isoplethes'. The ~Drd isoplethe occurs 

frequently in Nomographic writings of this time; it designates 

a curve having a fixed value for some parameter. The more 

variables the more complicated is the nomogram and in this respect 

Lallemand's idea is more limited than he himself believed. As an 

illustration of what was done consider lallemand's own hexagonal 

nomogram giving the deviation of a compass for a particular ship, 

'Le Triomphe'. 

The formula with which it deals is 

C = a + m sin Z; + n cos 7,; + b sin 2 r; + C cos 2 Z; ~ 

where ~ is the compass bearing; a,b,c are constants particular 

to the ship; m,n are known functions of 8 (the magnetic declination), 

and H (the horizontal magnetic component). 

It is split up as follows:

w 15 

v m sinl; 

u = n cosZ;; + b sin 2l; + c cos 27,; + a 

giving w = v + u. 

o and H do not appear explicitly on the nomogram as they are 

obtained from the latitude (A) and Ipngitude eLl and therefore 

a network for (A"L) is substituted for a network for (0"H). 

Figure 2.20 shows the plan of the nomogram, the basis of which is 

the equilateral triangle ABC" and figure 2.21 is lallemand's final 

nomogram. The dotted lines indicate an example where A"" 42° N, 

L = 20° W (Ouest), ~::: 41.50 giving 15= 11·8°. 

Lallemand has certainly taken the simple idea to a very high 

level of complication. 
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Figure 2.20 

Plan for Lallemand 'os nomogram of figure 2.21. 
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6. Two Early Attempts to Solve a Problem of Anamorphosis. 

It has already been noted that Sai~t-Robert investigated 

the problem of expressing the equation F(x,y,z) = 0 in the form 

Z(z) = X(x) + Y(y) and produced a criterion to determine when 

this is possible with a method for finding Z(z), X{x) and Y(y) 

when the criterion is satisfied. Although Saint-Robert does not 

appear to have been concerned with the application of his result 

to Nomogr3phy, it has stood the test of time. As illustration 

of this one can cite two relatively recent examples in which it 

is considered worthy of mention; in "Nomography" by Otto published 

in 1963 (27), and in an article by James-Levy published in 

1959 (28). 

Two further attempts at a similar problem were made in 

1884 and 1886. 80th were concerned with putting the equation 

F(x,y,x) = 0 into the form Z1(z)X(x) + Z2(z)Y(y) = 1 ••••• 2.6.1 

where z is considered to be a function of both x and y. 

One may wonder why the form 2.6.1 was selected rather 

than the form chosen by Saint-Robert. The form 2.6.1 is rather 

more general in that it is a simplification of: 

l1(z)X(x) + Z2(z)Y(y) + Z3(z) = O. 
Also, Cauchy and his colleagues when considering Lalanners 1843 

paper had remarked that the form fez) = X ~(z) + Y x(z) could 

"generally be reduced to the construction of straight lines". 

The first attack on the problem, in 1884, was by the 

Belgian engineer J. Massau (20) • In looking at his tJ..Ork we denote 

partial derivatives in the usual manner, i.e. 

2 
p =~ q = ..Qb r =~, s=~ t = tz • 

dX dy dX2 d Xdy ely 2 

Firstly, r~assau obtains a value R from these partial 


derivatives which in turn will have been calculated from the 
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origindl equation F(x,y,z) = D. 

His R is given by, 

R =.E3 - 2s + .3:!. • 
p q 

Two quantities Ul, a function of x, and U2, a function 

of y, are introduced and linked to the required quantities X and Y 

by 

X" 

XI 


8y partial differentiation he is able to obtain from 2.6.1 the 

equation 

•••••••••••••••••••••••••••••••••• 2.6.2 

Three more equations are obtained from 2.6.2 by suitable partial 


differentiation. They are 


rU2 + sUl + qUl' : aB •••••.••••••••••••.•.••.•• 2.6.3 
ax 

sU2 + pU'2 + tU, = aR •••••••••••••••••••••••••• 2.6.4 
ay 

E.-EU2 + + ~U1 + ~U.1' D ................ 2.6.5rU'2 = 

ay oY 0y axay 


Equations 2.6.2, 3, 4 and 5 will give the values of U1, U2, u1 ', U'2. 

From the way in which U1 and U2 are defined, the following 


conditions must apply: ~1 0, = 0 ••••••••••••2.6.6
~2 
3y ax 

Also from 2.6.1, by suitable partial differentiation, the 


relationship 


1.1 	 '" E!' •••••••••••••••••••••••••••••••••••• 2.6.7 
Z2 q X f 

is obtained. 

The method is applied as follows. 

Form the following equations from the given F(x,y,z) ... 0 

pA + q)l R'" 

rA + S)l + qv 
 '" aRid x ••••.•••...•• 2.6.8 

SA + P 1T + tll '" aRid y 

A,or + 1l.Q.:? + r 1T +v ~= a2R 
o y a y oy d xC) Y 
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Use the equations to find A and ]l • 

The conditions 	~ = 0, ~ o must be satisfied •••••••• 2.6.9 
ax dy 

Then we have 	 X" = P, 
X' 

which will give X and Y. 

The relationship between Z1 and Z2 is now obtained from 2.6.7, 

= Q:"" 
q X' 

and the functions Z1 and Z2 from the form 2.6.1. 

It is possible that the coefficient matrix of 2.6.8 will 

have a rank less than four, as is the case in the example given 

below in which the rank is three. In this case one variable may, 

in theory, be chosen arbitrarily but, in practice, some care will be 

required if the conditionsaA = 0 and ~ = 0 are to be 
ax dy 

satisfied. Jll' 
2 2 	 I: 

Consider the case F(x,y,z) =z - x y O. 

Then p = 2xy2, q = 2x2y, r = 2y2, t = 2x2, 5 = 4xy, and R = -4xy. :jl 
We have the equations 

: ~ 

yA + xl1 = -2 

2


YA + 2xp + x \! = -2 


2yA + x]l + y21f :::: -2 


4yA + 4xl1 + 2x2\1 + 2y2Tf = -4 


This system reduces to 

y"A + xl1 = -2 

2
xll + x \I 	 0 }

y"A + Y
2

1f = 0 

In order that the first equation may be satisfied, it is possible to 


choose A as a function of y only and 1l as a function of x only by 


taking "A = -1/y and ]l = -1/x. These give \I = 1/x2 and Tf = 1/y2 


but we do not require these. 
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The conditions dt.. ::: a and l..1! = 0 are satisfied. 
d x dy 

yllWe have ~"= -.1. , -1 leading to X = lnx and Y = lny. 
yi "" X' x Y 

Then 3 _ l~ leads to Z2 = Z1 = Z, and XZ 1 + Yl 2 = 1 gives 
p Z1 XI 

Z 1/ln( xy) = 2/lnz. Therefore the form is 2lnx + 21ny Jnz. 

The second attempt was in 1886 and is due to L~on LeCornu, 

a French mining engineer (29). LeCornu begins his paper with a 

reference to Lalonne's work on graphical tables and anamorphosis 

and poses the problem of finding when a given relation between 

three variables F(x,y,z) ::: 0 can be put into the form 

azX(x) + bzY(y) + c z 0, where az, bz and Cz are functions of 

z and z is a function of x and y. 

We have an additional clue to his reason for starting with 

this form. He quotes from the French edition of Culmann's "Traite 

de Statique Graphique" thus, 'On ne peut donner de r~gle g~ngrale 

pour transformer f(x,y,z) = 0 en azx' + bzY' + Cz = 0' (here Xl is 

a function of x only and y' a function of y only). 

The results of LeCornu's efforts are given. 

The required form becomes Z1(z)X(x) + Z2(z)Y(y) = 1 

which, after partial differentiation and some manipulation, leads 

to a set of conditions of possibility which are:

== u - vwl~ ..1l..!:!. 
p ax q ay 

whera _1 a2 {].n(q/p)} , v s 

u - pq dXdy pq 


~ - pdu

Ox dy 


iii 

~ - P2.Y. 
ax dy 

and p,q,s have their previous meanings. 

If the conditions are satisfied, then w is a function of z. A 

quanti ty T is calculated from T:: J wdz. 
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T is now expressed as a function of x and y using the original 

re13tionship F(x,y,z) = o. 

The relationship 2.6.7 obtained by i"1assdu, Le.1.1 =.f!1', 
Z qX'

2 

also applies in leCornu's proof. Denoting In( ~~) by T, lnX' by -f 

and InY' by g, the relationship Can be expressed in the form 

f + 9 = 

It follows that 1n(;)- T is the sum of a function of x and a function 

of y which are f and 9 respectively. 


Then X = Je- f dx, Y = J e9 dy are calculated. 


finally, the relations Z1X + Z2Y = 1 and Z2 = 21e T enable 


Z1 and Z2 to be calculated. 


It may be instructive to consider the case of z = x 2y2 to 

compare the method with that of Massau. 

lnx - lnyThus, 1n(~) = 

2 
= 1 , _dIn/B.) = oand ~In (;) 

x dXdY l p 

Therefore u = 0 and v = 1 w = 0-- ,
2 2 

x y 

hence u - vw = 0 

dW = 0, a w = o 
ax a y 

The conditions are satisfied. 

We now have T = f Odz = 0 

f + 9 = Inx - Iny 

giving, f = Inx, 9 = -1ny 

• Je-lnxX dx = 1nx 

Je-1nyf Y dy Iny"" 

Z1 1nx + Z2 1ny = 1 



a
but Z2 = Z1 e , i.e. Z2 = Z1 

Z1 In (xy) = 1 


Z1 = 1/1n Iz = 2/1nz 


• 
 lnz 21nx + 21ny 

The methods of Massnu and LeCornu are similar in the basic 

philosophy of using partial differentiation; they differ only 

in detail. Writers on the subject, when they refer to these 

methods at all, tend only to make the point that Massau's requires 

four integrations and LeCornu's requires three, but this hardly 

seems to be a point of any great importance. 80th methods are 

important in that they are successful attacks on an important 

problem in Nomography. Further details of both proofs are given 

in AppendiX I. 

It will have been observed that, as in the case of the 

example which illustrated Saint-Robert's criterion, the examples 

which illustrate the methods of Massau and LeCornu do not take 

account of constants of integration. This is because it is a 

feature of such methods that constants of integration eliminate 

themselves. 
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7. O'Ocagne's 'Nomographi8'. 

O'Ocagne's 'Nomographie - les Calculs Usuels effectues 

au moyen des Abaques' was published in 1891 (30). The author was 

twenty-nine years of age and had already a wide practical experience 

behind him in the Corps des Pants et Chaussees and on detachment 

between 1885 and 1889 to the marine hydraulic service. This 

experience would doubtless have made him aware of the need to perform 

calculations with speed and with minimum error and this inwrn 

would have heightened his interest in the techniques of geometric 

computation. Before 1891 no book had been published which dealt 

with either the principles or general techniques of Nomography, 

and on this score alone the book represents an important event in 

the development of the subject. The fact that it is a compact, 

concise and elegant book adds further to its importance; as an 

introduction to the subject it compares most favourably with books 

written more than half a century later. It is also the first work 

which describes Nomography by that name. 

Earlier sections of this thesis have referred to intermittent 

papers which have appeared on the subject and we have also seen 

that in one case, that of Lallemand's hexagonal method, a brochure 

was published specifically for the use of the Nivellement General 

de France and was not made available to the public. We may assume 

with some confidence that in the period between 1842 and 1891, that 

is the period between the year in which a law was published committing 

France to establish a network of railways and the year of the 

publication of d'Oc2gne's book, a considerable body of knowledge had 

been built up within the technical departments of state. In his 

book, d'Ocagne presents this material and other material known at 

the time and attempts succ~ssfully to extract general principles. 

Much of the material is based on the work of Lallemand and d'Ocagne 

himself while some is earlier work, but it is all developed consistently 

and presented in a form which the reader of a more recent text, such 

as "The Nomog~am" (31), published in 1963, would instantly recognize. 

In fact, many types of nomogram are here publicly recorded for the 

first time. 
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In his foreworJ d'Ocagne compares Nomography with 

Descriptive Geometry and finds a similarity in that the latter 

rests on the use of 3 few simple propositions of Pure Geometry 

while the former rests on a few principles of Analytical Geometry. 

This sets the tone of the book; it is to be a mathematicians book 

in which underlying principles are all important, rather than a 

collection of techniques. The importance of the book to a history 

of Nomography is that it represents the state of the art as it 

was in 1891; no other source gives us such a comprehensive view. 

The work begins with equations containing not more than 

three variables, presenting us with the theory of intersection 

Nomograms. It is presented as follows. 

If the result of the elimination of x and y from the three 

equations 

F1(X,y,CL) 0 ••••••••••••••.••••. 2.7.1 

F2(x,y, S ) ::: 0 •••••••••••••••••••• 2.7.2 

F3(x,y, Y) 0 •••••••••••••••••••• 2.7.3::: 

is F ( CL, s, Y ) = 0 •••••••••••••••••••• 2.7.4 

then to construct a nomogram of equation 2.7.4 it is only necessary 

to construct the three systems of curves defined by equations 

2.7.1, 2.7.2 and 2.7.3 in which one varies respectively the parameters 

ct, S, and Y, taking care to inscribe the value of the parameter 

in a suitable manner on each curve. These curves he calls 

'isoplethes' respectively for the parameters CL , Sand Y. Consequently 

a set of values of the three parameters satisfy equation 2.7.4 when 

the corresponding isoplethes meet in a point. Thus, one of the 

parameters in 2.7.4 may be found when the two others are given. We 

recognise here the clarification of an idea from Massau. 

This then gives the principle behind the simple 


intersection nomogram of figure 2.22. 
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figure 2.22. 

This idea is now simplified since it is recognised 

that two of the equations 2.7.1, 2.7.2 and 2.7.3 may be chosen 

arbitrarily. If, for example, we so choose equations 2.7.1 

and 2.7.2 then equation 2.7.3 can be obtained by eliminating 

y and 6 between them and the given equation 2.7.4. It makes 

practical sense to choose equations 2.7.1 and 2.7.2 to be as simple 

as possible. We therefore put 

x = CL , y 

when equation 2.7.3 becomes F(x,y,Y -::: O. 


We thus have a nomogram of th~ type shown in figure 2.23. 


o '+ 7 
0< 

figure 2.23. 
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We recognise here that we have arrived back at a chart of a 

type very like that of Pouchet for zlz2 = z3' given in 

figure 1.2, but the difference here is that d'Ocagne has given 

the principle on which it is based. 

The natural topic to continue with is anamorphosis 

and this is what dtOcagne does, starting with a simple illustration 

which is no more than a tidier version of Lalanne's earlier work. 

Taking as his example an equation which is a variant of that 

suggested to Lalanne by Cauchy, 

F(a ,6 ,Y):: f (a)1JI1(Y) + <P (S)1J12(Y) +1J1 3(Y) 0 •• 2.7.5 

he takes for his first two equations x = f( a) •••••••••••••• 2.7.6 

y =cp (S) •••••••••••••• 2.7.7 

whence he arrives at 

x1Jl 1(Y) + y1Jl 2(Y) + 1J1 3 (Y) = 0 •••••••••••••••••• 2.7.8 

Thus the isoplethes for a and B are again parallel to the 

axes but this time not equally spaced. 

The isoplethes for Yare also straight lines which are 

tangents to a curve which can be found, if it is wanted, by 

eliminating Y between equation 2.7.8 and its derivative with 

respect to y. 

This is also Lalanne's work put in a more mathematical 

form and made more concise. It is worth noting that the gap between 

Lalanne's paper on anamorphosis and the pUblication of those same 

ideas, concisely and mathematically expressed, is forty-five years. 

D'Ocagne next examines an idea that had been expressed seven 

years earlier by Massau. He considers the problem of looking for 

the general form of equations which are representable by three 

streams of linear isoplethes. 

He observes that F1(x,y, a), F2(X,Y, S) and F:fx..y. Y) 


must have the following forms, 
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F1 - xf1 ( Cl) + yf
2-

( C&) + f 3( C&) :: a 


F2 - x~1(8) + y ~ 2( 8) + ~ 3( B) = 0 
 .......... 2.7.9 


F3 x 1jJ1( y) + y 1jJ 2( y) + 1jJ 3( y) = 0== 

and that the form of F( Cl, 8, y) = 0 must therefore be:

= 0 ••••••••••••••2.7.10 

when these conditions are satisfied. Nomograms of the type 

shown in figure 2.24 are then obtained. 

i' 

figure 2.24. 
'; 

O'Ocagne then makes the remark, which in the light of 

subsequent work must be regarded as a considerable understatement, 

that 'It is not always easy to see whether a given equation 

in three variables can be put into this form'. He adds a 

footnote which is worth quoting in full. 'The common character 

of all equations susceptible of reverting to the determinant form 

(above) express themselves by partial differential equations 

obtained by the elimination of the arbitrary functions which enter 

into that form. These functions are six in number (because on 

each line of the determinant one function must be a linear 

combination of the other two), and the analytic problem consisting 
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of eliminating them will not want of a certain complication. 

This problem has been completely resolved, and in a very 

elegant manner by M. 1ng des Mines Lecornu (C.Ro tell p 815) 

in the case where the determinant form reduces to 

f( a. ) 1IJ 1 ( Y) + <f> ( 8) 1jJ 2( y) + 1/J 3( y) == 0 

M. Lecornu has not only eliminated the four arbitrary functions 

that limit (the above) but also shows the way in which they can 

. be determined whe~ one has verified that the form is possible'. 

We observe that no mention is made of the work of Massau 

nor of that of Saint-Robert. It is possible that d'Ocagne was 

unaware of bath of these efforts in 1891. However, when his Traite 

de Nomographie appeared in 1899, d'Dcagne devoted some space to 

both (32). 

He gives a case, frequent enough in practice he claims, 

where it is easy to verify that the equation can be put into the I 

t·
determinant form, namely -

~ ( (l , 8 ) ¢ 1 ( Y) + X 2( (l , 8 ) ¢ 2( '() + >3( II , $ ) '4J 3( y) = a 

............ e •••••• 02.7.11 

in which it is sufficient to put 

x==21(O,8) and y "" ~«(l. 8 ) 

X3( (l , 8 ) X3( (l , S ) 

and to eliminate, in turn, Sand (l from these equations. If the 

result of the eliminations are of the first degree in x and y 

+ yf 2( (l ) + f 3( a. ) :: a •••••••••••••••••2.7.12i.8. 

+ y ~2( 8 ) + ~3( 8) 0 •••••••••..•••••• 2.7.13 

these equations are used. A third equation is obtained by 

eliminating 0, S between 2.7.12, 2.7.13 and 2.7.11. Since system 

2.7.12 	and system 2.7.13 are equivalent to the system 

x = ~1 ( (l • $ ) , y :: ~2(o • S ) 

X3( (l , S ) X3(a. ,8 ) 

the third equation will be 
, 


x ¢ 1 ( Y) + y W2( '().. ¢3( Y) .. 0 
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O'Ocagne considers it desir8ble to give a name to an equation 

which is representable by three sets of linear isoplethes and 

proposes the term 'equations a triple reglure'. 

In passing the remark is made, again echoing an idea of 

Lalanne, that circles are almost as easy to draw as straight 

lines and that therefore, for certain cases which are not 'a triple 

reglure', circular isoplethes may be the answer. 

Binary scales, due to Lallemand, are briefly discussed. 

The idea of such a scale is that it is constructed so that one 

point may have two interpretations. They are not of great 

importance to this study. Examples appear in Lallemand's nomogram 

of figure 2.21. 

A second idea attributed to Lallemand is also briefly 

described. It is that of the graphical elimination of a variable 

between two equations. For example consider: 

F(CL,8,Y) 0 


CP( CL t , 8' , y) = 0 


One can construct both nomograms taking in each the scale y = y 

as shown in figure 2.25. 

T --. - S  -

o 

Figure 2.25. 
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Given for example a = 2, B = 1, S' '" 3, it is eilsy to see 

that a' = 3 by following the broken line. 

Although y is 5 in this case the value plays a passive 

role. It can be seen that the method could be extended by allowing 

the scoles of a and a' to coincide, if this was thought desirable. 

We note that this idea of graphical elimination had also been given 

by Massau in 1084. 

The remainder of the book is devoted mainly to the elaboration 

of ideas already described in this thesis. A large section deals 

with Lallemand's Hexagonal ~omogram and in particular the extension 

of it to deal with equations having more than three variables. 

Graphical addition and graphical multiplication are dealt with 

in full, but these are forms of the Hexagonal Nomogram and, although 

ingenious, add little to the advancement of the subject. 

As one would have expected, d'Ocagnets earlier work on 

parallel coordinates and the related nomograms is dealt with at 

some length. Here, however, unlike in his 1884 paper, he uses 

the term 'points isoplethes t to describe the duals of his isoplethe 

lines. Otherwise the work in this area is repeated with more 

elaborate examples. 

Finally, one must note d'Ocagne's brief reference to 


the principle of homography. This is important because he is 


suggesting the. use of geometric prinCiples to change the appearance 


of a nomogram so that it may be rend with greater ease. He merely 


notes that the transformations 


Xl = .£ox + bo:L + Co 


dx + ey + f 


y' ~1x + bW + c1 


dx + ey + f 


transform points on a straight line to other points on a straight 


line. However~ homographic, or projective, transformations have 


become most important features of nomography. 
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We thus have a clear picture of the state of nomography 

in 1891. Intersection nomogr3ms were well establishedj alignment 

nomogr3ms less so but they were on a sound theoretical basis; 

hexagonal nomograms had been developed to their full extent; 

anamorphosis was being regarded as an important problem, although 

perhaps being underestimated, and the idea of using geometric 

projections to improve nomograms had been sown. 
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8. The State of Nomography in 1893. 

Two events took place in 1893 which can be taken as 

indicators of, on the one hand, the status of d'Ocagne and 

his new discipline, and on the other, of the attention that 

British engineers had paid to Nomography. 

The first event was the International Mathematical Congress 

held in connection with the World's Columbian Exposition in 

Chicago. Many famous mathematicians read papers at this 

conference. As examples we can cite Charles Hermite, who read 

a paper on elliptical functions and David Hilbert who read one 

on the theory of Invariants. Also reading a paper was d'Ocagne. 

His paper was called "Nomography: On equations representable by 

three linear systems tit isoplethe points" (33). 

If one can judge a man by the company that he keeps 

then it seems that by 1893 d'Ocagne's standing as a mathematician 

was high. One must assume that some kind of selection or invitation 

was necessary before a paper could be presented at such a conference. 

Of course, d'Ocagne does seem to have been something of a showman, 

he had more than a passing connection with the theatre, and he did 

not let an opportunity pass that would enable him to publicise 

Nomography, but I think it must be accepted that by this time he 

was an important mathematician. 

The paper itself is interesting and well presented. It 

deals with a special aspect of alignment nomograms, those in which 

the three scales, or systems of isoplethe points as he likes to 

call them, are on straight lines and in particular when the 

points on those straight lines are equally spaced. It is a paper 

ahead of its time on a theme which d'Ocagne would return to four 

years later. 

The other event of 1893 was a report to the British 


Association for the Advancement of Science on IGraphical methods 
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in Mechanical Science'. This was the third part of a report, 


the preliminary pJrt of which had been presented in 1889 


with a second part in 1892. The uuthor was Professor H.S. 


Hele-Shaw of University College, Liverpool. , I 


It is no surprise that these reports deal largely with 

Graphical Statics, but it is a little surprising that some 

recent nomographic ideas have no place in them. The nearest 

that one comes to nomography is in the 1892 report where the 

following appears; "Falling under the head of 'graphical tables' 

are the constructions devised by M. L. Lalanne ••••••• An example 

of one of these tables, called by the inventor an 'abacus' was 

shown as a wall diagram to the Mechanical Section. The ordinates 

and abscissae of this diagram are not numbered according to their 

actual values, but are logarithmic, exactly as the scale on a 

slide rule. By means of this diagram operations of multiplication 

can at once be performed, and by a slight modification products 

such as a 2b and the ~2b can be readily obtained". 

The ideas of Nomography had therefore not penetrated to 

the British engineering establishment by 1892 except for an 

idea from 1846. This may have been due to poor communication of 

ideas; it may also have been due to the poor mathematical background 

of many British engineers, for elsewhere the report suggests that 

graphical statics are preferred to calculations for that very 

reason. 

However, British military engineers were a little-more 


forward looking, for also in 1893 there appeared, in the 


Professional Papers of the Corps of Royal Engineers, an article 


on the 'Graphic Solution for Equations of the second, third and 


fourth powers' which was truly nomographic in spirit (34). It 


Was a translation by Major W.H. Chippindall, R.E. of a paper by 


Lt. Julius Mandl of the Imperial Austrian Engineers. The work 


has a very practical purpose as can be seen from the opening 
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paragraph; 

"In order to avoid the use of logarithmic tJbles and 

the necessity of obtaining the second Jnd third roots in the 

solution of equntions of the third and fourth power, the 

accompJnying table was constructed for solutions in which greater 

exactness was not required than the first two or three figures". 

The 'accompQnying table' referred to is a graphical 

table making use of a transparency which itself can be constructed 

by tra~ing lines already on the table. The theory is based on the 

fact that various sums and products of the roots of the equations 

may be expressed in terms of the coefficients of those equations. 

In the case of the second degree equation 

2 
x + Ax + 8 = 0 •••••••••••••••••••••••••• 2.8.' 

we have, if we suppose the roots to be x, and x~ 

X1 + = -A •••••••••••••••••••••••••• 2.8.2x 2 

x1x2 = B •••••••••••••••••••••••••• 2.8.3 

Equation 2.8.2 represents a straight line, supposing x1 

and x2 to be cartesian coordinates. Furthermore, whatever the 

value of A, the straight line always has a slope of -1. 

Equation 2.8.3 represents, for varying B, a set of 

rectangular hyperbolae referred to their 'common asymptotes as axes. 

The intersection of 2.8.2 with 2.8.3 will then have for 

abscissa and ordinate respectively the values of x, and.x2 which 

satisfy equation 2.8.1 for some given A and 8. The proposal 

is therefore to construct such hyperbolae on a rectangular cartesian 

framework and to have a straight line on a transparency which can 

be used to represent a line of slope -1 for any A, enabling the 

appropriate values of x1 and x 2 to be read. If the whole diagram 

is square then the line with a slope of -1 is parallel to the 

diagonal Joining top left to bottom right. Figure 2.26, which is 

not to scale, shows the general appearance. 
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Figure 2.26. 

Moving to equations of the third degree 

x 3i.e. + Ax2 + Bx + C == 0 ................... 2.8.4 


if we take the roots to be x1, x2 and x3 then 

•••••••••••••••••• 2.8.5 

= 8 ••••.••••••••••••• 2.8.6 

and x1x2x3 -c ••••••••••••••••••2.8.7 

Letting 

x2 + x3 '" Z 

and = yx 2x3 

then x1 + z -A •••.•••••••••••••.• 2.8.8 

x1z + y = 8 •••••.•••.•.••.•••.2.8.9 

and x1Y -c ••••••••••••••••••• 2.8.10'" 
and if we eliminate z between 2.8.8 and 2.8.9 we have 

2 y = x1 + AX 1 + B ••••••••••••••••••• 2.8.11 
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If we now consider x1 and y to be co-ordinote axes with 

3S the abscissa and y as the ordin0te then 2.8.10 nsainx1 

represents a rectanguldr hyperbola while 2.8.11 is 8 p~rJbola 

with the constant equal to unity, the axis parallel to the ordinate 

axis and the vertex always downwards • 

•••••••••• ••••••••• 2.8.12 


showing that the vertex is given by 

It follows that a knowledge of A and 8, which we have, 

will fix the position of the vertex but otherwise all parabolae 

given by 2.8.11 are the same shape. Therefore our transparency 

should also carry this parabola, its axis and the tangent to its 

vertex. The axis can be the straight line referred to earlier. 

The intersection of the parabola with the hyperbola is 

equivalent to the simUltaneous solution of 2.8.10 and 2.8.11; 
3 2

that is, to the solution of x1 + AX1 + BX1 + C o. It 

follows that to solve 2.8.4 we must find the co-ordinates of the 

vertex of the parabola; position the transparency so that its 

parabola has its vertex at the point with those coordinates and 

its axis parallel to the ordinate axis, and then note the abscissa 

of the points of intersection of the parabola with the hyperbola 

given by 2.8.10. 

Normally there will be three such abscissae corresponding 


to the roots of 2.8.4 , x1' x2 and x3" 


If the scale is such that only two intersections are given, 

i.e. we only have x1 and x2' the third root will be given by 2.8.5, 

i.e. x3 = -A - x1 - x2. If the equation is such that the inter


sections fall outside the diagram, then substitutions of the type 


79. 




x = m ~ 	 or x = ~ + m will correct the situation, for example 
3 2 x - 38x + 461 x - 1,768 = 0 becomes 


~3 _ ")


8 ~ ~ + ~ + 42 a after the substitution 

x = ~ + 10 has been made, the roots of the original equation 

being given by 

~1 + 10, ~2 + 10, S3 + 10. 

For the equation of the fourth degree 

x4 + Ax 3 + Ox 2 + Cx + 0 = 0 ••••••••••••••••••••• 2.8.13 

we have 

-A •••••••••••••••••••••• 2.8.14 

8 •••••• 2.8.15 


••••.•• ·•. 2.8.16 

= o .••••••••••..••••••••••••••••••• 2.8.17 

The substitutions 

x1 + = m, x3 + x4 = n, x1 x2 = p, x 3x4 = qx2 

reduce 	equations 2.8.14, 2.8.15, 2.8.16 and 2.8.17 to 

m + n -A ••••••••••••••••••••••• 2.8.18 

mn + p + q = 8 ••••••••••••••••••••••• 2.8.19 

mq + np = -C ••••••••••••••••••••••• 2.8.20 

pq 	 0 ••••••••••••••••••••••• 2.8.21 

2.8.18 	2nd 2.8.20 give 

m = - C) , n Ag - C-~~ 
q 	 P - qP 

substituting in 2.8.19, and using 2.8.21 with the substitution 


p + q = z, we get 

3 2 {C 2
(AC - 40) z - + 0(A2 - 48)} = 0 ••• 2.8.22z - 8z + 

Thus the fourth degree equation 2.8.13 can be transformed into 

the third degree equation 2.8.22, for which we can obtain a root 

by the method already described. 

Having obtained the root z, we can find p and q from 


p +q = z and pq = 0 


and then m and n from 


m + n = -A and mn = B - z 
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m,n,p and q are all that are required to obt2in x1' x2, x3 and x4 " 

Although 2.8.22 may h~ve three roots it is immaterial which of 

the three are used as all lead to the same set of values for 

X1, x2' x3 and x4 " Figure 2.27 is reproduced from Major 

Chippindall's original paper. P is the parabola which must be 

transferred to the transparency as also must its axis ab, the 

tangent to its vertex, CD, and the line AB which contains the 

point a. 

As has eeen noted, Major Chippindall's paper, or perhaps 

we should say Lt. Mandl's, is nomographic in spirit in that 

solutions are provided for a whole class of equations in which 

the coefficients are considered to be the Variables. There is, 

of course, no reason to believe that the ideas owe anything to 

the work of Lalanne, Massau or d'Ocagne. What is of interest is 

the reason why an army engineer should appear to have a better 

grasp of the importance of geometric computation than the civilian 

engineers who reported to the British Association. The reason 

is that officers of the Royal Engineers at this time were much 

better educated in science and mathematics than the civilian 

engineers. 

During the latter part of the nineteenth century there was 

such concern in Britain over the state of technical education that, 

in March 1868, the government ordered a Parliamentary Select 

Committee, chaired by Bernhard Samuelson, to look into the problem. 

In its report the committee said that "a hindrance second only to 

the defective elementary education of the pupils is the scarcity 

of science teachers and the want of schools for training them". 

Although the reasons may be different, the situation one hundred 

years later seems to have a certain similarity. One of the measures 

taken by the government to remedy this situation was to allow 

officers of the Royal Engineers to supervise the examina~ons of 

the Department of Science and Art and to inspect science teaching 


in schools. The reason given for this solution was that nowhere 
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-GRAPHiC SOLUTION OF EQUATIONS. 

Figure 7.27 

The chart which accompanied Major Chippindall's 

paper. 

8~. 



els9 could a suitable body of science inspectors be found. 

It only became possible to dispense with their servicRs t~uards 

the end of the century. The report of the Board of Education 

for 1913-1914, stated that officers of the Royal Engineers 'in 

the early days of the Department were one of the few bodies of 

men in the country with an organised scientific training' (35). 

, ' 
t { 

Later, we shall see that d'Ocagne's ideas were also 

introduced into Britain by army officers, this time of both the 

Royal Engineers and the Royal Artillery. 
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g. A Theoretic31 Problem of AliQnment NomoQroms. 

So f3I' theCJI'eticdl pI'oblems in :;omof]I'clphy had been 

concerned with anamorphosis and as such had beeri related to 

intersection nomograms. However, the alignment nomogram 

developed by d'Ocagre has a p<H311el theoretical problem. 

Briefly, it is this. Suppose the three curves of figure 2.28 

to be given by the parametric equations, 

<i) ~ =:bhl , n = :bhl ; (ii) ~ = !1hl , n =~hl 
~ 3( x) ~ 3( x) 1P 3(y) 1JJ 3( Y) 

(iii) ~ , n~0 !i-U 
, ; 

e3( z) e 3(z) 

Figure 2.28. 

If the straight line ABC cuts the curves as shown then 

the values of x at A, of y at B and of z at C must be connected 

by the relation 

~2hl - .11!.z.lU 1~ - .1.~ 
83(z) 1/! 3( y) 1/!3< y) <P3(x)

= 

-i1hl 11hl ~1hl - 1,iU 
63(Z) 1/!3(Y) 1/!3( y) <P3(X) 

since the gradient of AS is the same as that of BC. This relation 

can be expressed in determinant form 8S:
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~3(x) 

~3(Y) o 
83(z) 

The theoretical problem is:

Given a re13tionship F(x,y,z) = 0, can it be expressed in the 

determinant form given? If it can, then an alignment nomogram 

can be constructed. 

This theoretical problem of alignment is the same problem 

as that revealed in connection with anamorphosis by d'Ocagne, (see 

equations 2.7.9 and 2.7.10). The same, that is, from a pure 

mathematical point of view; the geometrical interpretation differs 

according to the particular case. I have found no evidence to 

suggest that the dual nature of the problem had been appreciated 

by the end of the nineteenth century. 

The first attack on the alignment problem was by Ernest 

Duporcq in 1898 (36). He gave seven conditians which, if satisfied, 

showed that such a form was possible and also provided enough 

information to enable that form to be obtained. However, the method 

is more satisfactory at the theoretical level than at the practical 

level, it being very cumbersome for a moderately complex problem. 

Yet, as the first attack, it is one that doubtless had influence 

on later attempts. The authors of these make reference to Duporcq 

and it is therefore of some interest to indicate his approach, 

particularly since his paper is rather obscure. 

Although not said explicitly, Duporcq's starting point is 

the recognition that if F(x,y,z) = 0 can be expressed in the 

determinant form then it must be capable of being written as, 

F(x,y,z) = P1(x)R1(Y,z) + P2(x)R2(y,z) + P3(x)R3(y,z) = 0 ••• 2.9.1 

With this in mind he is able to construct three 4 x 4 determinants 

containing F(x,y,z) and forms of it involving three arbitrary and 

distinct values of x, namely a, a', a tl ; and similarly of y, viz. 
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b, b', b"; and of z, viz. e, e ' , en, so that the determinwnts 

Qre :311 identieolly zero. One of th,,:01 is given here, 

r(x,y,z) F(x,b,e) F(x,b'"c') r(X,bfl,e") 


r(a,y,z) F(a,b,e) r(a,b',c') f(a,b",c") 

•......• 2.9.2 

F(a',y,z) F(a',b,e) f(a',b',c') F(n', b", e") 


r(a",y,z) F(alf,b,c) F(a",b',e') F(a", b", e") 


To demonstrate tnat 2.9.2 is identically zero it is only 

necessary to consider each function F repliJced by the corresponcing 

exp=ession given by 2.9.1. The deter@inunt 2.9.2 is then seen 

to be the sum of 81 determinants of which the following is 

an example. 

R1 (y, z) R2( b, c) R3 (b I, c I ) R1 (b", c n) P1(x) P2(x) P3(x) P1(x) 

Pl (a) P2 (a) P3(a) P1(a) 

P1(a') P2(a') P3(a') P1(a t ) 

P1(an) P2( a") P3(a n ) P1(a n ) 

This determinant is identically zero since the first and last 

columns are the same. The other 80 determinants, by virtue of 

the way in which they have been constructed" must each contain 

at least two identical columns and consequently must each be 

identically zero. It follows that the composite determinent 

is identically zero. 

The knowledge that 2.9.2 is identically zero leads, on 

expanding along the first row, to the following expression, 

r(x,y,z) = U(y,z)f(x,b,c) + v(y,z)r(x,b',c') + W(y,z,)r(x,b",c lf ) 2.9.3 

So far we have 2.9.2 written in the form of 2.9.1 but with only 

the functions in x known. 

It should be noted that 2.9.1 is one of three possible forms 

that must hold if the problem is to be resolved, the others would 

have isolated the variable y in one case and z in the other in the 

same way that 2.9.1 has isolated x. To each of these two forms 

will correspond an appropriate determinant similar to, but different 
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from, 2.9.2. It is for this renson that Duporcq has imposed 

three determin<:lnt conditions on 8, .3', a", b, b ' , bl! and c, c ' , cit. 

Equation 2.9.3 enables three functions U(y,z), V(y,z) and 

W(y,z) to be found. It is next necessary to isolate the separate 

functions of y ~nd z. Let them be 91(Y)' 92(Y)' 93(Y)' h1(Z), h2(Z) 

and h3(z). 

Then, r(x,y,z) = 	 F(x,b,c) F(x,b',c ' ) r(x, bit, e") 

m191(y) m292( y) m393( y) 

n1h1(z) n2h2(z) n3h3( z) 

where m" m2' m3' 	 n" n2' n3 are constants. 

Therefore it is required that 

U(y,z) = m2n392(Y) h3(z) - m3n293(y) h2(Z) 

= A1A1(Y'z) -11181(y,z) 

i.e. the determinant 

U(y,z) A1(y,z) 81(y,z) 


U(b,c) A1(b,c) 81(b, c) 


U(b',c') A1(b',c') 81(b',c l ) 


must be identically zero. 


A similar condition applies for the determinants in V, A2, 82 and 

W, A3, 83 , These are then three more conditions to be satisfied. 

From them can be obtained 1..1 and 111, as illustrated above, and 

The values of the 	~'s and l1's aresimilarly 	 \13'J.l2' "3'
""'"L 

and nls:
known in terms of the m's 


they are:

J.l 1 = m3n2m2n3'" 1 

"2 m3n1J 	 J.l 2 m1 n3 


113 m2n1
"'3 m1 n2' 


from which the seventh condition followS, 


= 
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One problem still remains and that is to find the 

A's dnd 5'8. Since they arc =ombinutions of g's and h's the 

problem is reduced to finding these. 

Consider the relationships, 

v( y, z) == A 29:3 ( y) h 1 ( z ) ~ 2g 1 ( y) h:3 ( z ) 

w( y, z) A 39 1 ( y) h 2 (z ) ~ ]9 2 (y) h 1 ( z ) 

Putting in turn z == c and z = c' in the first relationship and 

combining the two resulting expressions we get 

g1(Y) = ~1V(Y'c) + f32V(y,c ' ) 

Treating the second ane similarly we get an alternate expression 

g1(y) == Y'1 UI(y,c) + Y2W(y,c') 

The other values can be found in a similar fashion. 

The importance of Duporcq's paper lies in the fact that it 

focussed attention an an important problem and suggested a line 

of approach for its solution. It has little value as a practical II 
aid. 

11 
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10. The Lives of lclanne, lallemand and dlOc29ne. 

Many of those who have been concerned with Nomography 

have been very interesting men. The lives of three of the main 

characters in the early development of the subject are briefly 

described here. 

leon Lalanne. 

Lalanne was born in Paris in 1811, became a student first 

at l'Ecole Poly technique in 1829 and then at l'Ecole des Pants 

& Chaussees in 1831. In 1846 he was a responsible engineer engaged 

on the construction of railways from Paris. After the revolution 

of 1848 he became Commandant of the 11th. legion of the National 

Guard. In 1849 he was arrested but released almost immediately 

and, following a coup d'etat, he lived abroad for many years being 

engaged on public works in, amongst other places, Spain and 

Switzerland. He returned to France in 1860 and from 1877 until 

his retirement he was the director of l'Ecole des Pants & Chaussees. 

Later he was President of the board of the Omnibus Company of Paris. 

He was responsible for perfecting many calculating devices and 

was the author or part author of many publications, including works 

on the Paris Metro. He was elected to the Academy of Science in 

1879, and he died in 1892. 

Charles Lallemand. 

Fewer details af the life of Lallemand have been recorded 


than of the lives of Lalanne and d'Ocagne. He was barn in Meuse 


during 1857 and died in Haute Marne during 1938. Amongst the 


appointments which he held were Inspector General of Mines and 


Director of the Nivellement General de la France. He was elected 


ta the Academy af Science in 1910. 
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Maurice d'Ocagne. 

OtDca~ne wes born in Paris in 1862. He wos an engineer 

of the Corps des Pants & Chaussees but from 1885 to 1889 he was 

seconded to the navol hydraulic services, first at Rochefort 

and then at Cherbourg. He became director of maps and charts 

at the Nivellement General in 1901 and Inspector General of roods 

and bridges in 1920. He devoted much time to the teaching of 

geometry, presumably as a part-time teacher; he was appointed 

Professor at l'Ecale des Pants & Chaussees in 1894 and at 

l'Ecole Palytechnique in 1912. In addition to his expertise in 

Nomography, he was an authority on calculating machines and a 

student of the history of mathematics. 

There was another side to his abilities; under the 

pseudonym of Pierre Oelix he ventured into writing. The most 

notable of his literary efforts was a one act comedy, called 

'La Candidate', which was given more than one hundred performances 

at the Cluny Theatre in Paris during 1888 and 1889. 

He was elected to the Academy of Science in 1922 and died 


at Le Havre in 1938. 
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11. The End of the Centurx· 

The year 1899 saw the publication of d'Ocagne's large 

work 'Traite de Nomographie' (32). This work gave th~ory and 

practical examples and was the first standard text on the subject. 

With its publication, Nomography could be regarded as a distinct 

discipline for it now had all the hallmarks; a set of general 

principles, the theoretical problems of anamorphosis and alignment 

and now a treatise. 
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CHAPTER 3. 

Development in the Early Part of the Twentieth Century. 

A short span of years extending either side of 1900 

was very fruitful in the production of ideas ~hich helped 

nomography to establish itself as a branch of mathematics. 

The theoretical problem ~hich Duporcq attacked in 1898 has 

already been noted; namely, given a relationship r(x,y,z) • 0, 

can it be expressed in the determinant form 

- o ? 


If it can, then an alignment nomogram is possible. 

Ho~ever, this problem is the ultimata one in nomography 

and there are others, more easy to deal ~ith, which were being 

considered during this period. A line of thought was being 

explored which related the algebra of a relationship to the 

geometry of a corresponding nomogram. for example, in the 

case of the relationship r{x,y,z) - 0, an alignment nomogram could 

have a straight line ae a carrier for each of the variables. A 

term often used for such a carrier is 'support', a term which I 

will also use ~en it is helpful to do so. It is also possible 

that f(x,y,z) • 0 could lead to a nomogram having three curved 

supports or to some intermediate combination of straight lines 

and curves. Again, the supports could be concurrent or nonconcurrent. 

All of these properties may be revealed by an examination of the 

relationship r(x,y,z) • 0 and it was to this type of problem that 

minds turned at this time. 

D'Ocagne ~as the first to investigate this problem. The 

paper which he presented at the Chicago exposition of 1893 was 

on alignment nomograms having three rectilinear supports. The 

subject was given a more rigorous treatment in 1897 when he 
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published a paper in Acta Mathematica; a paper which was 

incorporated into his 'Traite' two years later (32). This 

will be examined shortly when the 'Traits' is reviewed. 

In 1901, R. Soreau proposed a classification system 

basad on the linear dependance of the component functions of 

f(x,y,z) - O. Putting this expression in determinant form, 

for in this aspect of the work the assumption is made that 

this is possible, the following compact form is obtained, 

f 1( a1) g1( a1) 1 


f 2( a2) g2( a2) 1 - 0 


f3( CX:3) 93( CX:3) 1 


The supports in the xy plane are given by the equations, 

Consider the support of u 1• If a linear relationship 

exists between f1(~) and 91(u1), i.e. 

f1( a1) - Co + c1 g1( al ) in which (co2 + c12) I 0 

then f 1( u1) and g1( u1) are said to be linear dependant. It folIo illS 

from this linear dependence that a linear relationship exists 

between x and y, in fact it is x - Co + clY. Therefore the support 

of u1 will be a strsight 11ne. On the other hand, if no such 

linear relationship exists, i.e. if thaonly possible values for 

the CiS are Co - - 0, then the support given by X" f1(u1),c 1 

y - 91( u,) will be aome curve other thsn a atraight line. Thus, 

the number of linearly independent functions in r(x,y,z) determines 

the nsture of the supports. This numbar Soraau called the 

'Nomographic Order' of f(x,y,z) - 0 (37). 

An examination of the determinant form 

f 1 (u1) 91 ( Ul ) 1 


f2(~) 92( ~) 1 • 0 


f3( a3) 93( UJ} 1 


II 
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shows that in this case the nomographic order is one of 


3,4,5 or 6. If it is 3 then there are thrse rectilinear supports; 


if it is 4 then there are t~ rectilinear and one curved supports; 


if it is 5 then there ara ana rectilinear and two curved supports 


and if it is 6 then there are three curved supports. 


During the following year d'Ocagne introduced his own 

classification systsm (38). This is based on the geometry of a 

nomogram; one with three rectilinear supports is of genus 0, 

two rsctilinear and one curved supports give a nomogram of genus 1 

and 80 on. In fact the genus of a nomogram is the order of that 

nomogram lass three. It is most unlikely that d'Ocagne was unaware 

of Soreauts system"and if this is the case then the introduction 

of his own system looks rather like an attempt to keep himself to 

the fore of developments and is not to his credit. Certainly, 

Soreau felt this and it rankled him for years. In 1922 he asked 

why d'Ocagne had "called nomographic genus my nomographic order", 

pointing out that it was only a question of scaling down the 

number (39). 

1. D'Ocagnets 'Traite de Nomographia'. 

D'Ocagne published his 'Traite de Nomographie" (32) in 


1899. The introduction is dated 15th. May 1899 and one may 


assume that the twentieth century had dawned by the time the work 


W8S in general circulation. As far 8S I am sware the work has 


never bean translated from the french snd yet this in no way seems 


to have diminished its influence. The evidence of personal 


acknowledgement or some less direct evidence, such aa an unusual 


use of symbols, suggests that d'Ocagne's ideas spread rapidly to 


I 
f 

America, Britain, the rest of the continent of Europe and Ruasia. 

In the main.. the work is a complete aummary and description 


of existing knowledge illustrated with many examples. The chapter 
 t 
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headings show this; they are:

I. 	 Equations with two variables. 

II. 	 Equations with three variables - intersecting 
nomograms. 

III. 	 Equations with three variables - alignment 
nomograms. 

IV. 	 Systems of two equations .. 

V. 	 Equations with more than three variables .. 

VI. 	 General Theory. Analytical developments. 

Chapters IV. and V., while based on earlier work, also 

contain certain technical additions which are little more than 

methods for linking two nomograms together. 

The final chapter on general theory and analytical 

developments Is most interesting since it serves as an indicator 

of the state of the development of nomography as an academic 

discipline. The chapter has two sectiona, the first is a general 

study of charts from the point of view of their structure while 

the aecond is a study of equations which can be rep~aaented by 

means of a given type of chart. Interesting though the first 

section is, the subject matter has not proved attractive to 

subsequent investigators. The objective set by d'Ocagne is to 

determine and Classify all possible methods of representation 

applicable to equations with n variables. The development concerns 

itself with the superposition of planes but in practice the number 

of planes which can be superposed must necessarily be limited. 

for 8 limited number of superpositions the theory is helpful 

but is not of the same calibre es that of the second section. 

The objective of the aecond section is to recognize ~hether 

any given equation is associated with a particular type of chart 

and. if it i8, to extract the information necessary to construct 

that chart. D'Dcagne knows how to aolve this problem, in theory 

at least. His method is to eliminate the arbitrary functions fro~ 

a general equation. This will result in some partial differential 

-
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equations ~hich must be sstisfied by an equation of that type. 

The solutions of these equations will lead to the components 

required to construct the nomogram. This was not the first time 

that d'Ocagne had expressed this ides, for it occurs in his 

I Nomographie , of 1891 (30). It is also the bssis of the work 

of Saint-Robert, Msssau and LeCornu. The inherent difficulties 

of this approach are fully recognised, for he points out that 

the calculations are generally inextricable leading to solutions 

only in a few special cases. 

Thirteen general types of equations are listed as baing 

those which have occured most frequently in the course of the 

'Traite'. Theyare:- , 1 
I 

I. 	 f 1(a1) + '2(a2) - '3(a3 ) 
I 

I 'II. 	 '1(a1)f3(a3) + f 2(a2)<I>3(a3) + 1/J3Cl 3) - 0 ! I
I 

I 
II1. 	 f 1 ( a1) 4>1 ( a1) 1jJ1 ( a 1) \ I 

• I 

f2(~) 4>2(a2} 1jJ2(a2) .. 0 ~ 
'3(a3) 4>3(a3) 1jJ3(a3) 	 ! 

IV. 	 A1(a1)A2(a2)f3(a3) + ~1(a1)~2(a2)4>3(a3) I 

+ Y1(a1)Y2(a2)~3(a3) • 0 
I 

where A P IIl' Y i are linear functions of a1 or (12 

V. 	 f1«11) + '2(a2) - f3(a3} + f4(a4} I 

VI. 	 "1(a1)'2(a2) + 4>2(a2) .. f 3 (Cl3)f4 (Cl4 ) + cJ>4«14) 

VII. 	 (4)1(a1) - 4>2(a2})(4>3«13) - 4>4(a4 }) + ('1(a1 ) - '2«12»(f3(Cl3} 


- f4(Cl4» - 0 


VIII. 	 '1(a1,81) - f 2«12,82) 

IX. 	 , 1 {(11, 81) + f 2( (12,82) - f3( a3, 83) 
IE 0X. 	 f 1 ( Cl.,) f 3( (13' 83) + f i (12) 4>3( a3, 83) + t/J3( (13' 83) 

XI. 	 f 1( (11,81) 4>1 ( Cl" 81) w1<ap 131 ) 


'2( Cl2, 82) cJ>2( (12' 82) w2( ~2' 8.2) ... 
 o 
, 3( (13' 63) <P3( ~, 63) 1/J3( Cl3, 133 ) 

XII. 	 , 1 ( (11) + f i Cl2) + ••••••••••••••••••• + f n ( an) - 0 

XIII. 	 '1(°1.'81)'" f2(~,S2) + •••••••••••• + 'n(Cln,Sn) • 0 
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He admits that the method which he has outlined has only been 

applied to types I. and II., but he consoles himself with the 

remark that they are the most common types in practice. Type III. 

he states can be reduced to certain functional equations which 

must be identically satisfied. He is, of course, referring to the 

work of Duporcq which is later acknowledged and reproduced. 

The most important section of d'Dcagne's last chapter has 

already been referred to in passing; it concerns itself with the 

algebraic theory of equations representable by alignment nomograms 

having three linear supports, i.e. those which would later be 

described as of genus 0 or order 3. The precise.problem that he 

sets himself is this. Suppose that in a general form of an 

equation, such as one of those listed above, all of the component 

~unctions are algebraic 80 that one has a general type of algebraic 

equation represented by a particular nomogram; then how, for any 

given equation, can one form the corresponding components and 

under what conditions are they real? The reality of the components 

is necessary for it to be possible to construct the nomogram. 

Furthermore, he proposes to seek a solution which will offer the 

greatest simplicity; this simplicity he interprets firstly in terms 

of a nomogram having linear acales and then considers the trans

formation of these linear scales into regular scales. One of 

d'Ocagne'a reasons for this investigation is to raveal the 

mathematical depth of a superficially simple problem. 

A linear scale is one in which the cartesian coordinates 


of a point are given by 
 x - .!.!!, a + n" y • .!!!.2 a + n2 
aa + b aa + b 

"where a is a parameter and m" m2, n" n2' a and bare constants. 

1f homogeneous coordinates are used we may write them as 

t • aa + b. 

Such nomograms will be either of the type in which the supports 

are not concurrent or of the type in which the supports are 

concurrent. By a homographic transformation the first of these 

types can be represented by two supports which coincide with the 
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x and y coordinate axes J with the third support as the line 


at infinity. After a homographic transformation the second 


type can be represented by supports two of which coincide with 


the x and y coordinate axes whils the third is the bisector of 


the angle between these axes. 


After such a transformation the scales in the cess of the 

non-concurrent supports may be represented by 

(i) x - m1 C11 + nV y - 0 t - P1 Ct1 + q1 

(ii) x - 0 t "" m2 Ct2 +y - P2 C12 + G2' n2 

(iii) x - P30:s + Gy Y - m3 C13 + n3, t .,. 0 

Th9 relationship which these scales represent is given by 

r:!1 (11 + G1 

1Il2~ + n2 - 0 

o 

which can be written ss 

(m1 ~ + n1 Hm2Ct 2 + n2)(m3Ct 3 + n3) + (P1Ct 1 + q1 )(P2(12 + q2) 
(P 3 C13 + q3) - 0 ••• 3.1.1 

or as I
I 

Similarly, 1n the case of the concurrent supports the scales may be 

I 
~" represented by 

(i) y ..x - m1(11 + nV 0 , t - P1(11 + q 1 
(ii) x - 0 y - m2Ct 2 + n2, t P2C1 2 + q- 2 


" 
(iii) x - m3C1 3 + n3, y - 1113 C1 3+ n3, t - -(P3 Ct3 + q3) 

which can be written as 

• o •••••••••••.•••••.•. 3.1.3 

Dr 

--it--- + --12--- + --i3--- • N •••••••••••••••••••••••3.1.4 
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In the 'foregoing, CL l' CL 2' and Ct 3 are the variables represented 

on the scales. 

Both 3.1.1 and 3.1.3, and their alternative forms, are 

expressions of the general form, 

••••••••••3.1.5 

The problem may now be rephrased. 

Given an equation of the form 3.1.5, under what conditions can it 

be expressed in one of the forms 3.1.1 or 3.1.3 such that the 

coefficients ara real? 

I 

I 

iI 
The following no~ is used 

3 
fa • LBiCi - AD, 

i""1 

D'Ocagne also makes use of a quantity t:, which he describes 

as the discriminant of 3.1.5 rendered homogeneous. However, the 

quantity arises naturally aa the discriminant of a quadratic equation 

and it will aid understanding if its introduction is deferred. 

The basis of d'Ocagne's reasoning is a comparison of 3.1.5 

with an appropriate form of 3.1.1 or 3.1.3, depending on the case 

being investigated. for example, consider the CBse of non-concurrent 

8upports. 

Put eLi • -8, in 3.1.2 

this gives P(t1 - s1)« CL 2+ t 2)( CL 3+ t 3» - 0 •••••••••••3.1.6 

The 8ame substitution in 3.1.5 gives 

••••••••••••3.1.7 


!I 
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Now if 3.1.2 and 3.1.5 are equivalent forms then so also are 

3.1.6 and 3.1.7. 


In other words, 3.1.7 must factorise. 


The condition for this is that 

(81 - As1)(D - C1s1) - (C3 - 82s1)(C2 - 8381) 


Using 	the notation given above this becomes 
2 

[1 9 1 + f 1s 1 + G1 - 0 

which is abbreviated as 

In general, by similar reasoning, 

~i(si) - 0 and ~i(ti) - 0 for i • 1,2,3. 

Denote the 	tlaJO roots of <jJ i'" 0 by Pi Rand Pi", 

3.1.2 can now be written 

••••••••••••••. 3.1.8 

The form 3.1.8 can only be obtained if Pit and Pi" are not equal, 

for if thQy are for just one value of i then (ai + Pit) is a factor 

and the required form is lost. It has already been notQd that they 

must be real. Therefore it is necessary that the discriminant ~ 

of ~i - 0 is greater than zero. 

i.e. for 

Hence for 3.1.5 to be representable by three linear non-concurrent 


scales it is necessary that ~ > o. 


It now only remains to find the values of Mend P of 3.1.8, 

since the values of Para given by ¢i - 0, i • 1,2 and 3. These 

values may be obtained from two of the eight equations of the form 

!'IR' . + PR" - K 

which are obteined by comparing coefficients in 3.1.5 and 3.1.8 as 

follollls, 
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Variable R' R" K 
a a a 1 1 A1 2 3 

a1 a2 P3 
I 

P3" 83 

o. 

constant p'p'P' p tip "p " 01 2 3 1 2 3 

Consider two of these equations -

MRo • + PR " .. Ko0 

+ PR :orMR1 I 

1 " K1 

These give 

..P PI 


Ro'K1 - R1'K a R1 "Ko Ro ItK1 


Equation 3.1.8 no~ becomes 

( R1 ItK 0- Ro"K 1)(a 1-+- P1')( a2+ P2 ')(Ct. 3+PJ') + (Ro'K1 - R,'Ko) 

( a1+ P1")( u2+ P2"}( a3+ Pl ") .. 0 

and the non-concurrent problem is solved. 

Turning to the problem of concurrent scales.. 3.1.4 can be 

.written in the form, 

N(a1 -+- a1)( a 2+ s2)(a3 + 8 3) t 1( n2+ 82)( a 3 + 83 ) - t 2( a1+ 8,) 

( a 3+ 8 3) t 3( a1+ 8 1)( a 2+ 8 2) .. 0 •••••3.1.9 

As in the previous case it can be shown that 8 1, s2 and 83 

are respectively roota of the equations ~i- 0, i .. 1,2,3. Once 

again these roots must be real. However, if the roots of ~i" 0 

are unequal, then the problem reverts to the case of non-concurrent 

scales; therefore the roots of ~i" 0 ~ust be equal and ~ .. 0 

is the condition necessary for 3.1.5 to be represented by three 

linser concurrent scalea. 

If P1,P2 and PJ are roota of ~i .. 0 then 3.1.9 becomes, 

N( Cl 1+ P1)( Cl 2+ P2)( Cl 3+ PJ ) - t 1( Cl 2+ P2)( a3 + P3) t 2( a1+ P1) 

( a 3+ P3) - t 3( a 1+ P1)( a 2+ P2) .. 0 ••••3.1.10 
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The coefficients N, t1, t2 and t3 are obtained by comparison of 

coefficients between 3.1.10 and 3.1.5. As before, eight 

equations are possible. 

O'Ocagne next investigates how the linear scales may be 

transformed into regular scales. A general homographic trans

formation applied to the homogeneous coordinates x .. f i (CLi >,' 
Y .. <Pi(o.i ) and t -1JJi(CLi), 1,2,3), is obtained by taking,(i 

x - A1fi + ]..11 <Pi + "1 1JJi "1 ]..11 "1 
Y .. A2f i + ].12<Pi .. \/21JJi in which "2 ]..12 \/2 r 0 

t - A3'1 .. ]..13<P1 + \/31JJi ]..13"3 "3 

A regular scale may be obtained by making the appropriate t constant 

end different from zero. I" other words, in t,3f i + ]..I34>i .. \/31JJi 

the term in CLi must be zero and the constant term different from 

zero. Applied to the C8S8 of the non-concurrent scales the 

general homographic tr.nsformation yields, 

.. 


.. (A m 

(1) 	 x (A1m1 "Y1P1)CL 1 .. A1"1 .. Y1 Q,., 

Y .. Y2P1 )CL 1 .. 4. 2"1 .. Y 2q1'2 1 

t - (A3m1 .. Y JP1)CL 1 .. ~3n1 .. Y3Q1' 


eli) x • (\.I1 P2 + Y1m2)CL2 .. ]..I1 Q2 .. Y 1n2' 

y • (]..I 2P2 + Y2m2)CL 2 .. ]..I2Q2 .. Y 2n2' 


t • (\.I 3P2 + Y3m2P2 .. ]..I3Q 2 .. Y 3rl 2' 


(iii) 	x - (A 1PJ .. ]..I11!13P3 -+ ~ 1Q3 .. ]..11"3' 


Y • (\ i>3 -+ ]..I3m3P 3 -+ A2Q3 -+ 1-12"3' 


t • (A 3P3 +]..1 31113P 3 + A 3q3 .. l-I3n3' 


The conditions for regular scales are therefore, 

.. 0 withA 3111 + Y3P1 

withl-I3P2 + YJ'i12 • 0 

with
A3P3 + ]..13m3 - 0 

The problem then Is to satlsfy as many of the conditions 

3.1.11 88 possible. Each one that is satisfied gives s regular 

scale. If they are all to be satisfied then it will not be p08sible 
t t 
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for more than one of 1.. 3' 1.13 and v:3 to be zero. 

In order to have three regular scalas the following 

equations must be consistent. 

A3m 1 + \) 3P 1 - a 
].l3P2 + \)~2" a 

• 0 

i.e. 

Comparing 3.1.1 with 3.1.5 gives A - O. This condition is necessary 

but not sufficient. 

Since conditions 3.1.11 only contain elements 1"1"0111 the third row 

of the determinant 

H ... 

it folloll.ls that the first two ro~s may be chosen arbitrarily provided 

that H , O. 

It, for example, A3 , 0 then we can take ~- 0, 1.11· 0, Y1· 1, 

A2 • 0, 1.12 .. 1,. Y2 .. 0, in which case, if 1D1mZU3 • -P1P2P3' 

(i) 	 x • P1Cl1 + qp y - 0 t - A3n1 + Y3Ql' 
x ..(ii) III2Cl2 + n2, y • P2Cl 2 + Q2, t - 1.13q2 + YSn2, 

(iii) 	 y + n3, tx • 0, 	 - m3Cl3 - A3q3 + 1.13n3' 

Here the scale 1"01" Cl 1 is the x axis, for a3 the y axia and for a 2 
the straight line Y3X + 1.1 3y - 1. 

In the caae of concurrent scales tha same reasoning applies, 

giving as conditions for regular scales the following, 

A 3m1 + 	Y3P1 • 0 with 1.. 3"1 + Y3Q1 r 0 

• 0 with 	 r 0113m2 + 	Y3P2 1.13n2 + Y3Q2 

(A3+ 113) m3 - Y3P3 • 0 with 0. 3 + 113)n3 - Y3Q3 .; 0 
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If all three scales are regular then the relationship 

m1 rn 2P3 + m1P2m3 + P1m2ffi3 - 0 

must hold. If it does, comparing 3.1.3 and 3.1.5 gives A ,. O. 

As in the first Case this condition is necessary but not sufficient; 

arbitrary values may be given to the first two rows of H, provided 

that H I- o. 

An analysis of the various possible cases of both types of 

system leads to the following tables in which + denotes a positive 

quantity, rJ a non-zero quantity and o a zero quantity_ 

b. Regular scales.gi .Ij ~ ~ 

+ rI rj rt rJ ai' aj 

+ rI rj rt 0 a1' a j' ak 

+ rJ £i 0 rJ a i' a j' 
+ rJ 0 0 £i ai' a k, 

+ rI 0 0 0 ail a J' a k 

+ 0 0 0 rJ a J' 
+ 0 0 0 0 (Bi1o) CL i, CL j' 

0 a i ,rI rJ rJ rI aJ' 
a a aa rI rJ rJ 0 l' j' k 

a rJ rJ a rJ ai' a j' 
00 rJ 0 rJ Cl. J' ak' 


0 0 0 0 a a1' a j' a 
k 


By way of illustration consider the following cases. 

(i) a1a 2 - a 3 • 0 


We have f 0 - -1, f1 • -1, E1 • 0, G, ,. 0, A ,. 0, !J.. 1, £2 ,. 0, E3 ,. O. 


It Can therefore be represented by three linear, non-concurrent 


8cales of which two are regular. 


(ii) .1 +.1 ,. .1 
a1 Cl.2 a3 


Writing this as a2Cl.3 + a,a3 <:11<:12 ,. 0 


•lie have fo • 0, f1 • 0, G1 - 0 • • IJ. - 0 


'E • 1, E2 • 1, E3 ·1 , A - a 
1 
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It can be represented by three linear regular concurrent scales. 

I t is of interest to note that the oase in which f1 < 0 

was examined vary shortly aftar the publication of d'Ocagns's 

'Traita'. In November 1900, G. fontana gave a non-algebraic 

transformation which changed the value of the discriminant (40). 

Starting with equation 3.1.5 he made algebraio sUbstitutions 

of tha f~rm al-~l' + a and obtained a reduced form for variables 

X,Y,Z, which are linked tOCt;JlCt,Ct, by combinations of the 
1 2 3 

coefficients of 3.1.5. 

The reduced form is, 

EXYZ + E(YZ + ZX + XV) + (X + Y + Z) + 1 0IS 

where E is +1 or -1 according to the valuB of the product 

B1B2B30. 

If E - -1, the reduced form i8, 


XYZ + (VZ + ZX + XV) - (X + Y + Z) - 1 0
1II 

with discriminant f1 -16.IS 

However, the substitutions X - tanh U, Y • tanh V, Z • tanh W 

where U + V + W - 0 leads to the equality X + Y + Z - -XYZ. 

This changes the reduced form to, 

2XYZ + (YZ + ZX + XV) - 1 • 0 


which haa a discriminant f1 IS o. 


The final 8ection of the 'Traite' deals with the 


representation of equations of the form, 


222 
A1Ct1 + A2~ + A3~ + 281o.2~ + 2B~3a, + 2830.10. 2 + 2C1Ct 1 + 2C2~ 

+ 2C3~ + 0 • 0 

by means of straight lines and intersecting circles. It is 

interesting but not as important as the section dealing with regular 

scales and certainly not aa important 8S the problem to which d'Ocagne 

might have addressed himaelf, namely the representation or a relation 

between three variables by his form III, i.e. 
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f 1( ~) ¢1(a1) ljJ1 (a1) 

f 2(~) ¢2(a2) ljJ2(a2) • 0 

f 3(a3) ¢3(a3) ljJ3(a3) 

It must be a matter for regret that d'Ocagns did not choose to 

develop the work of Saint-Robert, Massau, LeCornu and Duporcq. 

He might have anticipated Gronwall or Kellogg, whose work is 

discussed later. 

finally, before leaving the 'Traite', it is worth commenting 

on a footnote which eppears on page 209, for it may thro~ light on 

how somB of d'Ocagne's ideas crossed tha Channal. He mentions 

that he had visited Professor C.V. Boys at the latter's laboratories 

in the College of SCience, London, during ~y 1896. Ouring this 

visit Boys stated how useful he had found logarithmic graph papar 

to be. D'Ocagne clearly means the Royal College of Science, now 

a part of Imperial College, and we can be fairly cartain that 

Professor Boys received in return advice on the merits of Nomography. 
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2. Hilbert's Thirteenth Problem. 

At ths Paris International Congress of 1900 David Hilbert 

called the attention of mathematicians to t~enty three outstanding 

mathematical problems (1). Problem number thirteen was described 

as the "Impossibility of the solution of the general equation 

of the seventh degree by means of functions of only two arguments", 

and was expressed in nomographic terms. 

To understand the problem 1n the form in which it was 

presented it is necessary to start uith d'Ocagne(a concept of 

points ~ith two dimensions which he introduced in his 'Nomographia' 

as doubly isoplathe points and developed in his 'Traite' (32). The 

idea is quite simple and has been met with before. Suppose that 

the functions of a, and 8 l' x • f 1(ct1'81) and y ... <i>1(ctl' 81) hava 

hava ct1 and 81 8uccessively eliminated between them. The result 

is two systems of curves, one having c; as parameter and the 

other 81, which are given by r(x,y,ct1) - 0 and G(x,y,81) - 0 

respectively. By taking sets of values for a 1 and B1 a network 

similar to that of figure 3.1 can be constructed. In the plane 

of the network avery point has associated with it a pair of 

values (a." ~) which satisfy simultaneously x - f 1(ct1, 81) and 

y - cjl1( a" B,). 

figure 3,1. 
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This idea can be extended so that if, tor exempls, 

there ere thres such networkafor, 

(i) x ... f 1(aV 81) , Y ... <P1(a1.~) 
(ii) x ... f" 2( a2, 82). y .... <P2(a 2' S2) 

(iii) x - f" 3( a3, ~)J y .. tP3(a 3' ~) 

and if they can be used as an alignment nomogram as shown in 

figure 3.2, 

d., 

figure 3.2. 

then the equation of which the nomogram is 8 solution is given by, 

f 1(a1J 81) <!> 1 ( Ct.p 8 1 ) 1 

f 2Ca2' 82) <!> 2{~'B 2) 1 - a 
f 3 (a. 3,S3) <!> 3(~'S 3) 1 

There is, of course, no reason why auch a system should 

be limited to only three sets of intersecting linea, or indeed, 

that a particular sat of values, say a. 1, should not be identical 

with tho s e 0 r, say, a 2. 
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Presumably with these ideas in mind, Hilbert points out 

that a large class of functions of three or mare variables can 

be represented by the above principle alone for, as the trans

lation of this problem by the American Mathematical Society states, 

"namely all those which can be generated by forming first a function 

of two arguments, then equeting each of these arguments to a 

function of two arguments, next replacing each of these arguments 

in their turn by a fUnction of two arguments, and so on, regarding 

as admissible any finite number of insertions of functions of t~ 

arguments". As an example of a member of this class, Hilbert 

cites every rational function of any number of arguments as it can 

be generated by the processes of addition, subtraction, multiplication 

and diVision, Bach of these processes producing a function of only 

t~ arguments. It is now a small step to consider the roots of 

those equations ~hich may be solved by radicals "in the natural 

realm of rationality" to USB the words of the American translation. 

Such roots demand the four operations of arithmetic together with 

the extraction of roots, this last process being a function of ons 

argument only, and we sae that the roots of such equations also 

belong to the class of functions under consideration. 

Turning his attention to particular equations he considers 


the general equations of the fifth and sixth degrees. There is 8 


process known as the Tschirnhaus transformation, involving the 


extraction of roots, which may be used to transform equations. The 


following theorem applies; 


By means of a Tschirnhaus transformation whose coefficients 


involve a cube root and three square roots, any equation of degree 


n in x can be transformed into en equation of degreB n in y in 

0-1 n-2 .. n-3 (A dwhich the coefficients of y , y and yare all zero. goo 


account of the Tschirnhaus transformation may be found in (41)). 


The general eqoations of the fifth and sixth degrees may 


therefore be expressed aa, 
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y5 + py2 + qy + 1 _ 0 

(in which the coefficients of yn-1 and yn-2 only 

have been reduced to zero)~ 

and 

i + py2+ qy + 1 '" 0 

( n-1 n-2 and yn-3 have beenin which the coefficients of Y J Y 

reduced to zero). 

Both of these equations nOIll have coefficients \&Ihich depend upon 

only two parameters, p and q, and can be solved by nomography. 

Indeed, in 1884 d'Ocagne had produced the first alignment nomogram 

x3the subject of which lIIas the cubic equation + px + q ... 0 

which, in principla, is no different from the equations gi.ven 

above (figure 2.16). 

Hilbert nOIll considers the equation of the seventh degree. 

Making use of the Tschirnhaus transformation he need only consider 

the form 

x7 + px3 + qx2 + rx + 1 .. 0 

about which he makes the following conjecture, 

"It is probable that the root of the equation of' the .,",Bnth 

degree 1a a function of its coefficients which does not belong to 

this class of functions capable of nomographic con8truction~ i.s., 

that it cannot be constructed by a finite number or insereiona of 

functions or tlaJO arguments. In order to prove this, the proof would 

be necessary that the equation of the seventh degree x7 + px::S + qx2 

+ rx + 1 a 0 1s not solvable with the help of any continous functions 

of only tbJO arguments." 

Hilbert concludes the statement of his problem by a",y ing that 

he has satisfied himself by a rigorous process that there qx1~t 

analytical functions of three arguments p, q and x=. which cannot be 

obtained by a finite chain of functions of only two argul:nont.•• 

It 1s not possible to say when d'Ocagne learned or Hilbert'. 

problem, he may have been preaent at the congress, but hi. 
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response was swift (42). On the 17th September 1900 he presented 

a paper to the Paris Academy of Sciences on the nomographic 

resolution of the equation of the seventh degree. He begins 

with a reference to Hilbert's problem and continues with a very 

brief comment on his idea of 'points with two dimensions' recognizing 

that a chain of such networks is the solution sought by Hilbert. 

However he does not pursue this line but introduces the idea of a 

moveable element, not a new idea since it fa a necessary part of 

lallemand's hexagonal nomogram. The point being made by d'Ocagne 

is that in the method of aligned points we have a moveable straight 

line as a necessary component and that its usa is equivalent to tha 

introduction of a system of lines in two dimensions. However this 

is not so in his solution of the seventh degree equation since it is 

obtained by the moveable straight line intersecting three scales 

and in this case the line Is a necessary component of a function of 

the three variables p, q and r. 

Briefly, d'Ocagns's method is as follows. 

He starts with an aquation of the form 

x1+ pX 2 + qX3 + rX4 - 0 

in which tha Xi's are functions of x and p, q and r may take any 

values within given ranges. 

This equation can be expressed 1n the determinant form, 

-1 q 1; ..
1 r 1 0 

~4 - x3 - 2f, + pX2 1 

x4 + x3 x4 + x3 

and hence as an alignment nomogram of three scales 

(i) l; .. -1 , n - q 

(ii) l; - 1 J 
n - r 

(iii) 
l; -

x4 - x3 

x4 + x3 

l- n -- ~1 + pX2 

x4 + x3 
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In the case of x7 + px3 + QX2 + rx + 1 ... o the following 

substitutions are made, 
7 ... 3 ... x + 1, x,x1 x2 

in which case scala (iii) becomes, 

7 3
1 - x n .. _ x + px + 1s .. 
1 + x x + x2 

and if x is eliminated between L'lel3, 

(1 _s)7 + p + 1 
1 + C; 1 +C" 

7n .. (hfY 
(~) 1- (~j1 + s 1 +s 

Thus, for each value of p there is a curve in the (s,n) plans. 

Additionally, the S axis is a scale of x since S... ~ 
1 + x 

from scales (i) and (ii) it is seen that the values of q and r 

lie on lines parallel to the 1l, axis and at a unit distance f:':lll 

it on either side. 

3 

2 

o 

figure 3,,3. 

figure 3.3 illustrates the scheae. In the discussion 

scale factors have been ignored although they ~uld obviously :e 
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very important for a sensible end accurate nomogram~ 

Ingenious though d'Ocagne's ~ork is, it is no answer to 

the problem posed by Hilbert. Although Hilbert posed his problem 

in nomographic terms it is related to the much wider problem of 

the complexity of functions. Thare does not appear to have been 

much progress made towards resolving it until the mid-1950's. 

In 1956 A.N. Kolmogorov proved that avery continuous function of 

n variables can be represented in the form of a superposition of 

continuous functions of three variables (43). The following year, 

V.I. Arnol'd ~as able to modify this theorem reducing the number 

of variables from three to two (44). Also in 1957, Kolmogorov 

published a theorem, one consequence of which is that, within 

eppropriste limits, the function f(x1,x2,x3) may be expressed 8S, 

7 

f(x1,x2,x3) • Ehq(~q(x1,x2)' x3) 


q-l 


where all the functions are continuous (45). 


These interesting results do not dispose of Hilbert's 

problem. The distinction must be mads between algebraic functions 

and continuous functions of two variables. Hilbert's problem is 

algebraic in origin, since it arises out of attempts to eliminate 

as many coefficients as possible from polynomial equations 

,. 0 , 


but he recognises its more general application and appears to 

expect that the seventh degrae equation could not be solved even 

by continuous functions of tltlO variables. The work of KolmogoI'ov 

and Arnol'd show that this last supposition was wrOng but Hilbert's 

original problem remains unsolved. It is still not known whether 

the equation 
7 3 2 

x + px + qx + rX + 1 • 0 

can be solved by a finite number of superpositione of algebraic 

functions of two variables. 
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3. The Spread of Nomograehic Ideas. 

The story of the development of nomography so far has 

been the story of tha discipline in the hands of specialists. 

To be sure, most of these specialists ware engineers who 

developed their ideas in order to achieve practical ends but the 

important fact is that they were developers; no case of an 

engineer or scientist taking these ideas and suggesting how 

they might be applied to his own discipline has yet been cited. 

The earliest such cases of which I am aware date from around the 

turn of the century, some before but most after, but there may 

be other cases which I have not found. There is evidence in many 

of these caSBS that it was the works of d'Ocagne, usually his 

Traite, which ware responsible for the spread of these ideas. 

It is of interest to assemble the available evidence to see 

when, and for what applicstions, the ideas of nomography were 

transmitted to those who would wish primarily to be users. 

In Britein, the first indication of the use of geometric 

methods in computation in the new century is rather disappointing. 

In 1903 the Minutes of the Proceedings of the Institution of Civil 

Engineers contained a short item by R.S. Scholfield on 'The use 

of logarithmic scales in plotting curves' (46). In this article 

the author states the desirability of replacing curves by straight 

lines whenever this is possible and makes the following suggestions, 

apparently unaware that some of them had appeered in print as 

much as fifty years earlier. for expressions of the form ab • c 
2he suggests plotting log a + log b - log c and for xR • kv the 


8uggestion is to plot the ViS to a scale of squares to obtain 


radial straight lines passing through the origin. His third 


suggestion, in a case where curves approximate to hyperbolae of 


~he form xy - constant, is to use paler coordinstes with a bese 


line divided logarithmically. Sound though these ideas are it is 


regretable that they needed to be published tor the Institution 


of Civil Engineers 8S late as 1903. 
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Perhaps the first published account in English of 

nomographic methods was a series of articles by John B. Paddle 

which appeared in 'The American Machinist' during 1908 (47). 

The purpose behind these articles was clearly a practical one 

as the choice of pUblication suggests. Undoubtedly many American 

engineers encountered geometric computation for the first time 

on reading them and it is very possible that the same is true of 

British engineers for the publication seems to have had a wide 

circulation. 

During the following year thare appeared in the Journal of 

the Royal Artillery a very short paper describing a 'Scale for 

the graphic calculation of deflection and angle of sight problems', 

by Captain R.K. Hezlet, R.A. (48). The 'scale' was an alignment 

nomogram which had as variables the range R, height H and angle S 

connected by the formula H - R Sin S. The limits for the variables 

conformed to the requirements of artillery at that time. This 

particular nomogram was apparently on sale, for Hezlet states 

the following: nThe scala is printed on a stout card 6 It X 4!tt and 

the edges of the back of the card have been graduated with useful 

scales for map reading purposes, one edge being left blank 80 

that it can be graduated with a degree scale to suit the user's 

length of arm. 

The cards may be obtained from Messrs. W. Watson & Son~, 


313, High Holborn, London". 


The following year, 1910, Hezlet wrote a longer paper 

for the Journal of the Royal Artillery entitled 'The Graphic 

Representation of Formulae' (49). He begins this paper with the 

statement that it is the outcome of a study of two works of d'Ocagne, 

the 'Traite' and 'Calcul graphique et Nomogrephie', the latter 

having been published in 1908. Pointing out that there did not 

appear to be an English equivalent of the French tdOrds fNomographiet 

and 'Nomogramme', he caine the word 'Nomogram' to describe the 

grephical chart and this appears to be tha first time that the word 
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nomogram is used in a British publication. The eubstanc8 of 

the paper is the application of nomograms to some formulae 

in ballistics and in particular of alignment nomograms which 

Hazlet prafers. He makes no attempt to explain the theory 

behind such nomograms, referring the curious to d'Ocagne's 

lI/()rks, but gives rules for the construction of certain nomographic 

types, illustrating them with examples from ballistics. The 

formula types dealt with are 

(i) f 1(z1) + f 2(z2) + f 3(z3) - 0 

(ii) '1(z1) + '2{z2)f3(z3) - 0 

(iii) f 1(z1)g3(z3) + f 2(z2)h3(z3) + '3(z3) • 0 

Those requiring methods for formulae involving four, five or 

six variables are again referred to the works of d'Ocagne. 

The importance of Hezlet's two papers lias in the fact that 

they mark the introduction of dlOcagne's ideas into Britain. 

Hazlet has the honour of being the pioneer of nomography in this 

country but he always disclaimed originality, being fulsome in 

his praise of d'Ocagne. It ia not known whether dfOcagne and 

Hazlet ever met, they may have done for Hezlet served in france 

during 1915 but the conditions then would not have been conducive 

to such a meeting. 

In 1911 another soldier, this time from the Corps of Royal 

Engineers, showed a familiarity and appreciation of d'Ocagna's 

works. Captain C.E.P. Sankey wrote a paper with tha title 'Moving 

loads on military bridges' which included sQveral pages on 'The 

graphical representation of formulae' (50). The following is taken 

from his paper, "The subject of graphical charts in general is a 

most fascinating one, and many books and articles have been written 

on it. Among these may be mentionl8d Traite de Nomographie by Maurice 

d'Ocagne, a work that is most exhaustive in its treatment; ••• ". 

Other authorsmantioned are Peddle and Scholfield. Thus it is 

clear that d'Ocagna's work was known at least to officers of the 

two teChnical corps of the British army by 1911. In his general 
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remarks, Sankey complains that graphical charts are not 

sufficiently used on service and gives reasons why the military 

should be interested in them. Making the point that, in general, 

a graphical chart is only an economy if the time required for 

its preparation is less than the aggregate time necessary for the 

separate calculations which it will replace, he observes that on 

military service priorities are different and that a small saving 

of time, even on only one occasion, can be very cheaply purchased 

by the time required to prepare such a chart. The brief review 

of nomographic methods given by Sankey is concise and comprehensive 

and is designed to whet the appetite of the reader; it includes 

the ideas of anamorphosis, of intersection nomograms and of alignment 

nomograms and is accompanied by many charts prepared by the author. 

An appendix on alignment nomograms, which gives a brief introduction 

to parallel coordinates, is included. 

If the ideas of nomography were to g8in wider acceptance 

in Britain then it ~uld be necessary for a text on the subject 

to be published. Such a text was written by Hazlet. It was 

published by the Royal Artillery Institution in March 1913 and 

cost two shillinge and sixpence (51). It is a very lucid and 

concise little book which shows the author to be a competent 

mathematician although he disclaims all originality except in 

so far as the examples are concerned. All a~ects of nomography 

likely to be wanted by scientists or engineers ere included 

with enough theoretical support to satisfy the theoretically inclined, 

but those not so inclined are recommended to disregard theory 

entirely at firet and go straight to the examples. It is a measure 

of the ability of the author that it is quite possible to use the 

book in this way. 

In spite of this excellent little book, British ignorance 

of nomography was spparently still widespread in 1920. This ~s 

so evan in Hazlet's own orgenisation, for he found it necessary to 

write a short note in the Royal Artillery Journal with the title 
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'What is a Nomogram?' (52). In this he takas a calculation, which 

would have been familiar to his readers, concerning wind corrections. 

to the 11na of firs and draws both an intersBction nomogram and an 

alignment nomogram for it. He makes two points; firstly, that a 

nomogram is more nearly foolproof than a normal calculation and 

secondly, that an alignment nomogram is to be preferred to an 

intersBction nomogram. 

Perheps it was this widespread ignorance of nomography 

. that prompted a member of the British academic establishment to 

publish a book on the subject, for in 1920 there appeared VA first 

Course in Nomography' by Selig 8rodetsky, then Reader but later 

Professor of Mathematics at the University of leeds (53). The 

book is no more than it claims to be, i.e. a first course, but 

it must have been very useful to the engineer who ~nted an 

introduction to the techniques. 

It was not until 1932 that anything like a taxt book on 


nomography ~as published in Britain and even than it could not 


compare in any real sense ~ith d'Ocagne'a 'Traite l • This was 


'Tha Nomogram' by Allcock and Jonea which, through its various 


editions, became the standard British text (54). 


Before examining tha rather more spars~ evidence of the 

spread of nomographic ideas to other countries, it is wo~th 

looking at aome aspects of Hazlet's life. It is strange that those 

men who have been concerned with nomography and whose lives are a 

matter of public record have baen unusually versatile men, as ~e 

have seen in the cases of Lalanne and d'Ocagna. Hezlet is no 

exception~ A professional soldier, he was an expert in ballistics 

who spent a great part of his career in research and experimentation 

on guns and ammunition. During the first World War he was twice 

mentioned in dispatches and awarded the O.S.O. before his specialised 

knowledge caused him to be returned to Britain to a post at the 

~inistry of Munitions. He reached the rank of Major General and 
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amongst his appointments was that of Commandant of the Military 

College of Science. This would be enough for most men but in 

retirement Hazlet took the normal undergraduate course at the 

Royal Veterinary Collage, Edinburgh, and, at the age of 67, 

qualifisd as a veterinary surgeon. He died at the age of 83. 

In passing we may note that Brodetsky was no less 

versatile. Born in Russia and brought up in East London, he 

won his way to Trinity College, Cambridge, and was Senior Wrangler 

in the Mathematics Tripos of 1908. His mathematical career was 

one of considerable success but in addition he was dedicated to 

the zionist cause. Amongst the appointments which he held In 

this connection were, member of the Board of uovernors of the 

Hebrew University, member of the executive of the Zionist World 

Organisation and President of the Board of Deputies of British 

Jews. 

In France one would have expected d'Ocagne's ideas to have 

been accepted speedily, not only because he wrote in French but 

also because many of those most likely to use his techniques might 

well have been taught by him. This had happened in the case of 

a naval officer, one lieutenant Perret, who learned about alignment 

nomograms by ettending classes given by d'Ocsgne at l'Ecole Poly

technique in 1894-1895. In 1904, Perret published a paper on the 

application of alignment nomograms to problems in Nautical Astronomy 

and, in the following year, he addressed the french Academy for 

the Advancement of Science at its meating in Cherbourg on the same 

subject (55). His paper ia a substantial one having, as Perret 

states, "the purpose of interesting our friends in the use of a 

procedure which can render to them raal service". Stating that 

nautical problems are normally solved by the use of tables and 

that these are of great convenience when the related equation 

contains only two or three variables, he points out that an increase 

in the number of Variables can greatly diminish this convenience. 


As an example he cites the method of determining the azimuth of a 
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star, when the latitude, hour angle and declination are known, 

for which the tables consist of several volumes. He chooses 

this problem as his first example. However, before he deals 

with this he gives a short explanation of the theory of alignment 

and of parallel coordinates and this is clearly intended for the 

user rather than the theorist. His approach is a very simple ana. 

It is basad on comparing a given equation with the equation 

au + bv + c - 0, which represents a point in the case where u and v 

are parallel coordinates. In figure 3.4, if M is the point from 

which u is measured and N that from which v is measured, then P 

is the point having au + bv + c - 0 as its equation. 

-f

u 

a. 

figure 3.4. 

If cartesian coordinates are superimposed on the diagram in such 

a way that the x axis coincides with MN, the origin 0 with the 

mid point of MN, and the y axis parallel to the u and v axes, 

than P 	is given by, 

x ~~ y - c - - b+ab+a 

where MN is af length 2~. 

Thus, for an equation of the form, 

~C:J.3)f1(CX1) + l/I2(~)r2(Ctz) + l/Iic( 3) - 0 ............... 3.3.1 

On comparison with au + bv + c • 0, 

v - f 2(CX 2) ...............3.3.2
we may write, 
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and 

The equations 3.3 2 give directly the graduations of the9 

parallel axes u and v. 

The equations 3.3.3 lead to the cartesian coordinates of points 

in the plane, each point depending on the particular value of CI. 3" 

Thase coordinates are, 

x • i 	 ]!2( Ct3) - 1l!tfu.3l 

lJ!2( Ct3} + 4J1(a 3) 


It can be S8sn that if Ct 3 is eliminati!d from thesB coordinates 

the result is an equation of the form f(x,y). O. To each point 

of this curve there will correspond a particular value of CI. 3" 

Thus, three scales, one each for a." Ct 2and Cl. 3, are obtained quite 

simply and without having the problem of putting 3.3.1 into a 

determinant form, an obvious advantage to the user. An alignment 

nomogram of the form obtained is shown in figure 3.5. 

c(, 

-

figure 3.5. 

The azimuth problem has for its equation, 

cot A sin H + cae L tan 8 - sin L cos H • 0 •••••• 3.3.4 

in which, 

L is the latitude, 

8 is the angle of declination, 

H is the estronomical hour angle, 

A is the azimuth of the star. 
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Comparing 3.3.4 with au + bv + c = 0, we have 

U ... cot A, v .. tan (3 •••••••••••••••••• 3.3.5 

a .. sin H, b .. cos L, c - - sin L cos H •••••••••••••3.3.6 

giving, x .. 1 coaL sinH, y eo sinL cosH ••••••••••••• 3.3.7 
coal + sinH cosl + sinH 

Equations 3.3.7 give a series of points which depend on two 

variables, namely Land H, and therefore amount to an intersection 

nomogram which can, given that L lies between -n/2 and n/2, be such 

that x <hi; i.e. it li~s between the vertical scales u - cot A 

and v .. tan (3. 

The construction of the scalas given by 3.3.1 is not as tedious as 

it may seem for, by eliminating in turn Land H, we arrive at, 

412y 2tan 2H x2cos2H + 2lx(1 + sin2H) 1 2cos2H .. ~} ••••3.3.8 
412y2cot2L x2sin2L 2lx(1 + cos2L) _ 1 2sin2L .. 
which represent hyperbolae having the x axis 8S diameter. 

The appaarance or the nomogram is shown in figure 3.6. 
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Perret gives much practical advice on the construction 

of this nomogram, advice that is to help the navigator construct 

a nomogram which would be of use at sea. 

The second example is concerned with the prediction of 

occultations. This again is treatad in a very full manner, 

starting from that which would be familiar to the sailor and 

then splitting the problem into sections which can be dealt 

with as described in the prec8eding example. 

It is of interest to note that during the same year 

dtOcagne was working on the nomographic solution of spherical 

triangles, a topic of some importance to astronomical navigation 

and surveying, areas to whIch nomography was being "applied at 

this time (56 and 57). Also in France, It is recorded that the 

physics course at l'Ecole Polytechnique made use of an alignment 

nomogram to carry out calculations for Van der Waal's gas aquation. 

When the warship 'Republique ' was tested, the chief marine engineer 

carried out many of the necessary calculations by nomograms. In 

surveying, a work by Capt. de Larminat called 'Topographle pratique' 

had a supplement which contained Bight nomograms dealing with 

various ordinary calculations of surveying, while Capt. lelarga, 

writing in the 'Revue de Genie', gave nomograms relating to 

telephotographic surveying (58). The world of business was also 


making use of nomogremsj an actuary by the name of Poussin published, 


in 1904, a series of alignment nomograms dealing with insurance 


problsma (59). 


Thase are but a faw of the examples which show how, in 

the early years of the twentieth century, nomograms, and in particular 

alignment nomograms, had become accepted as an important aid to 

calculation in many branches or knowledge in France. 

Those countries in which franca hed some influence, either 

through language or by the presence of french citizens, might also 

be expected to have taken to nomographic ideas. This would certainly 
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have been true of Canada, where one can assume that the french 

language would not be a grsat barrier, and of Egypt, where 

french engineers would have been prominent in the Suez Canal 

Company. 

In Canada, E. Deville, a well known land surveyor who 

was head of the Geodetic Service of Canada at the time in question, 

presented a paper to the Royal Society of Canada on the USB of 

nomography to find the Altitude and Azimuth of the Pole Star (50). 

In many respects this is a parallel paper for surveyors to the 

one written by Perret for navigators for it is concerned with 

eliminating calculation from a problem met with continually in the 

exercise of that particular activity. The paper has a section 

on the graphic representation of equations which begins with an 

acknowledgement to dlOcagna for his 'exhaustive investigation of 

the subject'. It is followed by. a brief account of that part of 

the subject required for his purposes; this part is of a higher 

mathematical standard then the similar part given by Perret. 

Deville explains ho~ intersection nomograms and alignment nomograms 

can be connected through the principle of duality and gives the 

determinant form for an intersecting system of three straight line 

sets. In vi9~ of the fact that in the introduction he makes the 

remark Isoma surveyors prefer no calculation whatever', one wonders 

whether such surveyors got anything from this part of the paper. 

Deville's approach to the two particular problems, the azimuth 

or the Pole Star and its altitude, is along the same lines as 

Perret's, i.e. the appropriate formula is put in a form suitable 

for the precise problem and then compared with au + bv + c - O. 

Deville differs from Perret by introducing moduli, or scale 

factors, st this stage. The final nomograms have the appearance 

of great simplicity. 

In Egypt, nomograms were produced by the head of the 


Irrigation Service for calculations dealing with the flow of water 
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in canals and over weirs (61). Problems on the strengths of 

railway bridges were solved by farid Soulad, an engineer with 

Egyptian Railways, using alignment nomograms (62). It must also 

be noted that the next major advance in nomography was to be 

contained in a series of articles by Dr. J. Clark written in 

1907 when he was Professor of Mathematics at l'Ecole Polytechniqu8 

in Cairo. These are examined in the next section. 

Nomograms were produced in Italy before the end of the 

nineteenth century. Professor Gorrieri produced 80me on problems 

concerning the strength of loaded beams (63), while Professor 

Molfino of Livorno carried out a study aimilar to that of Perret 

in franca (64). Professor Pasci, also of Livorno, used alignment 

nomograms to solve problems in naval kinematics (65). Problems 

related to artillery were also the subject of Italian nomograms 

by Ronca (66), and Ricci (67). 

In Spain, General Ollero used alignment nomograms to solve 


problems in ballistics (68). 


In Holland, an engineer named Vaes produced alignment 


nomograms to solve problems arising in the construction of 


marine boilers (69). 


Moving eastwards we find that W. Laska6 Professor of Geodesy 

at the Technical High School, Lvov» in the Ukraine, had used 

alignment nomograms for topographic calculations by 1905 and was 

in the process of collaborating with an engineer named Ulkowski 

to produce a collection of technical nomograms (70). I have not 

found any trace of this collection. 

Nomography was introduced into Russia, according to the 

Rusaian Encyclopedia, by M.N. Gersevanov during the period 

1906 to 1908, but dtOcagne records that Colonel Langsnsheld had 

used alignment nomograms for ballistic calculations In Russia with 
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the implication that this may have been before 1906. O'Ocagne 

also acknowledges the work of Gersl8vanov and credits him with 

the invention of a new type of nomogram called la points 

equidistants' (71). I have not found reference to this type of 

nomogram anywhere else. 

It is claar that by the end of the first decade of the 

twentieth century the discipline of nomography had spread far 

from its birthplace of France. It is also clear that it was 

taken up more enthusiastically in some countries than in others. 

In Britain there seemed to be a reluctance to take up the ideas 

end they were never to become as important as they deserved to be. 

The countries which were to contribute most to Nomography in 

the future were Poland and Russia, both of which were very active 

in the 1950·s. The United States also retained an interest in 

the subject. One can speculate on reasons for this state of 

affairs but it can only be speculation for there is no real 

avidence. British engineers appear to have been devoted to their 

slide rules and this, togather with the insular attitude to which 

Britain has always been prone, was probably enough to confina 

nomography to a minor role. It is not easy to account for the 

sustained Russian interest, which extended throughout the 1930's, 

a seemingly static period elsawhere, except by suggesting that 

the nomographic approach to problems may have been more in tune 

with the Russian temperament and outlook. The great interest in 

Russia and Poland in the 1950's is easier to understand for at this 

time the West was making great strides forward in the development 

of electronic computers and the East Europaan countries may well 

have falt that they were being left behind in tha field of comput

ation; to improve nomographic techniques would at least have been 

an interim measure to narrow the gap. Recent American interest 

might be Just a normal reaction to the Russian interest but this 

could be an oversimplification; there is universal interest in 

the problem of complexity of functions, 8 problem which originated 

in nomography. 
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from about 1907 onwards~ the pUblications dealing with 

nomography at all levels proliferated greatly. A study of 

the development of nomography can henceforward only take account 

of those developments which advanced the discipline in aome major 

way or brought out aome vital point. It therefore follows that 

some worthwhile contributions will be left out while some, perhaps 

less worthwhile, will be included because they illuminate the 

particular point being made. The task of providing a catalogue 

of nomograms over the years is a different task from the one 

in hand. 
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4. ThQ Contribution of Or. J. Clark. 

Or. Clark first presented his ideas on nomography in 

1905 to the Cherbourg congress of the french Association ror thQ 

Advancement of Science. It was also at this congress that Lt. 

Perret presented his paper on the application of nomography to 

nautical astronomy. Whereas Perret's work had appeared in print 

the year before, Clark's did not appear until three years after 

the conference. When it did appear it was in the Revue de Mecanique 

and was split into sections, the first appearing in October 1907 

and the last in May 1908 (72). The RavuQ de Mecanique is rather 

an odd choice since the work itself is mathematical; d'Dcsgna's 

introduction begins with the comment that it 'diverges somewhat 

from the ordinary bounds of that received', but it is not known 

why that publication was chosen. Very little has been recorded 

about Clark the man~ At the time that his articles appeared he 

was Professor of Mathematics at l'Ecola Polytechniqua in Cairo. 

He does not seem to have bean particularly fluant in french since 

his articles were translated into french by G. fleuri, another 

professor in Cairo. 

D'Ocagne's introduction is curious. While praising Clark's 

work it nevertheless conveys the impression that most credit is 

due to d'Ocagne himself. In one sense this is true, for d'Ocagne 

can rightly be considered the father of the subject, but if 

Clark's work depends on anyone idea, that idea is Soreau's notion 

of nomographic order. The tendency of d'Ocagne towards self 

aggrandisement in his later writings is most noticeable. Taken 

with his apparent plagiarism of the ideas of critical points 

from Masaau and of nomographic order from Soreau, one is left with 

a feeling of reg'rat that an able man should conduct himself in 

such a way. 

Since the time of Lalanna the idea that a nomogram should 


contain as many streight line supports as possible had become s 


guiding principle. In practice, using the classification ideas 
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of Soreau and d'Ocagne, this meant searching for 8 nomogram 

of genus n-3 when the equation was of nomographic order n, 

n being 3,4,5 or 6. Clark's important contribution was to take 

this principle and investigate the construction of nomograms 

when it was not followed. The result was that he sought nomograms 

of genus greater than n-3 for equations of nomographic order n. 

The quality of this mental process must be compared in 

nomography with d'Ocagne's work which led to alignment nomograms. 

In mathematics generally there is a greater precedent for it. 

Clark's abandonment of what may be called the 'anamorphosis principle' 

is of the sarna type of reasoning as that which led to the abandonment 

of the parallel principle in Geometry, and which in turn led to the 

discovery of non-Euclidian geometries. 

Clark's work begins with an examination of the general 

equation of the fourth nomographic order which he writes in 

the form, 

f3(aof 1'2 + a1f1. +. a2f2 -+ a3) -+<jJ 3(bof1f2 + b1f1 + b2f2 -+ b3) 
+l/J 3(co f 1'2 + c1f1 + c2f2 + c3) - 0 

•••••••••••••••••••3.4.1 

The problem posed is to investigate under ~hat conditions this 

equation may be represented by a nomogram of the same order, i.e. 

by two straight lines and one curve, or in d'Ocagnets claSSification, 

of genus 1. It should be noted that if' l/J 3 - 0 in the ganeral 

equation then it is reduced to the third order. 

As the canonical type of the fourth order equation Clark 


takes, 


••••••••••••••••••••••••••3.4.2 


It is the form given by Cauchy ~hen he considered Lalanne's 


paper on anamorphosis. The problem is no~ to find under what 


conditions it is possible to pass from 3.4.1 to 3.4.2, or vice-versa, 


by a homographic transformation. 
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If 3.4.1 is written in the shorter form, 

o •••••••••••••••••••••••••3.4.3 

then Clark's first condition is that a value of A must exist 

such that x + A y can be factorised. When the condition that 

A should be real is applied, the result g088 back to d'Ocagnets 

work on the third order equation for it is no more than that the 

discriminant of f3X + ¢l3Y o should be greater than or equal 

to zero. It therefore follows that a first condition for the 

representabillty of a fourth order equation by a nomogram of the 

same order is that all equations of the third order obtained by 

making f 3 or ¢l3 or 1/1 3 equal to zero must be representable by a 

chert of the same order. 

Starting from 3.4.2, f1 and f2 are written as, 

• X 
-1. ' 
lfi1 

these forms being linear functions of f1 and f2 respectively. 

This is necessary since in the canonical form it is these two 

functions which represent the straight lines. Clarkts process 

for showing when 3.4.1 and 3.4.2 are homographic transformations 

of each other involves at one stage a comparison of equations 

which indicates that the z of 3.4.3 must have1/l1 W2 as a factor. 

furthermore, when this factor is removed an expression linear in 

1 and ~ is left, unless ~ and ~ are constant in which case it is 
1jJ, 1jJ 2 1jJ1 1/12 

linear in '1 and f 2• This leads to some practical rules, 

Decompose x +A 1 into factors. There will at the moat 

be two values of A • 

If the two values of A are real and distinct then 

and the required fectors ara eithar1/l11jJ2 odll 22 • If' 

division by one of the pairs makes z linear than the 

equation i8 of the required form, if not it is irreducible 
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to that form. 

If the two values of A are real and equal then x + A y .. <V 1~.12 
and the required factors aralJ1tJ!2. If z is rendered linear 

on division by 1jJ1tJ!2 then the equation is of the required form, 

if not it is irreducible. If there are no real values of A 

the equation is irreducible. 

By way of illustration consider the following equation; 

Ar 3(f 1 + 8 1)(f2 + a 2) + B¢3(fl + b1 )(f 2 ~ b2) + C~(f1 + c1) 

(f2 + C2) - 0 


firstly note that since x,y and z are all decomposed into factors 


then these factors must contain those sought. 


x + A Y - (f 1 + a1) (f2 + a2) + A( f 1 + b1) (f2 + b2) 


shows at once that the equation is not reducible unless two factors 

taken from different terms are identical. This however is based 

on the fact that x + A y cannot be factorised. Suppose that it has 

factors, say (f1 + 8 1)('2 + b2), then the coefficient of tJ!3' after 

division, is 

if.1~till.z....!...E.2) 


(f1 + 81)(f 2 + b2) 


which is only linear in __1=--_ and __'=--_ 

f1 + a 1 f2 + b Z 


if (c1- a 1)(c2 - b2) • 0, 

i.e. if c1 - 81 or c 2 • bZ' which again shows that the equation is 

irreducible unless two factors taken from different terms ara 

identical. 

Of some interest for their generality are two forms given 

by Clark as examples. The first is 
where k is a constant. 


-

'1CZf3 + f 2c11>3 • 1 + kf,rZ 

where 01' are constants representing degenerate linear functionsc 2 


of f1 and 1'2 • 
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He points out that this equation is of the form 



following the method used above, both sides can be divided by 

c1c 2 giving 

showing that the right hand side is only linear when k = o. 

.. 1 + kf1f2 is only reducible to the 

canonical type 3.4.2 if k - O. 

The second example is 

• 

If k I 0, then putting m - 1/k the previous form is obtained. 

If k .. 0, then on dividing by f 1f 2, 

- 1 is obtained which is the 

canonical type 3.4.2. 

Hence '1 f 3 + '2¢3 - f1f2 + k 

Is only reducible to the canonical type 3.4.2 it k .. O. 

Clark Is able to condense these results into a more manageable 

'arm in order to 'recognise at first sight whether an equation of 

the fourth order is representable or not'. 

He rewrites equation 3.4.1 in the 'arm 

• ••.•••••••••••••••3.4.4 


and concentrates on the coefficients A3, 83, C3 and 03' 

where - A3' ,.. ao'3 + bo¢3 + co1f!3 

8 ,.. a1'3 + b1¢3 + c11f!33 ••••••••••••••••3.4.5 
..C3 8 2'3 + b 2¢3 + c2 1/13 


°3 .. 8 3f 3 + b 2 cj>3 + c 3 1lJ 

firstly, if anyone of the coefficients Is zero, then equation 3.4A 

reduces to forma which cen be seen to be equivalent to the canonical 

form 3.4.2. 
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If all the coefficients are different from zero, then an 

examination of their forms shows that a linear relationship must 

exist between them, i.e. aA 3+ bB3 + cC3 + d03 - 0 

This means that D3 can be eliminated from 3D4.4 provided that 

d " 0, giving, 

(f 1f 2 - ~ ) A3 + ('1 - ~ ) B3 + (f 2- £ ) C3 - 0 •••••••• 3.4.6 
d d d 

By applying the method described earlier, for representability 

it is necessary that 

should be linear in 1 ,. 1 

f1 b f - c2 
d d 

Put X1 - f1 - E , X2 - f2 - c , then 
d d 

- a 
d must be linear in.1 , .1 

X1 X 2 

i.e. ad - bc - 0 

If d - 0, then some other coefficient is eliminated, say 

83 if b .; 0, and the argument repeated, giving the same result. 

This result is quite general. 

Returning to equation 3.4.6 and making the substitution 

- X1X2 + bc - ad 

d2 
1.e. 

which reinforces the result obtained earlier that 

- f 1'2 + k is only ~educible if k • o. 

It 1s also possible to express the relationship ad - be - 0 

in terms of the constants of equation 3.4.1, for the relationships 
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3.4.5 may be expressed In a determinant form in which the minors 

of A3,83,C3 and 03 are a, b, c, d. The condition becomes 

a1 8 2 a3 8 0 8 1 a2 aO 8 2 8 3 8 18 0 8 3 

b1 b2 b3 x bO b1 b 2 - bO b2 b3 )( bO b1 b3 • 0 

c1 c 2 C3 Co c 1 C2 Co C2 c3 Co c 1 c3 

These results can be summarized to give two canonical forms for 
the fourth order aquation. 

It has already been established that all equations of the 

fourth order can be reduced to the form 

'1 '3 T f2 <Il3 - f1 f2 +k 

If k a then ..;;.rf1 3T .1¢3 1IS III 

2 f1 
•••••••••••• 3.4.7 

If k r 0 then a substitution of the form f2 _ k and other simplet2 
transformations lead to the form 

F 1 f 2 f 3 + (f1 + f 2 ) <P 3= 1 ••••••••••••3.4.8 

Reduction to this last form is impossible if k • 0 showing that 

3.4.7 and 3.4.8 are mutually exclusive. 

Clark has therefore arrived at the important result that all 

fourth order equations can be reduced to one of the forms 3.4.7 or 

3.4.8. Those which can be reduced to the type 3.4.7 can be 

represented by a nomogram of the fourth order, those reduced to the 

type 3.4.8 can not be represented by a nomogram of the fourth order. 

To the form 3.4.8 Clerk gives the name 'symmetric'. 

Clark next proves a most important theorem which states that 

every equation of the third or fourth order is representable by a 

nomogram either of the same order or of two orders higher. The 

demonstration of this theorem is quite simple. Starting from 

equation 3.4.1 and dividing throughout by the term 

Co '1 f2 + c1 f1 + c 2 f2 + c3 the resulting form is 

xf:3 + Y~3 + 1jJ3 .. 0 
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in which x  ~1.!>~-!~~1~~~3 
c of1f2 + c 1f1 + c 2f2 + c 3 


y .. 
 E.u.f.1i.2..-!....E.1i.L:!:.J!.2f.~3 
cof,f 2 + c,f, + c21'2 + c3 

from these last two relations it is possible to eliminate f1 and 1'2 

in turn resulting in linear equations in x and y. 

Three linear equations in x and y result, 

xX, + y¢, + 1jJ, - 0 

- 0 1 ••••••••••••••••••••••••••• 3.4.9XX2 + Y¢2 + 1jJ2 ..xf3 + Y¢3 + 1jJ3 0 

from which it followS that 

X, 4>1 1Ji1 .. 0 • ••••••••••••.••••••••••••• 3.4.10
X2 4>2 1Ji2 

1'3 <1>3 W3 

This shows that the variables or a fourth order equation can be 


separated into the determinant form. furthermore, since this 


form can be written 


1 

1  0 

1 

it will represent, in general, an equation of the sixth order. 

If in the original equation ~3 - 0 then this equation is of the 

third order. The determinant will now be of the form 

H" 1G, , , • 0G2 H2 


G3 0 , 

is o~ the fifth order.
which, in general, 

In this argument it is assumed that no linear relationship exists 

between G, and H, or between G2 and H2 since, if such 8 relationship 

did exist, then a normal type of nomogram would be possible. 
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A second remarkable theorem follows. It states that 

this method always leads to supports for the scales of a1 and a 2 

which are one and the same conic. 

To see that this is so it is necessary first to demonstrate that 

a 1 and have supports which are conics. From the determinanta 2 

form 3.4.10 it is seen that the supports of the scales are given 

by 

x .. 2.1 , y ... ..11 for a, 
1/1 1 1/1 1 

and x .. Y .. for a~2 , ..!2 2 
1/1 2 1jJ 2 

from the process by ~hich the functions Xi , ~i and 1/1 i (i - 1,2) 

have been obtained it becomes clear after B aimple investigation 

that, in general, the functions are of the second degree in '1 and 

consequently conics. 

If ~i is denoted by Xi and ~i by Vi then X, is a function of f1 


1/I i 1jJi 


and X2 is a function of f 2 " To demonstrate that the conics are 

the same it is necessary to show that, if for some values of f, 

and '2' X1 - X2, then Y1 - Y2 • 

The first two equations of 3.4.9 can be written as 

xX1 + YY1 + 1 • 0 


xX2 + YY 2 + 1 - 0 


and on subtraction the result is 

x(X1 - X2) + Y(Y, - V2) - 0 

from which it immediately followa that if X1 - X2 then V1 - Y2 

unless x i8 infinite or y is zero, which will not generally be 

the case. 

It 1s of interest to note that the inherent geometric symmetry 

is not reflected in an algebraic symmetry of the initial relationship 

88 will be seen in the following example from Clark. 
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(1 + l)h
2 

- 1(1 + p)h - 1(1 - 1)(1 + 2p) - 0 

3 


This is of nomographic order four since the four functions l,p,h II 
and h 2 ara linearly independent. 	 il 

II 

It is an example of the form examined earlier when it was found 

that 8 nomogram of the fourth order could only be obtained if two 

of the factors happened to be identical. This is not the case here. 

To apply Clark's method, divide throughout by one term, say (1 + 1). 

h 2 _ 1 (1 + p) h _ .1(1 - l)( 1 + 2p) 
• 0 •••••••••• 3.4.11 

(1+1) 3 (1+1) 

let x - 1 (1 + p) and y. (1 - 1)(1 + 2p) ......3.4.12 

(1 +1) (1 +1) 


and 3.4.11 becomes 


h2 - xh -1 y .. 0 
3 

from equations 3.4.12, eliminate firat p and then 1, giving the 

two linear equations in x and y, 

1 + 1 1 + 12x - .. 1Y1 1 - 1 

1 1and 2x + y .. 1 

1 + P 1 + 2p 


The determinant form obtained from these last three equations is 


1 + 1. 1 + 1

2 1 


1 1 - 1 

1 	 1

2 	 1 0-
1 + P 1 + 2p 


h2
h .1 
3 

.-(1 + l)The support of 1 is given by x • 2(1 + 1), 
1 y (1 - 1) 


whence , on eliminating 1, xy + x - 4y - 0 


The support of p is given by x = 2 1 , Y = 1 

1 + p 1 + 2p 

wh~ch, on eliminating p, gives xy + x - 4y • O. 


Thus land p have the same conic as support. 


One point needs to be emphasised. It is that if two scales have the 


eame support the scales do not necessarily coincide. In general, 


every chard of the conic is a line of ~lignmant. 
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The next logical step is to search for an equivalent 

sy~~etry in the algebraic relationship_ Starting from the 

determinant form, if Ct.1 and ~ ara to have the sama support then, 

if the support of Ct., is given by x ... f 1" Y ... F( f 1) that of Ci. 2 
must be given by x a f 2, y - F(f 2). The determinant form must be 

f, F(f,) 	 1 

...f2 r(f2) 	 1 0 


1
f3 <1>3 

If this is applied to the determinant form considered above, namely ,
2 	1 + 1 + 1, 	 1 

1 1 


2 1 
 ...1 0
1 + P 1 	 + 2p 

h2h ~ 
3 

then f 
1 

... 2 1 	+ 1 , ,
2 

.. 2 

1 1 + P 


2 	 2'- '2giving 1 	 .. , P • 
f,- 2 	 f2 

1 	 + 1 .. fj 1 ... '2and 
1 	 - 1 4 - f1 " 1 + 2p 4 - '2 

revealing 	the symmetry that was only implied. 

The revised determinant is 

'1 	 1'1 4 	- '1 
'2 1 - ()'2 4' - '2 

h2h 	 1 

"3 


showing explicitly the symmetry. 

At thie stege one cen aee that Clark's original aIm has 

been achieved in that an equation, 3.4.11, of the fourth nomographic 

order for which no nomogram of the fourth order can be constructed, 

can nevertheless be represented by a nomogram associated with the 

sixth order, as illustrated In figure 3.7. 
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figure 3.7. 

It is necessary to bring together various pieces of Clark's 

work to see its overall significance. The following form represents 

a third order equation or a fourth order equation not representable 

by a chart of the same order. 

'1 f2 A3 ... (f1 ... ( 2)83 + C3 D 0 •••••••••••••••3.4.13 

Let x • f1 '2 and y • ('1 + (2) 

then, following Clarkt. procedure, these linear equations are 


obtained, 


x - yf1 + '12 .. 0 

x - yf2 ... f 22 • 0 

xA3 ... y83 ... C3 .. 0 1 

leading to the determinant 

f1 f 2 
1 1 

'2 r 2 
2 1 .. 0 ••••••••••••••• 3.4.14 

-83 C3 A3 

from ~hlch it Is a8en that the support of a 1 and of a2 is the 
·2 

pa~abola Y - x • 

A homographic transformation can always transform this parabola 

into another coniC, a circle has obvious advantages. 

To the determinant 3.4.14 and its associated equation 3.4.13 

139. 



Clark gives the name 'Canonical form of conical charts' because it 

encompasses all equations to wnich the method applies, i.e. all 

equations of the third order and all those of the fourth order not 

representable by a chart of tha sarna order. 

It is of interest to look at some examples of this form. 

Consider the multiplication formula f1 f2 • f3 which led to one 

of the earliest nomograms of lalanne. It is obtained by putting 

A3 - 1, 83 - 0 and C3 - -f3 in 3.4.13 giving the determinant 

1 

1 - 0 

1 

which has as support for a 1 and ~ the parabola y ... x 2 and for 

(1.3 the line x - 0 ~hich is the axis of that parabola, (figure 3.8.) 

for addition, '1 + f2 • 1'3' A3 - 0, 83 - 1, C3 • -f3 and 

the determinant Ie 

f 2 11 
, 2 1 ... 0 

2 

-r3 a 

which needs to be transformed by dividing by the terms in ths 

middle column gi~ing 
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pst 

1 1 1 

f1 f2 
1 

1 1 1 • 0 

'2 
f2 

2 
.1 0 1 

f3 

Again Cl. 1 and CI. 2 lie on the parabola y ... 2 
x but CI. 3 now lies 

on 'I .. 0, the tangent to the vertex, (figure 3.9). 

0(, CM1d.. CX'1. 

figure 3.9: f~~ 

The two preceeding examples are capable of being represented 

by straight line nomograms, i.e. of order 3, but here their 

reprssentation has been of order 5. The following example has a 

negative discriminant and therefore cannot be represented by 

straight lines. 

tan( a. + S) - t'en CI. + tan (3 

1 - tanCl.tan S 

can be written 

The determinant 1s 

1'1'1 
'2 f 

2 

2 1 • 0
2 

-1 -'3 '3 

or 

2 
1'1 '1 

'2 ' 2 
1 . , 02 

-1 1.1 
f3 
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-
in whi ch CE.3~ '" and D l~ th 	 2~ ~ ~8 on a parabola y - x while 

(0.+ B) is::1 the line y =-1,(figurs 3.10)~ 

figunl 3.10: tan( a. +6) '" 	 tano. + tan B 


1 - tanatan S 


Thesa three examples all illustrate third order equations 

and it 18 L~teresting to note in passing that the method offers a 

flexibility, in addition to that available as a result of homographic 

traneforma~~n, ~hich is not possible in the case of fourth order 

equations wrich yield to this method. The flexibility lies in 

the ability :.a modify the relative positions of the scales. 

In ~~ case of f 1'2 - '3' 	the equation Can be rewritten as 

f 1 (A f 2) - 'I f:v \lhich will give symmetry with respect to f 1 and 

)"'2- Simila=ly,'1 + '2 • '3 can be written as f1 + ('2 +),.) ... 

(f3 + A) I rich is symmetric in r1 and r2 +),.. 

The Y31ue of this device is eeen in the case of '1'2 • '3 if 

1 t is writt.a:'!: f 1(-f 2) - -f3' giving the determinant 

f 1 f 2 1 

12 


-,2 r2 1· 0 


o r3 1 

In this Vi!~SO the scales of '1 and '2 are in opposite directions 


from the ax:... , (figure 3.11). 


0(. 

figura 3.11:f#2) • -'3· 
142. 

----------............ 
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Clark gives construction methods for his conical nomograms. 

He calls this assembly of techniques the synthetic method for the 

construction of conical charts. Firstly, he describes a method of 

d'Ocagne's for the construction of a linear scale in which, to fix 

a scale it is only necessary to know three points on it a. .. 00 

and two others, say, a. "" 0 and a. .. 1. He then uses this to solve 

the analogous problem of constructing a linear sheaf of rays from 

three dimensioned rays. There is a simple geometric construction 

for this. 

To construct the nomogram, Clark starts with the determinant 

form

f 1 ' 2 1 

'2 
12 ..1 0'2 


-B3 C3 A3 


In practice '1 and f2 will have limits to their ranges. In figure 

3.12 the limits are a,b for f1 and al,b ' for '2
00 

b 

figure 3.12. 

The anharmonic ratio (AAIBB') - k is s fundamental property of 

the arrangement .. 

If.the scales AS and A'B' are required to be opposite 

Bach other, and ABA'S' ia to form a rectangle, then a auitable 

rectangle ABA'S' is drawn and the vertices a,b,et,b' are marked 

as in figura 3.13. Than,_taklng A' a8 the origin ora sheaf the 

three rays A'B, A'A and A'S' are sufficient to determine the sheaf. 
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Similarly, Bt can be 

taken as the origin of 

three rays B'A', BfB and 

BIA and this sheaf completed. 

The intersection of the 

corresponding rays will 

then give the scale of f 1 • 

A similar construction 

from A and B will give 

the scala of '2
figure 3.13. 

The conic is therefore determined by the choice of four 

dimensioned points A,B,A',B'. The order in which the pOints 

are positioned determines whether the conic is an ellipse or a 

hyperbola. figures 3.14 and 3.15 illustrate thie. 

,.' 

\ 

Figure 3.14. figure 3.15. 

As for the third scale, if it is exterior to the canonical 

parabola it will also be exterior to any other conic chosen. 

The alternative to chooeing the four points 18 to choose 

the conic. In this case the anharmonic ratio k must be preserved. 

for the cirele of' figure 3.16 this results In the angle a baing 
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2
determined by tan a - k. 

figure 3.16. 

To illustrate these points, consider equation 3.4.11 for 

which the determinant form is 

21 + 1 
1 

1 + 1 
1 - 1 

1 

21 
1 
+ P 

1 
1 + 2p 

1 
• 0 

h .1 h 2 

3 

The relationship between 1 and p is given by equating the first 

terms of the first two rows, giving 

•••••• 3.4.15 
P 

Suppose that the extreme values of the scales 1 and pare 1/2 and 1 

in both cases. 

1 - - (1 + p) or 

The corresponding values of 1 and p are found from 3.4.15 and ara 

given in the following table. They are used to construct the 

scales of p and 1 as indicated in~iguras 3.17 and 3.18. 

Points 	 A B A' 8' 

1 -1 -2P 	 .1 
2 2 3 

1 -2 -3 1 .1 

2 
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e/ ._ __ -;>~_~'-"A A 

-.!. 
~ 

1'-2. 

AI l3 A' 

figure 3.17: Sheaf for the figure 3.18: Sheaf for the 
construction of p. construction of 1. 

The h scala can be found by locating four values of h. for 

example, if h - 0 the original equation gives 1 • 1, P - -1/2, 
which locates h - 0 at A. Similarly h - 1 is at At. 

To find the value of h at which its support cuts AS', put P • 1 

and I - 1/2 in the original equation, i.e. make use of the alignment 

of p, 1 and h. This giV8S h - -1/3 (or 1 which has already bean 

found). The point for which h - -1/3 lies somewhere on AB'. To 

fix it, put h • -1/3, P - 1/2 (the point S) in the original 

equetion; this giV8S ] - 10/23 and enables the point C, where 

h - -1/3 to be fixed precisely. Similarly, the point 0 on AlB where 

h • 3/4 is located. 

The h seals can now be completed using the sheaves emanating from 

8 and B'. 

{ ')..."-. /.(/ 
\ / 
~_/ 

figure 3.19. 
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Figure 3.19 illustrates the arrangement of the scales. figure 

3~20 showing the construction lines, is reproduced from Clark's 

paper. 

In his synthetic method Clark has achieved a transformation 

from ana conic to another by a simple geometric procedure. In 

order to emphasise this simplicity he illustrates the complexity 
2of the analytical transformation of a parabola y - x and its 

axis x - 0 into a circle and a chord of that circle. There is 

nothing new about his method but his point is well made. However, 

he concludes that the real advantage of the synthetic method is 

not 80 much to avoid a complicated analysis as to be able to start 

~ith the most advantageous disposition of the scales and to kno~, 

a priori, the degree of freedom that one has. 

In the development so far one fact has not been brought 

out. It is that in Clark's method for getting the determinant 

from '1fZA3 + ('1 + (2)83 + C3 • 0; i.e. by letting x • f1'2 

and y - '1 + f2, an "extraneous factor is introduced. This can be 
seen from the determinant form, 

- o 


Bither by noting that if '1 - '2 it becomes identically zero and 

therefore ('1 - (2) must be a factor, or by expanding it. The 
expanded determinant gives, 

Clark then poses this question. If it is possible to achieve 

symmetry in t~o variables through multiplication by an extraneous 

factor, then is it possible that symmetry in three variables can 

be achieved through multiplication by some other extraneous factor? 

To develop this line of thought Clark considers an equation 

of the third nomographic order put into a symmetrio form with respect 
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o.Ii. 

Figure J.20 

Facsimile of Clark's nomogram for 

(1 + 1)h2 _ 1(1 ~ p)h - 1/)(1 - 1)(1 + 2p) ~ 0 

showing the construction lines. The drawing is 

the work of G.Fleuri. the translat~r of Clark's 

paper into French. 
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p 

to the three variables (or three functions of these variables). 

The form is, 

for symmetry of threB rows of a determinant in f1' f2 and f3 the 

previous result suggests an extraneous factor of 

In determinant form, 5 is given by 

2 
f t 1 

, 2 12 

f 2 13 

Equation 3.4.16 multiplied by 5 gives 

which has the determinant form 

1 -A 	 B -c 

f 2 f 3
1 '1 1 1 • 0 •••••••••••••• 3.4.183f 21 	 ,~f2 22 

1 '3 	 f3 f 
3 

3 

Since 3.4.18 Is the determinant form of 3.4.17 it is useful to 

note that the determinant forms of Sf1f 2f 3, 5(f1 +'2 + '3)' and 

5{'1'2 + f 2'3 + f3f 1) are contained in 3.4.18 as the minors of the 

elements of the first row. 

for example, 

1 

1 

1 

If the row operations row2 - row1, row3 - row1 and row4 - row1 

are performed on 3.4.18, the determinant becomes 
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1 -A B -c 

f 2_80 f 1+A 
1 

f 13+C .. 
 02 3
0 f 2+A f 2 -8 '2 +C 


3
, 2_B0 f3+A '3 +c3 

which can be Bxpressed as the third order determinant 

2 3
f1+A '1 -8 " +c II

,I 

, 2+A , 2 
2
-8 f 2

3 
+c - 0 •••••••w •••••••••• 3.4.19 

2 3 
'3+A '3 -8 '3 +c 

This shows that the supports of '1' '2 and '3 are one and the same 

curVB. 

The curve is given by the parametric equations 

2 
y • !1 - 8 

, 3 + C, 

•••••••••••••••••••••••••3.4.20 


However, more important than the exact form of the equation is the 

'act that the common support of all three scales is a curve of the 

third degree. Consequently, the reSUlting nomograms are Galled cubic. 

As an example consider the multiplication formula f 1f 2 .. rp 3 

which Lalanne used to illustrate anamorphosis and which has been 

used as an illustration of Clark's conical nomogram. 

If, in '1'2 - ¢3 , ¢ 3 is replaced by 1/'3 the relationship ','2'3 - 1 

is obtained. It is also obtained from 3.4.16 by making A .. 8 - 0 

end C - -', showing that the common curve is y 3_ x3 - yx. However, 
3 3

the curve y + x - yx· is also acceptable since the determinant 

equation remains true if any column 1s multiplied by -1; thus in 

this case y hes been replaced by -y. 
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As an example Clark has used the form 3 
+ x 

3 .. axy • Y 

Hers, in the determinant form 

2 f 3 1f1 f1 1 

r 2 ..f2 1 02'2 
3 

2 :3 
1'3 '3 f3 

he has chosen to multiply column 1 by a and column 2 by -a. He 

expected a lot from his readers for he gives no explanation of how 

he has moved from the previous determinant to 

2Y ... -a _.;;..f__ 

f3 - 1 

x3The curve + y3 .. xy is the folium of Descartes and has the general 

appearance shown in figure 3.21. 

~ 

.~ 

figure 3.21. The folium of Descartes. 

Marking the curve with the values of the variables is made 

easi&r by noting the linear relationship i - -f. 

The nomogram from Clark's paper is given as figure 3.22. 

for a second example consider 

'1 + f2 + f3 .. 0 

The determinant form for this is best obtained by considering 

3.4.17 and taking the appropriate minor from 3.4.18. It is easily 

eeen to be 
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Figure .3.22 

Clark' 5 cubic nomogram for multiplication; 1'11'2 -;:::: ¢3

! • :J152. 
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f 31 f1 1 


f 3
1 0f2 = 2 


f 3
1 f3 3 

Clark's method is to make the Bubstitution in 3.4.19 of A - C • 0 

and 8 = = which, if the second column is divided by 8 and multiplied 

by -1 before the substitution is made, does give the determinant 

but it seems inelegant in view of the algebraic form of 3.4.17. 

The curve is given by x - f, y - (30r y - x3, which is a cubic 

parabola as sketched in figure 3.23. 

figure 3.23. A cubic parabola. 

for the relationship :1+ i2+ :3- 0, note that it can be also 

written as, 

The determinant form for '2 '3 + '1 f3 + '1 '2 is the minor of A 

in 3.4.17. i.a. 

1 t 2 
1 

f 3 
1 

1 f 2 
2 

f 3 
2 • 0 

1 f 2 
3 

r 3 
3 

the determinant since if it is multiplied by 

1 

'1 f2 '3 

This will serve as 
1 
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1 '1 f 2 
1'1 

.1 f 2 .. 0f2 2'2 

1 '3 f 2 
:3 

, ~,'3 
which reverts to 

, 2 f 31 1 1 

f 2 , 3 ...1 02 2 

f 2 f 31 3 3 
on dividing the elements of each row by the corresponding element 

in the first reid. 

The curve is given by x .. ,2 , y ... f 3 , i.e. x:3 .. Y2 , illustrated 

in figure 3.23. 

o 

( ) tan a + tan S::II!As a third example consider tan a + f3 1 _ tana tanS 

If tan a .. '1 , tan S-'2 and tan (a + 8) ... -'3 the relationship 

takes the form f1 '2 f3 - ('1 + '2 + f3 ) ... 0 

Comparing this with equation 3.4.16, A" 0, B .. -1, C .. 0 and 

determinant 3.4.19 becomes 

'1 '/+1 '13 
, :3f 2 + 1 .. 0 

2 2 
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On adding the first column to the third and dividing by the 

corresponding element of the second column the determinant becomes 

f11 f1 '1 2 -+ 1 
f2 

1 f2 0"" f22 + 1 
f3

1 '3 
'32 + 1 

The curve is given by 

y ........,...--f__x • f, or y ... x which(2 + 1 x1 + 1 

is of the type shown in figure 3.24. 

~ 

-J 

figure 3.24. 

To position the scales on the curve note that x • f, a regular scale 

on the x axis. It then only requires parellels to the y axis to 

be drawn through the points of this scale to intersect the curve, 

to give the scale. 

The example of this given by Clark is reproduced as figure 3.25. 

As in the case of conical nomograms, the sceles on cubic 

nomograms can be displaced relative to each other by the introduction 

of two constant factors. for example, '1'2'3 • 1 can be written as 

f 1(1\ f 2)( llf3) • All giving alignment in which'1 • A f 2 ""]..l f 3· 
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Figure 3.25 tan 0(. t tan@. 
Clark's cubic nomogram :for tan(o<. t J3) '::; '1 _ tan c( tanf3 
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The cubic nomograms are curves of the type known as 

cubic unicursal. A unicursal curvs is one with parametric 

equations x == 8 (t), y - ¢ (t) in which 8 and ¢ are rational 

functions of t. Such a curve cannot consist of, for example, 

an ellipse and a separated branch. They are quite different from 

conics and it is not possible for a cubic nomogram to degenerate 

into a conical ons. The same type of distinction can be made 

between conical nomograms and ordinary alignment ones and it 

follows that the three types, ordinary, conic and cubic must 

be regarded as quite distinct types of alignment nomogram. 

It is of interest to ask how many different types of cubic 

unicursal are possible; that is, how many types are there which 

cannot be obtained by projective transformations of other types? 

To decide this question it is necessary to have some means of 

classification of cubic unicursals. A classification system is 

based on the double point that all cubic unicursals must possess. 

The two tangents at this point may be real and distinct, or real 

and coincident or imaginary and it is this distinction in the 

nature of the tangents that is used to classify cubic unicursals. 

3The folium of Descartes given by x + y3 - xy has a double 

point at the origin. The tangents at this point are real and 

distinct and are given by x - 0 and y - O. This is known as the 
3 2

erunodal form (figure 3.26). The form x - y has coincident 

tangents at the origin given by y - O. This form is known as 

the cuspidal form (figure 3.28). The form y - __x__ has an 

x2+1 

isolated point, which is 8 double point, at the origin and therefore 

has two imaginary tangents at that point. This is known as the 

Benodal form (figure 3.29). 

o 

J 
~~ 

H; 
, I ' 

. ~ . 

R 

t~ 
'I 

figure 3.26. figure 3.28. figure 3.29. 
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These three forms are quite distir:t a-nd ~ canno~ A 

transformed ons into another b . t" I n 	 theyY proJ8C 1':-:. this r,"l;.:.i:t 

differ from the conical nomograms in whiC'1 any conic c ....- :a 

projected into any other conic. 

The relationships which led to the three :ubic forms I.;..~:'llt 

(i) 	 f 1f 2f 3 '" 1 for the crunodal form. 

(il) 4>1 +4>2 +<1> 3 ... 0 (where <l>i - 11ft > for the Cus;:!..::alf.orm. 

(iii) 	 f1f2 f 3 - (f1 + 1'2 + 1'3) .. 0 for the Bcnodal fO!1t. 


In the context of ordinary alignment nor::.:grams (i) is ':.-1<;: type 


with non-concurrent linear scales, (ii) ~e type with ~current 


linear scales and (iii) is Clark's irreducible form. 


This correspondence between the cubic and ordir~~1 alignment 

nomograms is based on their projective prtlperties, one :1')e cannot 

be projected into another. 

In a section headed "Conclusion or the theory of rupIa 

alignment charts. General Method", Clane brings toget:-·~ the 

conclusions of his investigations. He aedresses himse:'" ta the 

fundamental question which had been posed at the begirr~~ of his 

work, namely, the possibility of representing a given ~tion 

f(CL V CL2,CL 3 ) .. 0 by a nomogram. It is pedlaps kind t0::613 ovar 

lIIithout comment his remark that "The siPl;llicity of thh lroblem 

can now be shown in its true light". 

The essence of his method is to bring together :;-~ functions 

of one variable, say a.3J 50 that the eXFression is li~= in the 

functions of that variable, say f3 J <1>3 ar~ ~3' giving 

o. 

y - 212' a linear equatiOt::''1 a. 3 isThen, putting x - !12 
C12C12 

obtained, xf3 + y <1>3+ W3 ,,0. 

If the expressions for x and y, ~hen 0. 1 and 0.2 are el~1ated in 

turn, yield equstions linear in x and y, the problem i. ~lved for, 

suppose that they give xf 2 + Y<1>2 + IV2 • 0 and xf 1 + ~~ + IV 1 - 0, 
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holds.then the determinant 

o 

If linear equations in x and yare not obtained Clark 

says that the expression is irreducible. There is much to be 

said on this problem later but at this stage two observations 

need to be made. The first is that in the form given above. 

it is a very useful contribution. The second is that the concept 

is not new. As d'Ocagne points out in his introduction he had 

given the same idea in his 'Nomographie t of 1891 (30), but neither 

d'Ocagne nor Clark acknowledge the true originator of the method, 

Massau, who gave the method in 1884 (20). Massau had also observed 

that the method could produce an extraneous factor. 

It had originally been Clark's intention to produce canonical 

forms for equations of the fifth and sixth nomographic orders but 

he later deemed it unnecessary, considering that the work already 

done would embrace these types. He gives two examples. firstly 

a symmetric equation of the sixth order, 

, 3(f12 + , l + f l2) - ¢ 3(f/,2 + , ll) ... 1 


in which he puts x - f12 + f22 + f1'2, and y - f 12'2 + '1 f 22, 


finally arriving at the system of equations, 


- '13 
f 3 1x, - y '1 11 33 1 0which lead to xf2 - Y - r2 '2 '2 

f3 1 cl>31 


Secondly a non-symmetric equation of the sixth order, 


xf3 - Y 

'3(f1 2 - f2 3) -4> 3'1f2('1 - (22) - f1 - '2' 

which, treated in the same way, yields the determinant, 


'1 '1 
2 

1 

3
'2 . 1 .. 0 

f2 

'3 . 1 <P3 

159. 



p 

In the non-symmetric example the expanded determinant form 

gives precisely the equation from which it has been derived, 
whereas in the symmetric example the determinant contains an 

extraneous factor (f 1 - (2). 

Towards the end of his paper Clark draws some conclusions 

arrived at as a result of his development of the material for the 

paper. He considers the notion of nomographic order to be no more 

than a useful preliminary criterion of representation. The problem 

of expressing a given equation f(a 1, az,a 3) = 0 as the eliminant 

of three linear equations he considers to be the true problem. 

Then, considering the determinant he recognizes the following 

two types. 

(i) Non-symmetric:- exactly representing the given equation, 

(ii) Symmetric:- representing the given equation multiplied 

by an extraneous factor. 

In type (i) the supports of the Bcales are distinct. In type (Ii) 

some supports ~Ill be coincident. The extraneous factor equated 

to zero will indicate the supports ~hich coincide. The extraneous 

factor must contain either (a) two of the variables al'a2,a3, when 

the factor is of the form (fi - 1'j> (1,j· 1,2,3) i r j) as In the 

conical nomograms, or (b) the three variables 0: 1,0: 2' a 3, whan the 

factor is ofths form (f1 (2)(f2 - (3)(1'3 - (1). 

An extraneous factor in the determinant always implies 

symmetry and coincidence 0' scales while no extraneous factor implies 

no coincidence of scales. To demonstrate this further he extends 

en argument already used. If the elimination process results 1n 

the two equations being of the type, 

xX1 + yY1 + 1 - a and xXl + YY2 + 1 • 0 

then Bubtraction gives x{x1 - x2) + y(Y1 - Y2) - o. 

If a and 0: have values such that x1 - xl then it may be 

that Y1 _ y~, in w~iCh casa the supports coincide and the functions 
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determined by the values of X and y namely f d f . 
, ' , an 2' g~ve the 

extraneous factor (f1 - f 2). 

However, another possibility, given that X • x is th t 'th
1 2' a e1 er 

x ... or y • 0, as can be seen if the expression is written as00 

(x1 x2)" -; (Y2 - Y1) 

In this case the supports ara distinct and no common factor can 
be found. 

Clark is now able to rephrase the real problem as that of 

finding in which cases the left hand side of f(u"u 2,u3) - 0 can 

be represented as a determinant either as it is or after multiplic

ation by a factor. 

He is of the opinion that the elimination method solves the 

problem in all cases except where the required factor contains all 

three variables, in which case, if a nomogram is possible, it must 

be of the particular form associated with a cubic nomogram. 

This claim of Clark's must be taken in the spirit in which 

it is made. firstly, he has only concerned himself with the algebraic 

problem of representation and recognizes that more powerful methods 

than his o~n, or Saint-Robert's or Massau's, will be required to 

"settle the complete representation problem". Secondly, he has an 

attitude of mind which is revealed in his introduction, where, 

referring to the elimination process, he states that the method 

gives a nomogram or does not, according as that representation 

is possible or not. This is the constructionist approach which was 

put forward much later, in relation to nomograms, by the Russian 

James-levy. It seems that Clark's philosophy of mathematics was 

ahead of its time. 

There is a final section to Clark's paper ~ich applies his 

method of conical charts to equations having four variables. The 

general approach is not new for ~t involves the introduction of an 

auxiliary variable. 
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As an example, consider r(Ct1,Ct2,Ct3,a4) = O. This is rewritten 

as -

f 1( Ct1,Ct 2,Ct) 

f 2 ( ~,Ct 4,ct) 

.. 
~} 

Then, effectively, two nomograms are constructed having the 

common scale Ct. Clark extends this method by making his scala 

Ct coincide with that of Ct1 in f 1 and a 3 in f 2 for example. 

If the conic carrying the coincident scales is a circle the 

appearance of the chart can be greatly simplified. However, it 

is the application which is new and not the method and it will 

be sufficient here to note it. 
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5. Further Theoretical Developments of Aliqnment Nomograms. 

During the period between the time when Clark mads 

public his ideas at Cherbourg and the appearance of those ideas 

in print, d'Ocagne published four papers which~ in one way or 

another, were related to the unpublished work of Clark. 

In 1906 he showed that Clark's conical nomograms had a 

link with his own alignment nomograms with three rectilinear 

scales (73). This link is quite easy to show. Using the 

notation that d'Ocagna had used in expounding his theory (equation 

3.1.5 et seq.), the general equation in the three variables 

0.1'0'.:2 and 0.31s written, 

•••••••••••••••3.5.1 

If u and v are parallel coordinates and ths substitutions, 

u - Af1f2 + 8 1f2 + 82f1 + c3 1 
•••••••••••••••3.5.2 

v • 83f1f2 + C1'1 + C2'2 + 0 J 
are made in 3.5.1, the result is uf3 + v • 0, showing that the 

variable ~ has for support the straight line which is the exis 

of the origins. 

If from 3.5.2, f1 is eliminated the result is, 

E2'22 + (83U - Av - f 2)f2 + C1u - B2v + C2 - 0 

If '2 is eliminated instead, the result is, 

El12 + (8 2u - Au - f 1)f2 + C2u - B1V + C1 - 0 

These two results show that both a 1 and a 2 have conics for supports. 

shoW that these conics coincide. To do this he
It remains now to 

finds the support of a 2' blhich is 

(B3U - Av - f 2)2 - 4E2(C1u - B2v + C2) • 0, 

and he than investigates whether the index 2 is fundamental to this 

expression. He rewrites the expression as, 
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••••••••••••••••••••••••••• 

(9 3u - AV)2 - 2(F 2B3 + 2E2C1)u + 2(AF2 + 2E2B2)v + t- .. D. 

It is clear that the first and last terms are independent of the 

index 2. The other two terms may be written as fo11oll./s, 

f 283 + 2E 2C1 - 83(FO - 2B1C1 - 282C2) + 2AC1C2 

and Af2 + 2£282 • AFO - 2818283 

neither of ~~ich change their values if the indices 1 and 2 ara 

interchanged, thus a 1 and a2 have the same supports. 

The impact of this result is somewhat diminished by the knowledge 


that the idea was originally Clark's. However, the academic 


interest of it is considerable. 


So~e nine months later d'Ocagne's paper an critical points 

appeared (21). I have referred to this notion already, indicating 

that ~assau was the originator of the idea and that this fact is 

nowhere ~antioned by d'Ocagne. O'Ocagne developed the concept 

beyond the point reached by Massau and was able to graft it onto 

his earlier theory. 

His treatment again begins with the general third order 


equation 3.5.1 which for this purpose is rewritten, 


f1(Af'2f 3 + 821'3 + 8312 + ( 1) + 81f2f 3 + el2 + C31'3 + 0" 0 

It can be seen that 1'1 is indeterminate if, 

Af2f 3 + 82'3 + 831'2 + C1 - O} •••••••••••••••••••••3.5.3 

and 61"21'3 + C2f2 + C3f 3 + 0 - 0 

(Compare these relationships with those of Massau, 2.3.12, 2.3.13, 

2.3.14). 

If' f'3 is eliminated from the equations 3.5.3 a quadratic equation 

in f' 2 is obtained, namely 

f /( B1BJ - AC Z) + l' 2(81C1 + 83C3 - 82C2 - AO) + C1C3 -, 820 • o. 

dtCcagne's notation this can be written,Using 
3542 

L/2 - r l2 + GZ .. 0 
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A similar treatment which eliminates '2 produces the quadratic, 

2 
E3 f 3 - F3f 3 + G3 - 0 ••••• ~ •••••••••••••••• $ee •• 3e5.5 

It is important to note that the di~crim1nant ~ of the equation 

2 
Eifl - fifi + Gi - 0, of which 3.5.4 and 3.5.5 ara 

examples, is given by ~ = F· 2 - 4E.G i which is the sama as the 
~ l. 

value given for fj in d'Ocagne's original theory although the 
2equation in that case was: Eisi + Fisi + Gi - O. 

Returning to the theory of critical points it will be seen 

that in the equation of the third nomographic order, 

Af 1f 2'3 + 81'l3 + 82'3f 1 + 83f1f2 + C1f1 + C2f2 + e3'3 + D=- 0 

f1 becomes indeterminate if '2 and f3 satisfy 
2 

Eifi - fif! + Gi = 0 (for i • 2~3) 

The roots of these equations denoted by '2', f2" and f 3 ', '3" are 

given by, 

(i ... 2,3) 

Let the values of the variables corresponding to '2', '2"' '3' and 

f 3" be a 2', a 2"' 0 3' and ~n. Two further values a1 ', Ct.1" corresponding 

to f 1', f1" can be found by applying conditions which will make 

'2 or '3 indeterminate. Thesa values of course depend on ~ being 

greater than zero. 

In figure 3.30, the triangle P1P2P3 ie in the plane of the 

nomogram and is such that the variables CLi are, 

at P1: ........ ( CL 2', a 3") i.e. P 1 (Ct. 2 t ,03") 

at P2: ........ (a3;'$ a 1") i.e. P 2 (CL 3 t , a 1") 

and at P3: ........ (Ct. 1', a 2") 1.e. P (a , Ct. ,,)
3 l' 2 

The line P1P2 is p-art of the line d3 on which the values of 


a 3 are distributed.. Similarly, P1P3 is part of the line d2 

and P 2P3 i~ part or the line d1• The indeterminacy is readily 
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sean geometrically. For 

example, an alignment of 

Ct2 ' and Ct1 n lies along 

rendering Ct 3 indeterd3 

minite or, for a different 

type of indeterminacy, an 

alignment of 0. 21, and ~" 

passes through P1 in an 

infinity of directions 

making a. 1 indeterminate. 

There is an alternative 

arrangement, namely, 

P1( 0.2",0.3' ),P2(D. 3",0.1') 
and P3(0.1",0.2') which is 

not homographically 

reducible to the first 

arrangement. figure 3.30. 

The purpose behind d'Ocagne's paper was to give an alternative, 

based on critical points, to the proof given in his 'Traite' for 

the conditions under which 3.5.1 can be represented by a nomogram 

having three rectilinear supports and, when such representation 

is possible, to find the scales. It will be recalled that the 

condition was that !1 ~ O. 

In the case where !1 > 0 the scales are non-concurrent. 

This is the case arrived at above through a consideration of 

critical points. To find the scales in this case it is necessary 

to take three aligned points A1, A2, A3 on d1, d2, d3 respectively, 

so that they correspond to 0.1,02,u3, (figure 3.30). Each support 

will then have three dimensionei points, for example on d1 there 

is P3' A1 and P2. The scales can now be constructed by the usual 

method of projection. 

If !1 _ 0 then a. ' - a. " .. a. I - a. " - a. , .. a. If in which case
1 1 .2 2 3 3' 

P1,P2,P3 are all at the same point P in agreement with the earlier 
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theory in which three rectilinear coincident scales are indicated 

by t::. = o. 

If t::. < 0 the points P1,P2,P3 are imaginary and there is no 

rectilinear representation. 

In his paper d'Ocagne begins with the assumption that a 

three rectilinear representation is possible, i.e. that t::. ~ 0, 

and does not explain how the scales for D 0 are to be constructed.t::. 

It is therefore not as complete an exposition as his earlier work. 

Three months later d'Ocagne was able to show that, through a 

consideration of critical points, equation 3.5.1 could be trans

formed into Clark's irreducible form and therefore could be 

represented by a nomogram having two scales on the same conic (74). 
To demonstrate this, d'Ocagne starts from the equation 

2 
Eifi fifi + Gi • 0, 

the roots of which are the critical values of fi9 As has already 

bean notad, the roots occur in two groups, fit and fin, and the 

three critical values of the S8me group give to $ i '" 2Ei 'i - f i 

the value +It::. for 'i' or -It::. for f i " 

intoandPutting f1 - -P~1 


2E1 


equation 3.5.1 produces eventually an equation of the form, 

$142A3 + ($1 + $2)C3 + 03 - 0 

in which <1>1 and $2 are as defined above and A3, £::3, D~f are linear 

functions of '3- furthermore, any point on the conic must represent 

~ pair of critical values, one value for each of the variables that 

it carries, since this pair must render the third variable indeter

minate, as an examination of figure 3.31 will show. In this sketch 

1 t Is assumed that Ct and Ct are on the conical support M and Ct 3
1 2 


on the straight line N. It folloWS that the values of Ct 1 and Ct 2 


corresponding to the same point of the conical support are linked by, 
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If the support N cuts the support Min I and J (i.e.£::"> 0) 

then the three values of the variables at both I and J must 

be critical. For example., I may correspond to the critical 

values f 1 ', f2t and f 3 ', and J to f111, f2" and f 3". The affect 

of this is that the support N of Ci3 can be constructed from a 

knowledge of the critical values of either Ct 1 or Ct 2" One normal 

alignment of Ci1'~ and Ci 3 will give a third point on N and hence 

the scale of ~ can be constructed. 

N 

Figure 3.31. 

In the case where ~ - 0, I and J coincide and N is a tangent 

to M. If ~ < 0 the critical values are imaginary and N does 

not cut M in any real points. 

There is little practical value in this aspect of dtOcagne's 

work since it is only applied to third order equations and therefore 

lacks the more general appeal of Clark'. work. Howsver, it does 

provide the intellectual satisfaction gained from drawing together 

two saparately developed pieces of work. 
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As an illustration consider, 

which in Clark's determinant form is, 

f 2 1f1 1 

f 2 ..-f2 	 1 02 


f3-2 f3 1 


A similar example was given in the section on Clark's work. 

In that example it was seen that the scales of '1 and '2were 
2in opposite directions from the axis of the parabola y • x , 

(figure 3.11). In terms of d'Ocagneta notation the following apply, 

A ,. 0, 81 = -1, 82 .. 83 ... 1, C1 = -2, C2 ... 2, C3 -":'1, 0-0 

giving fa ,. 3, 	E1 - -1, f1 .. -1, G1 ,. 2, t:,. - 9 
( .. 1, f2 - -1, 'G 2 ,. -2, t:,. .. 9

2 

E3 .. 1, f3 "" 5, G3 .. 4, t:,. .. 9 

The equations giving critical values are, 

f 2 . 	 0 giving f I f n
1 - f1 - 2 - 1 • 2, 1 - -1 

f2 
2 

+ f2 - 2 - 0 giving f2' - 1, f n - -22 

f3
2 

- 5f3 + 4 • 0 giving '3
I • 4, f " - 13 

and for any point on the parabola 

f1 - -f2 which is as expected. 

It is also seen that the eet of values for fl, i.e. 2,1,4, satisfy 

the original relationship and therefore correspond to the point 

I (or J) and similarly for the valuBs of fn, i.e. -1,-2,1. 

A similar analysis can be carried out in the case in which A - 1, 

81 - 82 - 83 end C1 - C2 - (;3' which is the case shown by Clark 

to lsad to cubic nomograms. In this case the equations leading to 

the critical values are the same for all functions, the critical 

values coinciding at the double point. If t:,. > 0 the curve is 
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crunodal, if fl "" a it is cuspidal and if 6. < 0 it is acnodal. 

These points can be illustrated with reference to three examples 

given in the section on Clark's work. 

(i) f1f2f3 - 1 - 0 which produced the folium of Descartes, 


of crunodal form, figure 3.21. 


A "" 1, 0 .. -1, 81 '" 0, Ci a 0 


giving Fo - 1, E1 -· 0, fi - 1, Gi = 0, 


from which 6. "" 1 and the equation for critical values is fi "" O. 

(Ii) f1fZ + f2f3 + f1f3 = 0 which led to the curve x3 • y 2 


of cuspidal form, figure 3.23. 


A "" 0, 8i '" 1, Ci "" 0, 0 "" 0 


giving fa "" 0, [i '" -1, f i "" 0, Gi ,. 0 


from which 6. 0 and the equation for critical values is f i Z • o.
3 

(f1 + '2 + (3) a 0 which led to the eurve 

y _ x of 8enodal form, figure 3.Z4. 

xZ + 1 


A "" 1, "" 0, ,. -1, 0 - 0
8i Ci 


giving fa .. 0, [i "" -1, fi '" 0, Gi "" -1 


from which 6. - -4 and the equation for critical values is f / - -1. 

Also in 1907, d'Ocagne used his notion of critical points to 

reproduce a result of Clark in which it is required to find the 

condi tion under which f 1f ZA3 + f 1 83 + f 2CJ + 03 - 0 is representable 

by a nomogram or genus 1 (75). 

Here, A3, 83, C3 and 03 are given by, 

A3 • 8 0 f 3 + bo<P3 + coW3 

+ c1W38 3 • 8 1'3 + b1CP3 

... 8 2 f 3 + b2CP3 + c2¢3C3 

o .. 8 3 '3 + b2<P3 + cZW3
3 
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Clark's result is, 

a a 88 1 8 2 8 3 a1 8 2 a2 8 3 a1 8 30 a 0 

b1 b 2 b3 x b 
0 

b1 b 2 - b 
0 

b2 b3 x b 
0 

b1 b3 - 0 

c1 c2 c3 c c1 C 2 c c2 c3 c c1 c 30 a 0 

OIOcagne gets the same result by firstly writing the equation in 

the form, 

f 3(aof,f 2 + al1 + 8/2 + a ) + ¢3(bof1f2 + b 1f, + b f ... b3)
3 2 2 

+ ~3(cof1f2 + c1f1 + c2f2 + c3) "" 0 

He then points out that the two rectilinear scales intersect when 

the values of f.1 and '2 corresponding to this point are critical, 

rendering the value of the third variable indeterminate. Thus the 

coefficients of f 3, ¢ 3 and ~3 must all be zero. from this he quotes 

a condition, based on a procedure given in his 'Traite', which 

yields Clark's result. 

finally, one must note the use of the concept of critical 

points to express an equation of the form, 

of nomographic order 2 at the most with respect to the variable a l' 

in the form, 

,. 0 

This is due to farid Soulad who has already been noted in connection 

with alignment nomograms used by Egyptian Railways to determine the 

strengths of railway bridges (76). His method is complicated in 

detail but in essence is similar to those given above. 
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6. The Pe~i~d of Consolida~. 

With the exception of many attempts to solve the important 

theoretical problem of nomography, the development of the 5ubject 

now adopted a much more leisurely pace. In fact for some forty 

years until the lats 1950's the pUblications on the subject were 

just those that one associetes with a developed discipline for 

they mainly fall into the following categories; 

(i) Treatises and text books, 

(ii) papers relating to the early history of the subject, 

and (iii) papers on theoretical aspects. 

Amongst the treatises and textbooks must be noted the new 

edition of d'Ocagnets 'Traite' which appeared in 1921 (77); the 

two volume work of Soreau which was also published in 1921 (78); 

the publication of d'Ocagne's lectures on Pure and Applied Geometry 

given at the" Ecole Poly technique (79), and, in English, the first 

edition of 'The Nomogram' by Allcock and Jones (54). 

Those papers relating to the history of the subject tended 

to be rather superficial. There were not many of them and, although 

useful in parts, cannot be said to have contributed greatly to the 

record of the development of the subject. Many are biased towards 

the author's own work and the major contributions of Massau and 

Clark are lightly dealt with. Amongst these papers it is worth 

noting those of dfOcag~8 (71) and (3), and of Lallemand (26). Of 

interest to future researchers in nomography is a note by d'Ocagne 

describing the nomographic erchives at the Ecole des Pants et 

Chausees (SO). 

The papers on theoretical aspects are the subject of the 

next chapter. 

Two short papers by W. Margoulis which appeared in 1922 and 

1923 are worthy of mention (81) and (82). The first would appear 
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to be a 1 ink between lallemand I s Hexagonal Nomogram and the work 

of the Russian G.S. Khovanski which appeared in 1959 (83). It 

is on the construction of nomograms using oriented transparencies 

and describes canonical forms of equations representable by this 

method. The second paper deals with the general theory of the 

represen tation of equations using moveable elements. 80th papers 

show that some development of technique was still taking place 

during this period of consolidation but it is not necessary for 

the development of this thesis to discuss those techniques in detail. 
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CHAPTER 4. 

The Problems of Anamorphosis and of the Construction of Alignment 

Nomograms .. 

1. The Problem. 

It has already been established that the theoretical problems 

of anamorphosis and of the construction of alignment nomograms can 

be stated as the problem of expressing the relationship, 

F(x,y,z) = 0 .o •• ~ •• e ••••• =••••••••••4.1.1 

in the form, 

f 1(x) 91 (x) 1 

f 2(Y) gZ(Y) 1 :0 0 •••••••••••.•••••••4.1.2 

f 3(z) 93(Z) 1 

The attempt of Duporcq to solve this problem has already been 

considered as have the works of Saint-Robert, Massau and Lecornu 

which deal with a less general form of the problem. The present 

chapter looks at later and more substantial attempts to solve 

this problem. 

These later attempts began with one advantage for earlier 

investigators had pointed out two possible lines of attack. The 

first approach was that which had been followed by Saint-Robert, 

Massau and Lecornu and indicated by d'Ocagne in his 'Nomographie'. 

It was to observe that~ as d'Ocagne said, "The common character 

of all equations susceptible of reverting to the determinant form 

is that they express themselves by partial differsntial equations 

obtained as a result of the elimination of the arbitrary functions 

which enter into that form". The second approach had been suggested 

by Duporcq and rested on the fact that the form of the expanded 

determinant must be, 

at its most general, if expanded along the x row~ with parallel 

expressions if expanded along the y row or the z row. 
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2. Gronwall's ap~roach. 

Gronwall approached the problem through partial differential 

equations. His paper appeared in a French journal although he 

himself is described as being from Chicago (84). The forty three 

pages of intricate mathematics, leaning heavily on the theory or 

partial differential equations, serve to indicate the complexity 

of the problem being investigated and it is only possible here to 

give a general view of the work, highlighting a few points that 

seem relevant to this thesis. At some points the paper shows clearly 

its relationship to the work of Saint-Robert and Massau. 

The main result of the paper gives a necessary and sufficient 

condition for equation 4.1.1 to be reduced to the determinant form 

4.1.2. It is that the following two partial differential equations 


should have a common solution C. 


M02C + 2 C9c = (MC - 23M) 3c + 2COC +dM~2 +(3N - d2rtl~C - 32N4.2.1 

Ox 2 dxdy ax ax oy dx Ox ax Ox2 

2M 02C + d2c a 2(M2C+ MN - dM )dC + (MC + N - 2dM~ + 2MdM.C 2 

dxdy Oy2 dy dX dxj3 y aX 
••••••.••••••.••4.2.2 


(In the original paper the second equation contains two 


typographical errors). 


In these equations, M and N are given by, 


~ 
2.L .•....•................... ••••4.2.3 


M • - dZ 
ax 

• •••4.2.4-dM + 1 dM ..........................
N • - - ax 1'1 ay 

quantity C is important to much of Gronwall's theory and
The 

Thi's is that all equations
is the subject of his second result. 


value of C can be obtained, one from
the same 
4.1.2 which belong to 
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another, by a homographic projection and that inversely two 

homographic equations lead to the same value of C. 

The complexity of equations 4.2.1 and 4.2.2 is obvious. 

However, in some cases it is not necessary to solve these equations 

in order to find C, for the theory devslops along lines which relate 

particular types of nomograms to particular relationships between 

the derivativBs of M,N,C and a quantity 0, (defined below), which 

enable C to be found. The process by which C is found ensures that 

it satisfies equations 4.2.1 and 4.2.2 • 

o is given by o as MC + N •••••••.•••••••••••••••••••4.2.5 

It will be noted that Mbears a similarity to the quantity 

R defined by Saint-Robert (see equation 2.2.3). In fact R - -11M. 
Saint-Robert was able to give a condition for f(x,y,z) = 0 to be 

reducible to the form Z(z) - X(x) + Y(y). It was 82(lnR) = 0, 
dxdy 

the condition known as Saint-Robert's criterion. 

Gronwall gives a necessary and sufficient condition for 

equation 4.1.1 to be represented by a nomogram having three 

rectilinear scales. 

It is df\lnM) • 0 •••••••••••••••••••••••••••••4.2.6 

dXdy 
The parallel is obvious. 

Two other results of Gronwall are that, 

(1) The necessary and sufficient condition for the x scale to be 

rectilinear is that ac + 

dy 
2 d 0 

dx 
- 0 ••.••••.••••••••••••••••. 4.2.7 

taken with 4.2.5 and the pair, 

2d2C +(120 

axdy dx2 
- c(2~k +OD) 

dy Ox 
... o 

::r 0d2C + 2d20 - 0/'0;. ... 2lu) •.•••••••••.••••••.••.4.2.8 

ay2 dxdy \dY ax 
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(ii) The necessary and sufficient condition for the y scale 

to be rectilinear is, 2dC +@ .. 0 •••••••••••••••••••••4.2.9 

dY ax 
taken with 4.2.5 and 4.2.8. 

Combining the above results gives the necessary and 

sufficient condition for the scales of x and y both to be 

rectilinear. It is, 

dC .. dO == a •••••••••••• G.~ •• 4.0 ••••••••••••••••• 4~2.10 

dY dx 
taken with 4.2.5. 

When C is known, Gronwall has a procedure for finding the 

functions f i , 9i* It is not a simple procedure involving, as it 

does, the need to find a fundamental solution set of the following 

system of partial differential equations. 

J2w :II ..1 Cdlll + ..1 (2 C2 - dC\ IaI 

ax2 3 dx 3 3 ax) 

~ --1 Odw - .1 caw +..1 (-..1 CD + a-c +dO) 11/ 

dxdY 3 ,h 3 dy 3 3 dy dx 

J2w - ..1 Odlll + ..1 (.202 - dO) IaI 

dy2 3 ~h' 3 \3 C}Y 

The method may be of use as a last resort but I am doubtful of its 

practical value in the majority of cases. 

However, some of Gronwall's ideas work well, particularly in 
2 2 simple cases. Consider F(X,y,z) • z - x y - 0 which was used to 

illustrate Massau's approach. 

Gronwall first notes that the Jacobian, 

d(z,m(x)+w(y») -0 

d (x,y) 

implies a relationship x (z) + ¢ (x) + 1P (y) - 0, 
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which can be written 	as, 

¢ (x) -1 1 

..1J! (y) 1 1 0 


-tx (z) a 1 


2 2 
The procedure is to obtain M from Z - x y, i.e. 

dZ 

M ... - dx 2 - - X
-~ 


~ 2

2xy 	 YdX 

(Note that d2{lnMl "" 0 ) 
(1xoy 

M is then expressed as M ... a(x) S (y) and two arbitrary functions 

are obtained as follows, 

¢ (x) ... f~ .,; -lnx. 1P (y) ... - JB(Y)dy II: -lny
a(x) dZ 

hence M ... - x ,.. - ¢I(y) ... - 'dy J tha last two terms giving 
y. 	 <pI (x) dZ 


d X 

the Jacobian above. 

• X(z) ... In x -I- In y• . 
... In(xy) ... In /z ... tIn z 

•• • r(x,y,z) ... -In x -1 1 

IS-In y 1 1 0 

-tIn z 0 1 

In considering the case of two rectilinear scales with the 
third scale some other curve, Gronwall is following in the footsteps 

of Massau and Lacornu. The form examined by them was, 

Z1(z) X (x) -I- Z2(z) Y (y) ,.. 1 

which can be written, 1/X(x) 0 1 

..0 1/V( y) 1 0 

l1(z) Z2(z) 1 


showing clearly that the scales of x and yare rectilinear while 


that of z is a curve. 
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In this case, Gronwall's analysis gives, 

d (1 dN\ 
oy M dX J 

C - - •••••4.2.11•••••••••••••••••••••• 0 

d2 1nM 
d x 3y 

The necessary and sufficient conditions for the scales of x and y 

to be rectilinear while that of z is a curve are that e should 

satisfy the equations, 

dC .. d(MC + N) ... 0 

dY dX 
Gronwall states that condition 4.2.12 had been obtained in a totally 

different manner by ~assau and this is so. I have compared both 

developments and find that Massau's conditions 2.6.9 

:0i.e. d..l 0, dJ:!... "" 0 

dx dY 
and Gronwall's conditions 

d{MC + N} 0, de • 0-

-ax Jy 

are identical. 

At the end of his paper Gronwall turns his attention to 

Clark's conical nomograms. He finds that, for f(x,y,z) .. 0 to ba 

reduced to the form '1 (x) 

'2(y) 
'3(z) 

f1 2(X) 
f22(y) 

93 (z) 

1 

1 

1 

.. a ••••••••4.2.13 

C must be given by , 

c..  ••••••••••••••••.•••••••••••••••4.2.14 

which i$ the sarna expression as 4.2.11. 

The necessary and sufficient condition for 4.1.1 to be reduced 

to 4.2.13 is that C, given by 4.2.14, must satisfy, 

179. 



de d (Me + tl!l ... aD I a=0 

dy dx 3x 
•••••••••••••••••• 4.2.15d2C .. CdC 

dXdy dY 

It is worth observing that some relationships for which 

conical charts can be constructed; such as z = xy, (eqn. 3.4.14 

with 83 - 0, C3 - -f3,A3 - 1), would make the denominator of 

4 .. 2.14 zero .. 

In the introduction to his paper Gronwall states that in 

a subsequent work he intends to make explicit the common integral 

of the partial differential equations 4.2.1 and 4.2.2. I have 

not succeeded in finding out whether he ever did this. 
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3. 0.0. Kellogg's Approach. 

Although Kellogg's paper was published three years after 

Gronwall's, it can be regarded as a response to Gronwall if one 

takes note of the following facts. fI:ronwall, from Chicago, 

published his paper in France, in french, in 1912. Kellogg's 

paper was published in Germany, in English, in 1915, but the paper 

is dated february 23rd. 1913 and was written in Columbia, Missouri, 

(85). The delay in publication was no doubt aggravated by the 

tension and subsequent war in Europe. It therefore S8ems likely 

that Kellogg wrote his paper within months of reading Gronwall's 

paper to which he refers in his introduction. Also in his intro

duction is this statement, "If I venture a contribution to the 

subject, it is because the criteria which I have found seem to leave 

little to be desired in point of simplicity of application, involving 

as they do merely differentiations and the determination of the ranks 

of matrices fl • In order that this statement should not mislead, one 

must bear in mind the known difficulty of the problem. 

Kellogg's approach is quite different from previous ones. 

The underlying concept is that of linear dependence and in particular 

the linear dependence of functions of several variables. The 

relevance of this concept can be sesn if one considers what he calls 

the irreducible case of the nomographic problem by which he means 

the case in which F(x,y,z) can be expressed in the form, 

P1(X)R1(Y,Z) + P2(x)RZ(y,Z) + P3(x)R3(y,Z) 

but not in any reduced form such as P4(x)R4(Y,z) + P5(x)Rs(y,Z). 

This irreducible form requires that P1(x), PZ(x) and P3(x) should be 

linearly independent and also that R1(Y,z), R2(y,Z) and R3(Y,Z) 

should be linearly independent. While the condition for the linear 

P I is well enough known. that for the R's is
independence of t he s ' 
not often encountered. Kellogg describes the latter as "a result 

have thus far fail ed to meet with in print"i I
of some interest wh ch 
The condition relates the number of linear independent functions to 

181 .. 




the rank of a matrix which has for its elements the functions 

and certain of their partial derivatives. 

Starting with the irreducible form, 

Kellogg notes that F must satisfy an ordinary homogeneous third 

order differential equation in x having coefficients which depend 

only on x. This fact can easily be confirmed by differentiating 

4.3.1 three times partially with respect to x and stating the 

condition for the consistency of the resulting equations. This 

gives, f P1 P2 P3 


P I P , 
fx 1 P2
r 

3 ... 0 
p n p tt P IIFxx 1 2 3 

F P 111 P ,tt P 111 
xxx 1 2 3 

This differential equation can be regarded as a homogeneous 

linear relationship between r, Fx,Fxx and fxxx with coefficients 

that do not contain y and z. To this linear relationship Kellogg 

applies his condition for linear independence. His result is 

that the necessary and sufficient condition for F(x,y,z) to be 

expressed in the irreducible form 4.3.1 is that a 4 by 10 matrix 

N should be of rank leas than four and that a matrix N' obtained 

from N be deleting the laat raw snd the last four columns, should 

be of rank three. N snd Nt ara given in Appendix II. 

Next it is necessary to find the functions in 4.3.1. 

The Pi's are obtained by forming the differential equation satisfied 

by f and finding three independent solutions to it. Thesa independent 

solutions are P1(x), P2(x) and P3(x). Once the Pi's have been found 

the R.'s can often be found by inspection. If they cannot be so 
l. 

found, then it is necessary to differentiate 4.3.1 twice ~ith 

respect to x and solve the linear system formed by the two resulting 

equations and 4.3.1. 

The method so far is illustrated in the following example. 

x 2 x 3 y z 2 3 Y z 2 2 F(x,y,z) ~ e y - a z - xe + xe + x z e - 9 X Y 
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The matrices Nand N' are both of rank three, although demonstrating 

this is most tedious. 8y contrast, forming the differential equation 

which is satisfied by F is quite simple. It is, 

In this case three independent solutions are easy to spot, they 

are 8 
x 

, x and x. 2 
Rearranging the equation, the Ri's immediately 

reveal themselves. We have, R1(y,z) • y 
2 

- Z 
3 

eZ eYR2(y,z) - 

R3(y,z) = (eYz3 _ eZy2) 


Having established that the form 4.3.1 is possible it is next 

necessary to investigate whether a determinant form is possible, 

i.e. is it possible to writs, 

, 1(x) g1(x) 

r(x,y,z) '" f 2(Y) (j2(Y) ? ........... 4.3.2 

'3(z) g3(z) 

Since f 1(x), 9 1(X), h1(x) must be solutions to the differential 

equation which has P1(x), P2(x) and P3(x) as independent solutions, 

a homographic transformation can be found which will make the first 

row P1(x), P2(x) and P3(x). Therefore, the form we have is, 

P1(x) P2(x) P3{x) 

r(x,y,z) .. f 2(y) 92(Y) h2{y) ••••••••••••4.3.3 

f 3(z) g3(z) h3(z) 

\92 h2 h2 f2 
i.e. R R1 • g3 h3 ' 2 h3 f3 

There exists a homogeneous linear relation between R1,R2 and R3 with 

coefficients depending only on y, for example, 

f2R1 + 92R2 + h2R3 - o. 
A similar relationship exists having coefficients which depend 

only on z. 
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The necessary and sufficient conditions for these relationships 

aI'S, 

R3 

R3y = 0 •• 4.3.4 

R 
3YYi 

Thus the coefficients are proportional to the minors of these 

Wronskians. Suppose them to be found and to be Y1'Y2'Y3 and 

Z"Z2 and Z3 respectively. Then, 

=Y1 R1 + Y2R2 + Y3 R3 


Z1 R1 + Z2R2 + Z3R3 ~ }
-
Rl' R2 and R3 can now be expressed as, 

, 


where P i!!l independent of x .. 

In order that the determinant form 4.3.3 is possible it is necessary 

for p to be a function of y times a function of z. That this must 

be 80 is easily seen by assuming that P .. cr (Y) L (z). Then, 

R1 - cr (y) L (z) {y2(y)Z3(z) - Y3 (y)Z2(z) } 

- 92(y)h3(z) - h2(Y)93(z) 

Therefore, if p • cr (y) L (z), it follows that, 

;;}21n p := 0 ••••••••••• ••••••••••••••• ••••••• •4.3.5 

dydz 
Kellogg's conclusion is that, having satisfied the conditions for 

the irreducible form 4.3.1, the necessary and sufficient conditions 

for r(x,y,z) to be expressed in the determinant form 4.3.3 are those 

expressed by 4.3.4 and 4.3.5. 

In the example given above, the Wronskians of 4.3.4 become, . 

2 3 z Y 3 z 2 y - z e - eY e z - 8 Y 
2 z 2 Y z 2

-3z. e 3z 8 - e y 

z z 2


-6z B 6zeY - e y 
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and, 

2 3 y z e z 
- eY 	 eYz :3 - e z y 2 

eYz 3 _2y -eY 2yez 


eYz3
2 -8Y _ 28 Z 

both of which vanish; 

P is 6eY(1 - y) zsz(2 	- z), giving d21n p "" 0 

dydz 

Kellogg is more concerned with the criteria for expressing a 

function in the form 4.3.3 than with actually finding that form 

and he does not spell out how the components of R1,R2 and R3 are 

to be found. However, once it is known that the form is possible 

these components can be found by inspection. In the example the 
x 2final form is 	 e x x 

eY Y 
2 

1 
z :3 e z 1 

Kellogg deals with the two Simpler cases, r(x,y,z) • P4(x)R4(y,z) 

+ PS(x)RS(y,z) and 	r(x,y,z) = P6(x)R6(y,z), in a similar manner. 

finally, in order to remove the need to solve differential 

equations, Kellogg expresses his criteria in terms of r(x,y,z) and 

its derivatives. These alternative forms are of little practical 

value, in most cases, because of the complexity of the expressions. 

The merit of Kslloggtg approach is that it attacks the problem 

in a new way_ His criteria are rather complicated for any case 

where the existence of the determinant form is in doubt, that is in 

any case complex enough to require the criteria to be tested~ However, 

if the form is known to exist, the method for finding the components 

is a reasonable enough procedure as the earlier example illustrates. 

185. 




• 


4. Warmus and Nomoqraphic Functions. 

An exhaustive attack on the problem of anamorphosis came 

from Poland in 1959 (86). The author was M. Warmus who 

acknowledged the earlier works of Duporcq, Gronwall and Kellogg, 

making special reference to the latter's existence criteria, 

considering them to be "unnecessarily complicated" and leading 

to "computations too long and troublesome for practical use". 

Warmus's approach is algebraic. Rather than seek for 

conditions under which r(x,y,z) can be expressed in a nomographic 

form, he attempts to classify those forms which are suitable and 

gives an elaborate computation scheme which either leads to a 

determinant form or indicates that such a form is not possible. 

There are two important preliminary ideas on which he erects 

his work. Firstly, that of linear independence of functions of 

one variable. His theorem on this is of some interest since it 

depends on the existence of numbers, within a given range, which 

satisfy a certain condition. This concept of the existence of a 

set of numbers satisfying certain conditions threads its way through 

the whole of his work. The theorem states that the functions 

Ti(t), i • 1,2, ••••••n, are linearly independent if, and only if, 

there exist numbers t i , i A 1,2, ••• n, within tne given range, 

such that, 

T2(t1)····Tn(t1) 

T2(t2)····Tn(tz) f 0 

The second idea is that of the rank of a function. This is 

initially defined in terms of a function of two variables as follows: 

G(u,v) is of rank n (n >1) if, and only if, there exist functions 

of u, U1'U 2' ••••Un' and functions of v, V1'V2' •••• Vn such that 
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G(u,v) =U1V1 + U2V2 + ••••• + UnVn there being no functions 

u1'······un_ 1' v1' •• ··.vn_ 1 such that G(u,v) ~ U,V1 + U2V2 + 

•••••• U 1 V 1"n- n-

The notion of the rank of a function is developed and a procedure 

evolvsd for finding the rank of a given function and the functions 

U1'U 2' ••••• Un and V1'V2' ••••• V into which it can be decomposed. n 
It is a feature of such a decomposition that the functions U1 ••••• Un 

must be linearly independent as also must be the functions V1: •••• Un • 

The influence of Kelloggls work can be detected at this stage. 

A result which has a geometric parallel in a homographic 

transformation is obtained. Stated for n = 3 it is, 

are linearly independent and the V's are linearly independent, then 

a matrix A must exist, where, ~a11 a12 a13~A = a 21 a22 a23 
a31 a32 a33 

such that Ui ~ ai1U, + ai2U2 

Vi ~ bi1 V1 + bi2U2 
i - 1,2,3 

Warmus extends the notion of rank to functions of three 

variables since the nomographic problem is concerned with the 

function r(x,y,z). The extension takes the form of grouping two 

of the variables together, say (y,z), so that we have the definition, 

f(x,y,z) is said to be of rank n with respect to x if, and 

only if, when considered as a function of the two variables x and 

(y,z) it is of rank n. Similar deflnitinns apply for rank with 

respect to y and with respect to z. 

Warmus's notion of a nomographic function can now be 

defined. r(x,y,z} is said to be nomographic if, and only if, the 

following apply. 
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(1) 	 there exist functions X,(x), y.(y), Z.(z), 
..L l. l. 

(i ~ 1,2,3; x,Y,z lie within the appropriate ranges), 


with numerical values such that, 


f _ 

and 

(ii) 	 that f is of rank greater than 1 with respect to each of 

the variables x,y,z. 

He calls the determinant form in (1) a Massau determinant. The 

purpose of item (ii) is to exclude trivial cases. 

Warmus is next led to consider the equivalence of two 

l'Iassau forms of r(x,y,z) and gives the following definition. 

The two Massau forms of r, 

XX1 X2 X3 1 X2 X3 


Y1 Y2 Y3 and '11 '12 Y3 


Z1 Z2 Z3 I Z1 Z2 Z3 

are equivalent if, and only if, there exists a matrix of numbers 

A 	 0- 8 22 8 238 21 	
13)Cl 

a12 

8 31 a32 8 33 

with a - det A f 0, and if there also exist two numbers d1 and d2 

satisfying the condition ad1d2 - 1, such that 

C 

X2 	 X2 X3 \
X3) ( Xl

Y1 Y2 Y3 - d1~1 d1Y2 d1Y3)"A 

Z1 Z2 Z3 d2Z1 d;Z2 dl3 


i.e. 	 X1 X2 X3 X1 X2 X3 

1 1 1 -1


Y1 	 Y2 Y3 - CiY1 (jY.2 ' CiY 3 .A 
1 l' ' 1 


Z1 Z2 23 1z ..1Z2 ..1z3 

d21 	 d2d2 
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He is able to state that the equivalence of Massau forms is a 

true equivalence relation, i.e. if each of two MasseL\ forms is 

equivalent to a third then all three forms are equivalent to each 

other. It may be that a function has two Massau forms which ara 

not equivalent, or indeed more than two such forms, and Warmus 

gives the following definitions. 

A uniquelY nomographic function is a function which has all its 

Massau forms equivalent in pairs. 

A doubly nomographic function is one which has exactly two 

non-equivalent Massau forms. 

A K-nomographic function (K > 2) is one which has exactly K 

non-equivalent Massau forms. 

from the definitions for the equivalence of Massau forms 

of f(x,y,z), it is clear that the corresponding nomograms for 

F(x,y,z) - 0 of two such forms can be obtained from each other by 

homographic transformations. It is of interest to note that 

equivalent forms of 

can be obtained by, 

(a) Interchanging two columns and replacing signs of one row 

by their opposites. 

(b) Adding to one column a linear combination of the other 

columns. 

(c) Multiplying one row by a (10) and ana column by 1/8. 
(d) Multiplying one row (or column) by a (10) and another row 

(or column) by 1/a • 

Warmus is now able to develop theorems which give for functions of 

rank 2 or 3 the form of the MaSS8U equivalent forms. These present 

us with no surprises but they do lead to 8 classification of the 

cases that can ariss. 8y making preliminary assumptions, which 

cause little inconvenience and do not restrict the generality of 
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the problem, hlarmus is able to classify nomographic functions 


into seven different categories which he calls the 'Principal 


Cases'. 


One of the preliminary assumptions made is that for a nomographic 


function F there are only the following possible cases. 

,...-------- --------- ------------ 

:;:1. f ;: X1G 1 +X2G2 G, Y1 Z1 G2 ::: Y3Z:i 
..... ... 

\!!!2.. G1 Y 1Z1+Y2Z2 

It ••••.....3. G2 '= Y3Z3+Y 4Z4 
1----r---- -- ~----~ -- ---- 

G2 ;;.4. F 'lIi X1G 1 +X 2G2+X3G3 G1 3! Y1 Z1 Y3Z3 G3 \!!! YSZS 

... ...•••• CII5. G1 !! Y111 +Y 2Z2 

6. ..... ..... !! Y3Z3+Y4Z4 .. ..G2 

e.•••• III7. ..... ... G3 YSZ5+Y6Z6 

where the following are linearly independent in the pairs shown: 

(Y1Y2)'(Y3Y4)'(YSY6),(Z1Z2),(Z314),(ZSZ6},(X1X2 in the first three cases), 

and (G"G 2 in the first three cases). In the last four cases X"X2,X3 

are linearly independent as also are G1,G 2,G3 • 

The classification is done on the basis of the rank of 


f(x,y,z) with respect to the variables x,y,z and the ranks of the 


constituent functions Gi(y,z). As an illustration, consider the 


first principal case f ~ X1G1 + X2G2 in which the function f is of 


rank 2 with respect to each of the variables x,y,z. The functions 


G1 and G2 are both of rank 1. 


for each principal case hlarmus gives the associated principal 


Massau forms. for the first principal case f • X1G1 + X2G2, the 


principal Massau forms are, 


X1 X2 0 X1 X2 0 

0 Y1 Y3 '(3 0 Y1and 
0 -.JZ -Z3Z3 0 Z, 1 
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Based on the prec88ding, Warmus proves two theorems 

which he calls fundamental theorems. They are given below3 

(the m1 s, n's and r's in II are numbers which occur in tha list 

of principal cases). 

I. 	 The function F is nomographic if, and only if, under the 

three preliminary assumptions one of the principal cases 

occurs. 

II. 	 If the function F is nomographic under the three preliminary 

assumptions then, 

(a) 	it is doubly nomographic whenever the first principal 

case occurs, or the second principal case with 

m31 n31 + m3~n32 f 0, or ,the third principal case with 

(r31- r 42 ) r O. In these cases every Massau+ 4r32r 41 

form of the function f is equivalent to one of the two 

corresponding principal Massau forms, the two forms 

being non-equivalent. 

(b) 	it is uniquely nomographic in the remaining cases and 

in the second principal case with m31 n31+ m32n32 - 0 

and the third principal case with (r31-r42 )2 + 4r32r 41 - o. 
In these cases every Massau form of the function f is 

equivalent to the corresponding principal Massau form. 

As has 	already been noted, Warmus's efforts are directed 

to a classification scheme of nomographic functions basad upon 

the 	concepts of rank and linear dependence; this classification 

incorporates the principal Massau forms associated with a nomographic 

function. Such a classification can give rise to an effective 

procedure which will determine a Massau form for a function when 

this is possible or indicate that the function is not nomographic. 

Warmus 	 obtains such a procedure which he calls his 'Scheme of 

Computations'. 

There are nine computation schemes in Warmus's paper but 


they are not independent. They are used in the following manner. 
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Start ~ith 501eme I. This has several exit points which either 

end the prGb:e~J showing that F is not nomographic, or pass to 

scheme II. 5cheme II, similarly, either terminates the problem 

in the case of a non-nomographic function or passes the computation 

to ona of sc~e~es III, IV, V, VI, VII, VIII or IX. Each of these 

latter senecss either will give Massau forms or indicate that the 

function is non-nomographic. The whole computation scheme is 

lengthy, occupying some twenty pages. It cannot be claimed that 

Warmus has provided 8 simple solution to the problem, for the 

problem is not Simple, yet he has dane what earlier investigators 

did only incidentaly; he has provided a method which leads the 

practical no~ograph8r to a determinant form, when this is possible, 

and hence to a nomogram. 

The illustrations given by Warmus show at the same time 

both that his scheme works and that it is extremely tedious. 

For example, the casa, 

2 2 2 x x 2 2 x
F(x, y,z) ~ -2 -x - Y + Z + x y + e z e y z - x /z + Q /z (y +z) 

takes nine pages to arrive at the determinant form, 

-1 
2 x x 

a 

f(x,y,z) ... 
2

1-y 2+y 1 , 
-h z 1 

during the course of which four sets of values satisfying certain 

criteria have been found and fourteen 2 x 2 determinants evaluated. 

These dete~inants contain variables and are fairly complex with 

plenty of scope for error. 
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5. The 	Practical~roach of Jam8s-Lev~. 

The final attempt we examine also dates from 1959 (28). 

It appeared in an issue of the Russian journal 'Computational 

Mathematics' which was entirely devoted to Nomography. The 

author, G.E. James-Levy, approached the problem of anamorphosis 

in a manner reflecting the times, times in which the development 

of computational aids was making approximation techniques mora 

readily acceptable. In fact, James-Levy's approach is based on 

a method of constructing nomograms which is an approximation 

method. It will be necessary to describe this method, but first 

some preliminary remarks. 

In his paper James-Levy assumes that the given equation 

is nomographible and that only the scales have to be found, i.e. 

the fi' 9i of the determinant 
 91(x) 1 


92(Y) 1 

93(z) 1 

However, the arguments apply equally to non-nomographible equations, 

the difference being that nomo9raphible equations are accurately 

portrayed while non-nomographible equations lead to approximate 

nomograms. An interesting aside is his claim that the method can 

be applied to problems on the feasibility of representing a given 

equation in n variables in the form of a superposition of functions 

of a smaller number of variables. 

The approximation method referred to is due to Gorodskii 

and appears to data from 1939 (87). Applied to a relation of the 

form z - f(x,y), the steps are as follows, 

1. 	 An arbitrary but convenient scale for z is chosen. It must 

be monotonic and continuous. 

2. 	 Two arbitrary points of the y scale, Y1 and Y2" are selected. 

3.. 	 A series of values of z are computed from z • f(x,y) using 

the points Y1 end Y2 and a series of values for x. 
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4. 	 Next, the x's are plotted; xi is the intersection of the 

line joining Y1 to F(xi 'Y1) with the line joining Y2 to 

F(xi 'Y2)' (figure 4.1). 

z 

X·L 

Fiqure 	4.1. 

5. 	 When the scala of x has been constructed the scale of y 

may be constructed using the paints x.and x2 as pivots.
1 . 

6. 	 The nomogram can no~ be improved. Through pairs of paints 

of t~o scales s series of lines is drawn to give one and 

the samB value of e third variable. If the nomogram is 

accurate, then all the lines will pass through one point; 

mare usually they will describe a region in which case 

the scale is reconstructed with the value assigned to the 

centroid of the region. This latter process may be 

accomplished numerically. The whole process is now repeated 

for the ather two scales. 

The first five steps of the process are illustrated 

in figure 4.2. 
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fiqure 4.2: Gorodskii's method applied to z = xy. 

figure 4.2 is a partially constructed nomogram for z = xy which 

illustrates Gorodskii's method. The z scale was chosen to be 

rectilinear and logarithmic. The two y pivots, Y1 and Y2J were 

chosen to be on a straight line parallel to the z scale; Y1 was 

assigned the value y - 1 and Y2 the value Y • 4. 
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The points 1,2,3,4,5 and 6 were located for the x scale by the 

rays emanating from Y1 and Y2. 

To construct the y scale the pivots x d1 an x2 were selected at 

the points x = 1 and x = 3. The points 2,3,5 and 6 of the y scale 

were located by the broken rays emanating from x1 and x2. 

It will be noted that both the x and y scales are rectilinear; 

they are also logarithmic as one would expect them to be. 

Returning to the main theme, we note that if the resulting 

nomogram corresponds exactly to z = f(x,y) and Y1 and Y2 are 

where they should be then the construction method is exact. The 

reasoning may then be expressed in an analytical form. James-Levy's 

approach stems from the proposition that if one scale of a nomogram 

is known, then the determination of the other scales can be carried 

out in an analytical manner. 

Consider z ~ F(x,y) where of • of lOin the region G of 
ax ay 

the xy plane under consideration. A nomogram is supposed constructed, 

if that is possible, using fixed points as described above. The 

y scale is to be curved in the sense that there is a part of it on 

which no three points are in a straight line. It is this part 

which is considered. A projective transformation changes four 

points on the y scale into the follo~ing points, 

Y1(O,00), Y2(- 00,0), Y3(O,o) and Y4(1,1). 

Suppose that after this projective transformation the equation of 


the nomogram can be expressed in the form, 


91(X) 1 

92Cy) 1 • o 

193(Z) 

in which the coordinates of the transformed system, u and v, ara 

f figure 4.3 port,rays the new situation.
given by u· gi' v· i· 
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_-- 2. $Calc. 

Figure 4.3. 

In figure 4.4, x is an arbitrary point on the x scale. 

The lines drawn through x in the follo~ing directions, 

(a) parallel to the u axis, 

(b) parallel to the V axis, 

( c) through the origin, 

and ( d) through the point (1,1), 

must intersect the z scale at the following points, 

z 2 f(x'Y2)' z = f(X'Y1)' z = f(x'Y3) and z a f{x'Y4) respectively. 

A'-~.rolOD) 

'dl/-{r,l) 
\ 
\ 

"
1\ " 
1\ ' ...I \ 1. ",F(J(,'j,,) 

I \
I z -= F(x .'j'ri 
I 

Z= F(x,iJ 

Ligure 4.4. 
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It follows that, from the u and v coordinates of x we must have 

g1(x) • 93(F(x'Y1» •••••••••••••••••••••••••••• 4.5.1 
and f 1(x) = f 3(F(X'Y2» ••••••••••••••••• ~ •••••••••• 4.5.2 

By considering the slopes of the lines we have, 

(1) 	 f~ = f3(F(x.y~ ••••••••••••••••••••••••••••4.5.3 

9 1(X) g3{F(x'Y3» 

for the line joining x to the origin, and 

(ii) 	 !.1(x) - 1 "" .f.3(F(X'Y4» 1 it ••••• '" ......... Go • • ,. .4.5.4 


9 1(X) - 1 93(f(x'Y4» 1 

for the line joining x to (1,1). 

James-levy's proposition states that one scale is to be known and 

we assume that this is the z scale. 

Since Y1 and Y2 are known and x is arbitrary, 4.5.1 and 4.5.2 will 

give the x scale, i.e. g1(x) and f 1(x). 

To obtain the y scale fix two points on the x scale, x • x1, and 

x • x2• Using the determinant form we can write, 

f 1(x1) 9 1(X1 ) 1 


f 2(Y) 92(Y) 1 • 0 


f 3(F(x1'Y» g3(F(Xp Y» 1 


and 

f 1 (X2) 91 (x2) 1 , 

f 2(y) 9Z (Y) 1 - 0 
f 3(F(x2,y) 93( F(X2,y)} 1 

from which, by suitable algebraic manipulation, expressions for 

f 2(y) and g2(Y) cao be obtained. Thus, the knowledge of ona scale, 

in this case that of z, and t~o points, namely Y1 and Y2' are 

sufficient to determine the other two scales. 
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It will be noted that 4.5.3 and 4.5.4 were not used in 

the preceeding argument. If they are used in conjunction with 

4.5.1 and 4.5&2 one can obtain, 

.f.:>( F( x,v~ =- .f.3( F( xtv:>ll f3{F(x'Y2)) - 1 = f3(F(x'Y4») - 1and 
93(F(x'Y1) 93(F(x'Y3) 93(f(x'Y1)) - 1 9 3(f(x,y4) - 1 

from which the functions 93(z) and f 3(z) can be determined. 

James-Levy remarks that the solution of functional equations) 

such as those which arise above, has not been investigated to any 

marked degree. He therefore proposes the substitution of differentia! 

equations for functional equations. 

To obtain the differential equations, his approach is as 

follows. Given z - F(x,y) ••••••••••••••••••••••••••••••4.5.5 

he postu!ates the existence of a normal nomogram constructed from 

fixed points, as already described, and having a determinant 

representation, 

1 

1 .. 0 ••••••••• e ••• o ••••4.5~6 

1 

A nomogram is said to be normal if it can be constructed and used 

as a computationa! instrument. y is considered as a function of 

x and z and it is required that £y obtained from 4.5.5 end from 
ax 

4.5.6 should be equal. A corresponding result must also apply to 

.i:t. 
ax2 • 
The resulting expressions contain f 3(z) which, when eliminated, 

produces the identity, 

fl = ~1~ _ 2 b~ + P{~~ _ ,~~} ••••••••••••••••••••• 4.5.7 
P 6 1 b 2 b 2 6 1 

2in which N(x,y) :: -1J. , p (x,y) ... -]x 

dx2 ax 
6 - f'1(92-91) - 911(f2-'1)' 1:. 2 " r'2(92-91) - g'2('2-f 1) 
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James-Levy states that the expression, 

contained in 4.5.7 

is none other than Gronwall's C while -{~it - 2~~} is 
!::. !::. 

2 1Gronwall's D. 

It is then a simple matter to show that equation 4.5.7 is 

James-levy's equivalent of Gronwall's 0 • MC + N, (eqn. 4.2.5)~ 

Gronwall and James-Levy are not the only two investigators 

to have arrived at this point, for James-Levy notes that I.A. Villner 

(88), and S.V. Smirnov (89), had also arrived there. However, their 

subsequent treatments diverge. 

The James-levy approach is to convert 4.5.7 into a differential 

equation in x by substituting for y some value Yo within the 

permitted range. A second differential equation is obtained by 

differentiating 4.5.7 with respect to y and making again the 

substitution y • Yo. This system of two differ8ntial equations 

contains eight unknown constants, namely g2(Yo),g'2(Yo),g"2(Yo)' 
9"'2(Y ),r2(y ),f'2(y ),r"2(Y ) and f"'2(Y). However, if the

0.0 0.0 a 
y scale, i.e. u - g2(Y)' v - '2(y), has non-zero curvature at 

y - Yo , then a projective transformation can be found such that, 

at the corresponding point on the transformed scaled denoted by 

92(Yo)' f 2(yo)' the constants are given by, 

92(Yo) ::s 0, g' 2(Yo) .. 0, 9"2(YO) - 1, gift 2(Yo) ... 0, 

f 2(yo) • 0, f'2(Yo) "" 1, f If2(yo) .. 0, f ll '2(Yo) - o. 

A further simplification of the two differential equations is 

possible if the x scale is assumed to be curvilinear such that u 

and v can be expressed as and v - 1. • 
91 

The resulting differential equations are then, 
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u" 2{U t ~ + pU } - V'p ....................... 0 ...... 4.5.8 

p 

••••••••••••••••••••••••4.5.9 

Provided that p(x'Yo) I 0, equations 4.5.8 and 4.5.9 will 
2eventually give the x scale, since, g1(x) - -v and f (x) • 2u

1 v • 

Of course, the solutions will contain four constants of integration. 

Having found the X scale, the remaining scales present no 

difficulty. Taking the equation 4.5.5, i.e. z - f(x,y),it is 

rearranged to give x = ~ (y,z). •••.•••••••••••4.5.10 

2The relationship p(x,y) L3~(~Z~)__~f~ .. ~1 ' ........ 4.5.11 

f 1(x) f 3(z) 112 

",here 111 and 112 are as defined in 4.5.7, is obtained by 

differentiating 4.5.6 partially with respect to x. 

By eliminating x between 4.5.10 and 4.5.11, an identity in y and z 

is obtained. Putting y - Yo into this identity and rearranging it 

we get, 

pg1 + g1 f '1 - g'1 f 1 

Similarly, by putting x· ~(y,2) In 4.5.6 an identity is obtained 

from which 93(z) may be determined. 

We get 93(z) • f 3(z) S1(W (Yo,z}l 

f 1(~ (Yo'z» 

To obtain 92(Y) and f2(Y) we taka two arbitrary values of z, 
z1 and 2 2, and find the corresponding values of f 3(z) and g3(z). 

from the determinant form 4.5.6, after replacing x by ~ (y,z) and 

in turn z by z1 and z by 2 2, two linear equations are obtained 

from which 92(Y) and '2{Y) may be found. 
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It will be seen from figure 4.5 that this is an application 
of Gorodskii's method. 

figure 4.5. 

It still remains to determine the constants of integration. 

This can be dona by choosing four sets of three values which 

satisfy z ~ r(x,y) and substituting them into the determinant form 

obtained by the method described above. This will provide four 

equations in the four unknown constants. 

Expanding the determinant 4.5.6 along the second row and 

replacing x by W(y, z) gives, 

9 2 ( Y ) (f1 ( I/J (Y, z» - f 3 ( z ) ) - f 2 ( Y ) ( 9 1 (I/J (y, z» - 93( z ») 
+ g1( l/J(y,z»f3(z) - 93(z)f1(1/J (y,z» ~ 0 •••4.5.12 

21 and 22 satisfy equation 4.5.12 and hence, regardinp it as an 

equation in 92(y) and f 2(y), we can obtain two mors"such equations 

by the successive substitutions Z - 21 and z - z20 for consistency 

the following identity must hold, 
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~1~(Y:)Z~)-f3(Z1) 9,(tj;(Y'Z1»)-9 3(Z1) 91(\jJ(Y'Z1») f 3(z1)-f1(,J;(y,Z1») 93(2 1)1 
~tj;(y,zi )-f3(z2) 9 1(tj;(y"Z2»-9 3(Z2) 91(\jJ(y,Z2»)f 3(Z2)-f 1(IHy,Z2»)g3{Z2)\- 0 

:t/J(y"z»)-f 3(z) 9 1 ( lj!( y" z» -g 3( z) 9 1 ( \jJ( y, Z») f 3(z) -f 1 ( 1jJ( y , z») 9 3( z) \ 

•• ~ ••••••• ~ •••••••••••• 4.5.13 

Nothing in the process described above is restricted 

the nomogrammibility of the equation z = F(x,y). The process may be 

carried out whether the result will turn out to be an exact nomogra~ 

or an approximate one. In the teI:'ms of James-Levy's investigation 

the problem with which this chapter is conceI:'ned is that of the 

existence of an exact alignment nomogram for z = f(x,y). 

The existence of such a nomogram is detarmined in this case 

by the reduction of 4.5.13 to an identity when the values found for 

the constants of integration have been inserted. 

Enough of James-levy's paper has been considered for the 

purpose of this investigation into the theoretical problem. However, 

it seems appropriate to note briefly the substance of the rest of the 

paper. 

The application of the method to the joint nomogram of two 

equations, z - f(x,y) and z = G(x,y) in which the x and y scales 

coincide, yields particularly simple results. The method is also 

applied in some detail to equations of the third nomographic order, 

i.e. Z(z) = X(x) + y(y), and to the fifth order in the form, 

f 1(x) a~2(Y) + f~ , in which the x scale is linear, and alsO to 3 

92(Y) + g3(Z) 

systam of equations containing linear Bcales. 

A re5ul t obtained for the third nomographic order in the 

form of the equation z - x + Y is worth repeating. 

z,as a function of x and 
+ Y we have, regarding y 

from z .. x. 

2 
 .. o.N=-J...X1,

p - -£L - ax2 

dX 
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ror a linear scale of X we can take u = f1' v = 2 
(in equations 4.5.8 and 4.5.9 u = f1/g1~ v = 2/9 1; W9 taks 91 = 1).
Equation 4.5.8, i.e. un N 

.. u'(p + pu) - Vip, now becomes 

f" -ff'
1 1 1 

and thereFore X :: +2J ~f1 
f1 + c1 

c 1 may be smaller than, equal to, or t thgrea ar an zero and, according 
to which, and with an appropriate transform of z = x + y into 

az + b + C .. (ax + b) + (ay + c), J ames-Levy shows that there are 

three, and only three, projectively distinct scales for x. They are, 

ax 
== e 

= x 

CIl tan(ax) 

and all other scales may be obtained from them by projective trans

formations. 80th Gronwall and Warmus obtained results in this vein. 

As a result of obtaining a canonical form for equations of 

the third nomographic order, James-Levy is able to produce a result 

which is a particular form of Saint-Robert's criterion. Equations 

of the fourth order are not dealt with since these are the subject 

of a separate paper (90). 

His final contribution to the problem of anamorphosis is the 

replacement of the necessity to solve differential equations by the 

requirement to solve a system of algebraic equations. Returning to 

the identity 4.5.7, we note that instead of regarding it as a 

differential equation in f 1(x) and g1(x) it may be regarded as an 

ordinary equation in f 1,f' 1,f"1,91,9'1 and 9"1. By differentiating 

both sides with respect to Y we noted that a second differential 

equation could be obtained which, with Y - Yo' gave a second equation. 

This may now be repeated until we have six equations, i.e. by taking 

up to the fifth derivative of both sides of 4.5.7. This means that 

there will be a sevanth derivative from r(x,y). The system of 

equations, now considered an algebraic system, will contain 16 constants 
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which are, 

These may be reduced to eight by the use of the projective 

transformation hinted at earlier. The remaining eight constants 

are found by ensuring conformity between the system of equations and 

the solutions. This is done by equating expressions for, in one case 

91(X) and in another f 1(x). The two expressions ror f 1(x), for example~ 

are obtained in the following ways; as a result or the solution of the 

algebraic system and, by differentiation with respect to x of equations 

in the system and the elimination of the derivative of f 1(x). An 

example for the case f 1(X) - !2(Y) + f~ will illustrate. 

92(Y) + 93(z) 

The algebraic system arrived at is, with Y = Yo 

•••••••••••••••••••••••••..•.•••.•. 4.5.14N ,. f" 
- -1 

flp 1 

••••••••••••••••••••••••4.5.15 

in which 

The system gives, 

( ~) /1!) a - 2p b + p(ab - d) ••••••.•••••••••4.5.17 
f 1(x) ... -:..c.'pIv'Ci.y:....-~\R.::t&___y----2 

(!l.) p - ap + pCb - c + a ) 
2 ~ yy Y 

i th respect to x and eliminating r1" 
By differentiating 4.5.15 w 

between the result and 4.5.14, an equation in f1' is obtained. 


equation and 4.5.16, an equation in
thiE i ti f t between s new
lim na n9. 1 between this ns'l!! equation and 4.5. '1 7 

f1 is obtained. By eliminating'1 
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an identity results from which a,b,c and d may be found. However, 

if the equation is of the third order; i.e. of the form, 

f 3(z) f 1(x) + f 2(y),2 

the method fails. 
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6. Conclusion. 

Any comparison made between the four papers described in 

this section would be rather artificial. a f thine reason or 5 is that, 

in part, a person's position on any issue is determined by his 

philosophical views. The philosophical positions of the authors are 

by no means the same. Gronwall has presented a paper which is in 

the classical mathematical tradition, his main conclusion is based 

upon the existence of the common solution C of two partial differential 

equations. But an object may exist without it being known to exist 

and there are those who would object to an existence proof. Kellogg', 

paper seems to me to present a more readily acceptable solution in that 

his matrix N can be formed and its rank determined by well established 

methods but the actual execution may be tedious and complicated. 

However, Kellogg's paper served one very useful purpose; it appears 

to have given an idea to Warmus. Warmus has produced a computation 

scheme based upon a classification system; it is thorough, contains 

interesting mathematical ideas and in any given case will either 

indicate that no nomogram is possible or will give the appropriate 

determinant forw~. It is the paper that should be consulted by anyone 

wishing to construct a nomogram of some complexity_ James-Levy was 

clearly influenced by Gronwall's paper and indeed he is at pains 

to point out similarities between his results and Gronwall's when these 

occur. However, their papers reach a common point and then go in very 

different directions. The philosophy behind Jame5-Levyl~ approach 

is one which would find favour with the Intuitionist School for it is 

a constructive proof; at a very basic level it 8eems to be saying 

that a nomogram exists if it can be constructed, though I accept that 

this is something of an oversimplification. I must declare my own 

leaning towards the James-Levy approach. 
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later Developments 

1. Russian Advances. 

During the 1950 I 5 the RUs5ian interest in nomogrophy bHS 

strong. The work of G.E. James-Levy on anamorphosis dates from 

that period. James-Levy was just one of the contributors to an 

issue of ·Vychisl1.·tel'naya Mate t'k I (C t ti 1ma 1. a, ompu a ona Math8mati:s~ 

which was devoted entirely to nomography. The other contributions 

are examined hare. In general they represent a modern appro2ch to 

the subject which reflects changing attitudes in mathematics. for 

example, consideration of approximate nomograms seems to be a reflectio 

of the contemporaneous development in Numerical Analysis. 

D.G. lapteva considers a particular aspect of the projectivQ 

transformation of alignment nomograms in which the resulting scala 

of the unknown variable is rectilinear (91). The particular aspect 

which interests him concerns the errors present in results obtained 

from such nomograms. The manner in which the error in the solution 

is estimated will determine the form of the scale which carries the 

solution, in particular, if the error estimate is measured in terms 

of relative error then, for a given size of scale, the greatest 

accuracy is given by a logarithmic scale, as shown in Appendix III. 

Even for a nomogram having a uniform solution scale it may be that 

the problem will be better served if the scala is logarithmic. 

The particular projective transformation considered for this 

purpose i s a homoI ogy. A homology i s a transformation which leaves 

invariant every point on a given line III and every line through a giverl 

point P, where P 1.5 · t on th 11.·n8 "'. Lapteva writes this trans-no e hI 

formation as, 

--E2L 
Y + b 

x 1 
..............•..•........ ••• 5.1 .. "1 


• {L + bhJ Y1 
y + b 
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where x and yare the old coordinates, x1 and Y1 the new 


coordinates, L some fixed quantity and b the transformation parameter. 


If x1 - x, then y = 0, showing that the fixed lineis the x axis. 

If x = 0 and y = L, then = 0 and Y1 = L showing that the pointx1 

(O,L) is a fixed pOint. 

If Y = 00 for some arbitrary x value a, than ~ 0 and Y1 - L + bJx1 
showing that straight lines parallel to the y axis ara transformed 

into straight lines intersecting at the point (O,l + b). 

He selects a system of coordinates .whichmakes the solution 

scale coincide with the y axis. L 1s taken to be the length of the 

solution seals; the transformation 5~1.1 will therefore leave it 

unchanged. The transformed nomogram can now be constructed without 

calculation. Consider the transformation of one of the scales, a,. 

A(O)~ 


---L~-------~~----------~o~--------------------~X
Mx 

figure 5.1. 

In figure 5.1, M is an arbitrary point on the scale a and Mx its 

projection on the x axis. The straight line of which MMx form5 part 
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will be transformed by 5.1.1 into tha straight line k passing 

through Mx and ~, where 8 is the point with coordinates (O,L + b). 

The point M is then transformed into a point M' on the line k. 

M' will also lie on a straight line 1 passing through ~I and the 

point A (O,L), since lines through A are uncnanged by the 

transformation. It is easy to construct the whole transformed 

scale of (J. in this way. I f the original scale of is rectilinear(J. 

and parallel to the y axis, the construction is greatly simplified. 

The greatest problem in this transformation is the choice 

of the parameter b. An analytical method by M.V. Pentkovsky exists 

but this leads to long and complicated calculations and furthermore 

examines only one scale and not the nomogram as a whole (92). In 

practice it is less important to know the exact value of b than the 

range of values far which the scale mare or less approximates to 

the given form. The interesting suggestion here is that another 

nomogram should be constructed for the second equation of 5.1.1 

to show the influence of change in b on the transformed scale. James

Levy is credited with such a nomogram which is of the intersection 

form (93) e' However, Lapteva prefers a different approach using an 

alignment nomogram. 

The equation Y1 - {L + b)Y is written as 

Y + b 
l - Y1 :z log l - Y + blog -=---"- log L + b

YY1 

an equation of the third nomographic order. 

A nomogram is constructed having the scales y and b on an ellipse 

with a uniform scale for Y1 along the major axis. To construct this, 

usa has been made of 8 skeleton nomogram classified 8S 321 by 

Pentkovsky (94). This is reproduced as figure 5.2. 

To find a suitable ranga of values of b which will transform 

the y scale into an approximate logarithmic scale, the following 

procedure is uaed. The nomogram of figure 5.2 is itself used as a 

skeleton. Selected rounded values of the variable yare marked on 
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Figure 5~2 
Pentkovsky's skeleton nomogram. 
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the y arc, due account having been taken of the range of values 

appropriate to the particular problem. On y, the logarithmic 

values of the same range of values are plotted. Alignment is made 

between the rounded values on y with the corresponding point on 

the logarithmic scals on Y1. The result is that a range of values 

of b is determined on the third seals. If the conditions of the 

problem require, for example, an elongation of a certain point 

of the scale, then such consideration can lead to a best value 

from within the range. 

In an interesting but rather short paper I~N. Denisyuk 

considers the construction of empirical formulae for data which 

are believed to approximate to a straight line on a logarithmic 

or half-logarithmic base (95)_ He is able to give formulae which 

enable a relationship of the form y» a + b 
x + c 

to be obtained without any great difficulty. His method is basad 

upon the fact that within certain limits, and with a certain choice 

of three points on the x scale, the transformation, 

l 
x - 1 + x 

~1X2 

will lead to a scale little different from the logarithmic one. 

In fact it is the scale deviating least in Chebyshev's senae. In 

place of a logarithmic base he considers 8 base constructed from 

two projective transformations 

1 , 1 

along the axes. Here (xV Y 1) and (x2'Y2) are the coordinates of two 

points on the supposed line, chosen so that they are at distances 

from the ends of the sBction under consideration of approximately 

one fifth the width of the transformed section. Throughout it is 

assumed that x1 < x2
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Denisyuk's results may be summarised as follows. 

If x 1 = a x 2 and Y1 = S Y2' then two constants a and b are found 

as follows, 

laB - 1 {1-ct)(1-S}a ::: b 
la- IS ' (IS Is)2 

Using these, the empirical formula is obtained from 

y ... 

He gives an example to illustrate. If x, ::: 0.5, - 2, Y1 - 0.8x2 
Y2 ::: 5, then 0 .. 0.25, B" 0.16, a" -8, b:; 63 

leading to, y "" ( 126 

8 - x 

In the case in which the y axis is uniform and only the 

x axis is to approximate to a logarithmic scale, the empirical 

formula is given by, 

S/a. + (1 +/0 )( B 
1 + x 

x2 10 

The material in this paper is clearly based upon profound work only 

hinted at in the paper. The author adds the comment that some of 

the material had been presented at the seminar on nomography at 

Moscow State University in April 1956 and that further material had 

been presented at a seminar at the Computer Centre of A.N., USSR 

on 23 May 1957. 

V.A. Cherpasov and G.E. James-Levy present a method for 

the calculation of appr~ximate alignment nomograms using a computer (96). 

The method is essentially one of finding an optimal group of parameters 

by successive approximations. A logical diagram for the process Is 

given and although tha form is unfamiliar it can be rewritten as a 

Western-type flow chart with little difficulty. 
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I.N. Denisyuk, in a second paper, describes a nomo:;ran1 

for the construction of soma polynomials (97). In particular he 

is concerned with calculating generalised Laguerre polynomials 

In{t, A ) which he approaches through the solution of a boundary 

value difference equation. From his references we can infer that 

Denisyuk's work on Laguerre polynomials dates from the early 1950's. 

It is of some interest to note that during 1950 one of the last users 

of the Manchester University Mark I computer before it ~as dismantled 

was Dr. D.G. Prinz of Ferranti Ltd. who computed laguerre functions 

in connection with the control of guided weapons (98). Whether 

or not the Russian calculations arose from guided weapon technology 

the different approaches to calculation give rise to speculation 

about Russian computer development at this time and perhaps indicate 

why Russian interest in nomography was so great. 

The use of a transparency as part of a nomogram has a long 

history. lallemand's hexagonal nomogram incorporated one (see 

Chapter 2, section 5), and the concept was further developed by 

Margoulis in the early 1920's (81 and 82). The method receives a 

full treatment in a long and detailed paper by G.S. Khovanskii (83). 

A brief outline of his ideas follows. The relationship 

f3 a F(f 12 + f 4, 9 12+ 94)' where f ij " f(CL pCL j)' in the four 

variables CL1, CL 2, a. 3 and 0(4 can be r.epresented by a nomogram with 
an orientated transparency. The result has the advantage that 

the families of curves in CL 1 and CL 2, which would normally form 

a binomial field, can be separated. 

Two auxiliary variables are introduced, 

andPI .. f 12 + f 4 

giving the relationship f3 - f(M,N). 

These are written, 

... f - 0f 12 - 0 12 

.. 9 - 09 12 - 0 12 
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This strange form is used because it is intended that in the left 

hand parts 0. 2 is an auxiliary variable while in the centre ~arts 

it is 0.1 which is the auxiliary variable. The zeros indicate 

positions which in this example are not filled but which may be 

filled in other csses. 

The following tables shcHtI the elements of the nomogram 

when scale factors ]J x, ]J Y, oX and oy have been introduced, 

(8 , a' , a etc. are constants suitably chosen).
o 0 

Coordinates Ct. 1 lines ( Ct. 2 aux.) Ct. 2 lines ( a 1 aux.) PIN field 

x Clo+ ]Jx(f12+ oX912) 8o+a + fl X(f12+oX912) 8o+C+fl X (M+oxN) 

Y bo + lly(oY~2 +g12) bo +b+ fl y(oyf12+g12) b +d+ ]Jy(oyM+N) 
0 

BASE 

Coordinates Fixed point A1 fixed point A2 4 scale 

a fx a' + a a' +c+ W« f 4 +OX94) 0 a 0 

y b' b + b b' +d+ fly(oyf 4+94)0 ' 0 0 

TRANSPARENCY 

The base will contain three sets of curves. The construction of the 

sets for Ct. 1 and Ct. 2 is obvious. The 0(3 set is obtained by plotting 

on the MN field according to the relationship f J - f(M,N). Also on 

the base it is necessary to have a set of parallel straight lines 

to facilitate the orientation of the transparency. The transparency 

will have two fixed points, A1 and A2, a scale for a 4 and an 

orientating straight line. The form of the base and transparency are 

illustrated in figure 5.3. 
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A,. 

j
I--------___________J 

8ase Transparency 

figure 5.3. 

The use of the nomogram is as fallows. With the correct 

orientation, which is crucial, A1 is made to coincide with the 

value of 0. 1 and A2 with that of 0.2- Then the unknown value, 

say 0.3' is that value which corresponds to the given value of 
0.4 

Khovanskii writes this as, 

a notation very similar to that used by d'Ocagne in his 'Traits'. 

The construction of such a nomogram is more difficult than it may 

seem from this briaf description for considerable care is required 

over the choics of the scala factors if reasonable accuracy is to be 

obtained. 

Khovanskii treats in a similar manner the forme, 

f4 + r( a 3,912) + f12 - 0, f 12 + 9 129 34 + f 34 0,-
191'1 .. f2 + f34 ,
1 == 0,'2 9 2 '1 

92 + 9341f34 934 

.. o.• 0, f 1f34 + f 2934 + h34+ (2)934 + h34f1f2 f 34 + (f1 
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A similar treatment is given for the general case 

1f12 9'2 

1 0
f34 934 •••• ............ 64 •••• 5.1 .. 2 
1f56 g56 

which is obtained by eliminating Y, B, 0 from 

=f34 - y f56 - 8 

and log 9'2 log S log 934 - log Y = log 956 - log 6 • 

The transparency carries the curve y = log x aGd the base has 

three binomial fields each of which is obtained by taking for the 

x coordinate the appropriate element of the first column and for 

the y coordinate the logarithm of the corresponding element of the 

second column. 

A special case of 5.1.2 is the equation 

1f1 f4 


f2 1 o , 
"5 1m 

1f3 '6 
The nomogram is particularly simple as the binomial fields consist of 

orthogonal straight lines. The families of parallel ~trai9ht lines 

a. 4' a5 and % ara also used as orientating guide lines, (figure 5.4). 

Transparency
8ase 

figure 5.4. 

A ~ide range or other variants of 5.1.2 are also examined. 
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A particularly interesting aspect of Khovanskii's work 

concerns nomographic methods for the approximate representation 

of 8 function of one variable. In this work the transparency is 

allowed three degrees of freedom. These methods follow from a 

consideration of one or other of the relationships, 

¢ (v, f(u)cos Ci - g(u)sin Ci + A, f(u)sina + g(u) cosa + 8) = 0 

••.••.••••.•••••••.•.••5.1.3 

f(f(u,v)cosa + g(u,v)sin Ci + A, -f(u,v)sin Ct + g(u,v)cosa + 8) 0::z 

•••••••••••••••••••••••5.1.4 

In the case of 5.1.3 the base has the coordinate system xOy and 

carries the family of v curves constructed according to ¢ (v, x, Y) .. O. 

The transparency with coordinate system x'D'y' carries the u scale 

given by Xl .. feu), y' '" g(u). 

A end B are the coordinates of the origin A' with respect to xOy. 

Ct is the angle between Ox and Dl x'. This case is illustrated in 

figure 5.5. 

~========~A~======~~-------------7x o 
figure 5.5. 

In the case of 5.1.4 the base carries the binomial system (u,v) 

constructed from x - f(u,v), Y = g(u,v). 
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The transparency carries the unsealed curve 
L constructed from 

F(x',y') = D. In this case the coordinates of 0'·1n th e xy system 
ara A', 8' and a is again the angle between Ox and DIXI. This 

case is illustrated in figure 5.6. The relat;o hi b t A 8 
~ ns p e ween and 

and AI and St is, 

A = -Alcas a 8' sina , 


B = A I sin a B'casa. 


x' u 

< 
o 

Figure 5.6. 

These two basic nomograms are used to tackle certain 

problems. firstly interpolation. In the Case of 5.1.3, (figure 5.5), 

the transparency is arranged so that the points representing the 

values u1' u2 and u3 which lie on it are in contact with the 

corresponding points v1, v2 and v3 on the base. Then intermediate 

corresponding values of u and v may be read. In the case of 5.1.4, 

(figure 5.6), the method is similar except that the values of u and v 

both lie on the base, the unsealed curve L serving to Join corresponding 

Values. 

The second problem which may be solved assumes that sets 

of corresponding values of u and v have been found experimentally 
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and it is required to find the parameters A, 8 and a of 5.1.3 

or 5.1.4. The technique is similar to that used for inter~olation. 

In 5.1.3, (figure 5.5), the transparency is positioned by eye so 

that u1 , u2 ' ••••• u correspond respectively to v v v 
n l' 2" • •• • n· 

The position of the transparency then determines the parameters. 

For 5.1.4, (figure 5.6), the correspondence is between (u 1J v1) and 

L, (u 2,v 2) and L and so on up to (un'vn ) and l, giving A' ,8' and a • 

A and 8 can then be found from the relationships given 8arlier. 

The third problem concerns the study of the srrors involved 

when it is necessary to approximate the function ¢ (u) by a three 

parameter family P(u,A,B, a). This is done in terms of 5.1.4. 

For the absolute error we have t. .. ¢ (u) - P(u,A,8, a) 

and for the relative error o '" <P (u) - P(u.A,B,a ) 

Hu) 

and it is clearly desirable that the maximum values of I t::. [ or I0 I 
should be a minimum. 

Taking the case of absolute error as an example, 

t::. == cp(u) - P(u,A,B,a) can be written as 


P( cp (u) - t., u,A,8,a) • 0 


Replacing in 5.1.4 the variable v by $(u) - t. , a form which can 

be nomographad is obtained, namely 

r(f(u, ¢ (u) - t. )cos a + g(u, cp (u) :... t. )sin a + A, -f(u,cj> (u) - t.) 

sin a + g(u, ¢ (u) - t. )cos a + 8) = o. 

The binomial field on the base is given by, 

x - feu, ¢(u) t::.) 


Y =< g(u, <f>(u) t.) 


i "gl"ven by r(x',y') = 0The unsealed line L on the transparency s agaln • 

The form of the nomogram is illustrated in figure 5.7. 
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:7/
() 

L 

~------------------~>xo 	 or 

Base 	 Transparency 

Figure 5.7. 

Any position of the transparency on the base will show graphicell~ 

the relationship between t" and u. Displacing the transparency 

enables a graphical representation to be obtained showing the 

influence of A', 8 I and a. on t" • 

The argument in the case of relative error is similar. 

The final problem concerns the approximation of a given 

function by a four parameter function, i.e. to find values of 

A,B,C and a. such that within given limits of u, the equation 

cp (u) ... P(u,A,B,C a.) 

becomes an identity in u. 

Writing the above equation in the form, 

P(u, cp (u),A,8,C a.) ... 0, 

and replacing, in 5 .. 1.4, f(u,v) by feu, ¢ (u),C) and g(u,v) by 

g(u, ¢(u),C), we obtain, 

f(f(u, ¢ (u),C)cosCt. + g(u, ¢(u),C)eina + A, - f(u,¢i (u),C)sina 

+ g(u, <p (u),C)cosa + B) - O. 

The base 	of the nomogram contains the field (u, C) given by 

x - feu, cp (u),c), Y .. 9(U, <p (u), C) 
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and the transparency will contain the usual unsealed line l , 
as shown in figure 5.8. 

------------------------, 

::/' 

L 

~------------------~x'0' 

Base Transparency 
Figure 5.8 .. 

If the sought for identity exists within certain limits than, 

within those limits, it will be possible to arrange the transparency 

so that part of l coincides with the appropriate part of a line C. 

More likely, an approximate coincidence will be the best that can 

be obtained; when this is obtained C is known and A, Band Ct can 

be determined. 

This problem can also be solved using 5.1.3 

Khovanskii develops special Cases in some detail using the principles 

already developed. 

Still on the subject of approximate nomograms, Khovanskii 

considers the problem of constructing an approximate alignment 

nomogram for the two equations, 

.. 0 ••••••••••••••••••••••••••5.1.5f 1f 3 + f 29 3 + h3 

0 • •••••••••••••.•••••••••••5.1.6fl4 + f 2g4 + h4 == 

in which the scales of Ct 1 and are to be combined.Ct2 

If the relationship betw8en f1 and f1 and that between f2 and f2 

ie linear so that, 
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••••••••••••••••••••••••• 5.1.7 


and ••••••••••••.•.••••••••••5.1.8 

then an accurate nomogram can be constructed. In this case 5.1.6 

becomes, 

and a nomogram with combined scales in ~1 and ~2 can be constructed 

for this equation combined with 5.1.5. 

The question arises of how to construct the nomogram with combined 

scales if 5.1.7 and 5.1.8 are only approximate. 

When scale factors are introduced, the alignment determinants 

for 5.1.5 and 5.1.6 may be written, 

-H m' (f1 _ at) 1 

H n' (f2 bl) 1 = o 

HC.9 3mt f~ -m'n'(h· +
3 

alf
3 + b'9~ 1 

9 3m' + f n r 
3 9 3mt + f n r 

3 

and, 

-H m"(r1 
- art) 1 

H nlf( f 
2 

_ b") 1 o 

~m" f4nll) -m"nft(h4 + anf 4 + b"g ) 4 1 

'94m" + f 4n" 94m' + f 3 n' 

Khovanskii replaces them by, 

-H ~ - a l ) + m"(f - all} 11 1r~~ 

2 

H n'Cf2 - b l ) + nrt(F2 - b ft ) 1 - o 5.1.9 

.t:!.t9.3>-m_'__f 3!l2 -m t n'(h3 + 8"3 + btg~ 1 

9 3m' + r3n' 
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and, 

-H 	 m1 (f - a I) + m"( F1- - all).--1 	 1 
2 

H 	 b I )~ 2 - +~2-=~ 5.1.10 
2 

H(g4m" - f 4ntl) -mlln1t(hq + a"f 4 ... b"gJ 1 

. 94m" + f 40 " 94m" + f 4n" 

which give approximate scales for a 1 and a 2

Consider the a 1 scale. There will be no error in the x direction 

since the scale is on I!I vertical straight lins. Jo Elxamine tha 

error in the y direction let Y1' = m'(f1 - al), y," - m"(F1 - an) 

and y = ~1 a') + mite F 1 - a") 

2 

than, t-., y l' - Y, t - Y 1 .. ~1 - a I) 	- m"( F 1 - a") 


2 


and t-., y," • Y1" - Y1 = m"(f1 - a") 	- m'(f1 - a f } 


2 


Hence 	 and t-.,Y1' .. -t-., Y1"·It-., Y1 ' I - I t-., Y1 " I 
rrIf o1

n =M1-n then 20 1 = F1 A1f1 - 8, 


mit 


where A1 	 and B1 • an - m' a'=~ 
milmt! 

can be chosen so that the maximum
Since A1 and 81 are arbitrary they 

value of 10 " I is a minimum within given limits of a 1 •
1 

The appropriate values of 1\1 and 81 , denoted by A1* and 8* 1, may be 

found nomographically. 

A similar argument, applied to the a2 scale gives, 

and
where 02 n - A.Y~ , 

nIt 
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If mI, a' , n 1 and b l are eliminated from 5.1.9 and 5.1.10, by 

using the expressions for A" 8" A2 and 82, the determinants 

taka the form, 

-H m( ¢ 1 a) 1 

H n( ¢ 2 - b) 1 = a 5.1.'1 

-mn(h34 + ,.t!i9.34m - r3~ af34 + b93~ 


934m + '34n 934m + f 34n 


where ¢ 1 = .A~1~1--=!:.£1*' '* J '" *' *''l'2=~~~~2 
2 2 

and f 34' 934 and h34 have di fFsrent values for ths scales C(3 and ex 4 

as shown below. 

Scala '34 g34 h 34 

,*,*'* '* '*'* '* '* cZ3 
A2r3 A1g3 A1A2h3 - A2Bl 3 - A, 829 3 

C\4 '4 94 h4 

It is the parameters Al' '* 8'* 1, '* and 8'* 2 which determine the quality ofA2 

the approximation. As has been indicated these are found by a 

separate operation. When they have been found the nomogram may be 

constructed in the normal way. 

In equation 5.1.11, if m - n .. H ,. 1, a • b • 0, then 

-1 1¢1 .. a1 14>2 
1-h34~3<L:...!34 

g34 + f 34 g34 + '34 

••••.••••••••..••••••.5.1.12or, 

Therefore the construction of a combined scale nomogram for 5.1.5 

and 5.1.6 is based on the approximate substitution for these equations 

of equation.5.1.12, appropriately interpreted. 
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Finally, some magnitude for the errors is required .. Khovanskii 
suggests that, 

* /:, Y1 	 < /:, Yerror 

and, /:, * ~ 	 }Y2 	 /:, Yerrar 

where /:, YarraI' ~ O.2mm and * is used as before, i.e. 

the maximum value of 

This gives m ~ /:'Yerror
-;-

°1 
and n b.Yerror"' 

S2 * 

The final section of Khovanskii1s paper considers the use 

of nomograms for the investigation of functional relations. 

Such nomograms require different attributes from those 

constructed for calculation. for example, the limits of the variables 

must be complete in order to cover all possible cases, while preference 

must be given to the type of nomogram which shows most completely 

the interesting characteristics of the relationships being investigated. 

Alignment nomograms lose their prime position in the latter respect. 

Intersection nomograms and those with an oriented transparency are 

often more convenient. 

Some types of investigations which can be carried out with 

nomograms are, 

(i) 	 To examine the influence of one parameter on the others. 

(ii) 	 To give a geometric illustration of some important, already 

~ell known, property of a formula. 

(iii) 	 To find hitherto unknown properties of a given relationship. 

Khovanskii gives a lengthy illustration of this aspect of nomograms 

drawn from the flow of fluid in channels of different cross-sections. 

Hydraulic calculations are a particular interest of Khovanskii. An 
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extract will illustrate the type of 8nl" ht 
19 enment that can be shed. 

for tha case of a round channel the transparency has the fa 
sh "f· I'mOwn ~n ~gure 5.9. 

r---------________ 
--------~--------

0-4

v 
-=1 -=1 "00/ -0/ -/

I , , , ! 

I. 
Figure 5.9. 

where 

and 

n is a dimensionless parameter 

V is the average velocity 

i is the gradient. 

Although the base of the nomogram contains many lines 

representing the different variables of the problem, it will suffice 

to consider only the two variables d and I. The diameter d is 

represented by parallel straight lines which are also parallel to 

the transparency scales of V and i. I is represented by a straight 

line perpendicular to V, the purpose of which is to indicate the 

value of V. Some of the lines d will intersect the n curve in two 

places, in particular one of the lines intersects it at 1 and 0.5. 

The interpretation of this is that the velocity in a pipe of a 

given diameter is the same at full loading as at half loading, a 

result which may not be so readily seen by any other analysis. 
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A most interesting article by T. Steyskolova takes some 

results from W. Blaschke's book on the theory of ne~g ( )-_ 99 *, and 
demonstrates their application to nomography (100). The application 
is elegant but to appreciate this elegance it is necessary to 

understand something of Blaschke's theory. 

We 	 suppose in a region G of the xy plane three families 
of 	curves and()2 ()3 giv()1' en by ui(x,y) '" constant, i -1,2 or 3, 
where 

(i) 

ui is analytic in G. The system has ths following properties,

(2 2:~i) +C~i) /0 at every point of G, 

(ii) through avery point of G passes one, and only one, curve 

of each family, 

(iii) the Jacobian .ll!!.~ f 0 for j,k = 1,2,3 ldith j f k, 

a (x, y) 

(iv) any two curves of different families have not more than one 

common point, 

(v) within G every curve is continuous. 

Such a system is knOhln as a triple system. 

The simplest triple system is the regular net hlhich is a 

system consisting of three families of parallel straight lines with 

the lines of different families meeting at 60°. Obviously such a 

net forms regular hexagons whose sides and diagonals are straight 

lines of the regular nat. Steyskalova calls hexagons of this typa 

diagrams 8, after Brianchon. Diagrams 8 are not necessarily regular 

hexagons. In fact, diagrams B are those fjgures which are constructed 

in the following way. 

* 	 The German word GEWEBE has as its English counterpart the 

word webbing. The Russians use the word C£TEU " which is 

translated as nets. I use the word net and hope that no 

confusion will arise. 
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Given a triple system in a region G. Take a point P 

inside G and draw a line through it for each family, denoting 

them by 1p, 2p and 3p, where 1, 2 and 3 refer to the family to 

which the line belongs. On line 1p select the point A and draw 

the lin8 2a to intersect 3p at B. Then draw line 1b to intersect 

2p at C. In a similar way obtain the points O(3c&1p), E(2d&3p), 

f(1e&2p) and H(3f&1p), (figure 5.10). 

D 

figure 5.10: Brianchon Diagram. 

The point H may coincide with A, thus closing the diagram, but this 

is not necessary. Triple systems in which all diagrams 8 are closed 

are called hexagonic. 

A curvilinear triangle ABC having sides which ara curves 

of the first, second and third families is called a coordinate 

triangle. Points P, Q, Rand 5 are chosen on the side AS, which 

belongs to the first family. Through P and R lines of the second 

family are drawn and through Q and 5 lines of the third family are 

drawn, giving points of intersection V and W. If V and W lie on 

the same line of family 1, i.e. 1v ~ 1w, then the arcs PQ and RS 

are said to be equal. The property 0 f equality is symmetric and 

transitive, (figure 5.11). 
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B 

A 

Figure 5.11: Coordinate Triangle. 

If the curve 1v lies between the curves 1w and AS then PQ is said 

to be smaller than RS. 

I 

In the case of the regular net the coordinate triangle is 

an equilateral triangle and the definition of equality coincides 

~ith the ordinary concept of equality. Taking this coordinate 

triangle and dividing its sides into integer n parts and then 

drawing lines of all families through the points of division, a 

diagram of the type shown in figure 5.12 is obtained. Steyskalova 

calls this diagram On as he also does all topological forms of it. 

H 

.;.f.;:;:i;..;g~u:.:;;r..:8~5...;;•....:.1....:.2.;.:_D....:.ia_g""r.:;..a.....m..;;.._D--lrl- wi th n = 8. 
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He gives two lemmas, 

(i) that diagrams On can be constructed from any hexagonic net, 

(ii) that in hexagonic nets the definition of equality of 

curvilinear segments possesses the property of addition. 

He then proves a basic theorem for hexagonic nets. It is that, 

'a given triple system can be monologically mapped into 

a regular net when, and only when, all diagrams B are closed i.e. 

when they are hexagonic'. 

In addition to diagram: 8, two other diagrams are 

considered, Thomson's, called diagram T, and Rademaysterfs, called 

diagram R. The three diagrams are illustrated in figure 5.13. 

Straight lines are used for simplicity. 

F~--------~------~G 

Diagram B Diagram T 

figure 5.13. 


A second 	theorem is proved for diagrams T and R. It is, 

'for a triple system to be a hexagonic net it is necessary 

and sufficient for every diagram T (or R) to be closed'. 

features of the proof which are worth repeating hera are that, 

(i) 	 diagram 8 is a particular case of diagram T in which 

P, Rand S coincide, and 

(ii) 	 diagram 8 is a particular case of diagram R in which PQR 

and 5 coincide. 
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It is seen that all triple systems in which all diagrams T 

(or R or 8) are closed can be mapped topologically onto a regular 

I 
i net. This is of significance to nomography. An intersection 

nomogram having curves which intersect in very acute angles can lead 

to substantial errors in the results. Then it is desirable to 

increase the size of these small angles. An angle of 60 0 is ideal 

~ 	 and fortunately this is the size of the angle contained in a regular 

net. It is therefore necessary to be able to recognize those equations 

which can be represented be a regular net. Such equations are\, 	 equations of the third nomographic order. This leads to the third 

theorem of the paper, 

I 
I Ifor an equation F(x,y,z) = 0 to be of the third nomographic 

order it is necessary and sufficient that the following six equalities 

are such that each is a consequence of the other five, 

f(xo,ypZ1) :: 0, F(xO'Y2,z2) :: 0, 

F(x2'Y1,z3) = 0, f(x 2, Yo' z2) ::: 0, 

To se9 what this theorem is stating, assume an intersection nomogram 

to be constructed for f(x,y,z) = O. Take three of the z lines z1' 

z2 and z3' then each of the equations 5.1.13 of the form F(xiJyj,zk) = 0 

indicates that the lines x - xi,Y = Yj and z • zk intersect in one 

point, or, that Thomson's diagram is closed, as illustrated in 

figure 5.14. 

If all of the Thomson diagrams ara closed, we know that the 

nomogram forms a hexagonic net and can therefors be transformed 

into a regular net. 
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O~--------------~~~'O--------~~------~~'-A------------~>X 

figure 5.14: Thomson·s diagram on an intersection nomogram for an 

equation of the third nomographic order. 

It is of value to examine the proof of this theorem. 

For sufficiency it is assumed that f(x,y,z) = 0 leads to a nomogram 

on a hexagonic net and it is then necessary to show that F(x,y,z) ~ 0 

is of the third nomographic order. In proving the basic theorem 

of hexagonic nets the result had been obtained that for each line 

of the third family the relation X + Y = constant held, where X and 

Y were the values of the lines of the other two families intersecting 

on the line of the third family at a particular point. letting that 

constant be Z for the corresponding line of the third family, the 

relation becomes X + Y - Z which is of the third nomographic order. 

It is the necessary part of the proof which is so 

illuminating for nomography. Suppose that an equation of the third 

order is given. It is then necesaari to show that each of the 

equalities 5.1.13 is a consequence of the other five. 

Clark has shown that a third order equation can also be 

represented by e nomogram having a conic section and straight 

line (Chapter 3, section 4). The conical alignment nomogram is the 
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dual of the, third order inters8ctl."on nomogram, both of which are 
illustrated in figure 5.15. 

Thomson's diagram on third Conical alignment nomogram
order intersection nomogram. corresponding to Thomson's 

diagram. 
Figure 5.15. 

On the intersection nomogram F(Xi'Yj'Zk) = 0 indicates that the 

lines x - xi' Y = Yj and z = zk pass through one point. On the 

alignment nomogram the three points xi' Yj' zk lie on a straight 

line. Assuming that the first five equalities of 5.1.13 hold, it 

is necessary to prove the sixth. Suppose that the points xo,x1,x2, 

Yo'Y1'Y2,z1,z2' and z3 satisfy the first fivea It is necessary to 

show that on the alignment chart the line joining x1'Yo also passes 

through z1' i.e. that f(x1'Yo,z1) - O. But this is so by virtue 

of Pascal's theorem of projective geometry, the points 2 1,z2 and 23 

lying on Pascal's line. This completes the proof. 

Since Thomson's diagram corresponds to Pascal's configuration 

it is natural to enquire whether Brianchon's and Rademayster's do 

also. 

Diagram B cor'responds to the particular case when Xv y1 

and z2 are on a straight line as shown in figure 5.16. 
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Alignment nomogramDiagram 8. 
corresponding to 
diagram 8. 

figure 5.16. 

Steyskalova attributes to G.E. James-Levy the following 

result for diagram R. 

On some curve K of the second degree cut by the straight line p 

draw the quadrilateral x1' Y1' x2' Y2 as in figure 5.17. Let the 

line p intersect the sides of the quadrilateral at z1' z2' z3 and 

z4. Then every quadrilateral C with sides passing through the 

points z1' zz, z3' z4 of p and vertices on K will close if just on8 

such quadrilateral Co will close. 

The proof follows immediately from the closure of diagramR since 

each quadrilateral C«xV Y1)' (x1, Y2) J (x2, Y2)' (X2'Y1»" and Co«l<1 t,y 1f), 

(X1"Y2')'(X2"Y21),(x2'JY11~ corresponds to the hexagonic net of 

diagram R. 
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i. - - -\--

:I, 

p 

x, 

O~--~--------~--~------~~--~>xx, 

Diagram R. Alignment nomogram 
corresponding to 
diagram R. 

Figure 5.17. 
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2. Theoretical Considerations. 

Wilhelm Blaschke, whose theory of nets had proved to be 

of such interest to Steyskalova, published a very short paper on 

nomography in 1956 (101). Blaschke addressed himself to some 

fundamental problems and viewed them in the light of his theory 

of nets. Given three families of curves u.(x,y) = constant,
J 

j = 1,2,3, he considers their nomogram given by the relation 

T(u1,u2,u3) = D. His first problem is to find the best nomogram, 

by which he means the net best suited for its representation. The 

sought for solution is, of course, a net consisting of straight 

lines. The second problem concerns uniqueness and asks the question 

whether two rectilinear nets representing the 58me equation are 

necessarily equivalent. His final question is to ask whether a 

nomogram is the optimum nomogram in the sense that some measure of 

the 'value' of the nomogram is optimal. 

Blaschke does not solve these problems in the strictest 

sense but illuminates them. On the question of producing a 

rectilinear net he uses the differential calculus to investigate 

invariants, obtained from the curvature, of topologically equivalent 

diagrams and reaches the conclusion that only at the ninth derivative 

of T are we able to expect the conditions for the rectification of a 

net, a rather sabering thought. For optimality, he looks to the 

Celculus of Variations. His solution is to minimize the integral, 

~ 2 2 2 
J "'J (K 1 + K2 + K3 ) dA 

in which dA is the element of the surface at a point (x,y) and K1, 

K2, K3 are the curvatures of the curves of the net at the point (x,y). 

There is no doubt that Blaschke's paper is important for the 

theory of nomography. From the standpoint of this thesis it is 

important in that once again the difficulty of the problem of anamor

phosis is brought out. 
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EVidence that Some of the theoretical problems raised 

by nomography are still very much alive is contained in a paper 

which appeared as recently as 1976 (102). In this paper R.e. Buck 

discusses approximate complexity and fUnctional representation. 

The section of particular interest to nomography addresses itself 

to the question of whether a given function F(x,y) can be expressed 

in terms of three functions; each of one variable, i.e. can we 

write, 

f(x;y) = f {¢(x) + \jJ (y) }? •• ~ ••••••••••••••• 5,2.1 

If 5.2.1 is a valid expression than it follows that z - F(x,y) Can 

be expressed as z.- .. f {¢(x) + \jJ (y)} with obvious nomographic 

advantages. 

Buckts treatment is rigorous and proceeds through analysis. 

Some of his results are exactly those given by the Russian, T.Steyskalova, 

seventeen years earlier (100). Steyska1ova's results were obtained 

from Blaschke's theory of nets but Buck makes no mention of either 

Steyska10va or Blaschke and it seems probable that he was unaware 

of their work. 

What follows is a brief outline of Buck's results from a 

nomographic viewpoint. It does not purport to do justice to the 

analytical rigour of his paper since to do that would be a diversion 

from the main theme of this thesis, but we can note that Buckts . 

treatment once again highlights the difficult theoretical problems 

associated with nomography. 

The first result is obvious enough. Buck shows that if 

f(x,y) has the form 5.2.1 then it must satisfy the differential 

equation, 

= 0 •••••••••5.2.2 

Much of Buck's analysis is concerned with two classes of 

functions fa and fw. 80th classes are of functions with the format 
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given by 5~2.1 but Fa are those representable with continuous 

f:l ¢ ,IV while Fw refers to those in which cjJ and \jJ are continuous 

but f is unrestricted. He expresses the problem in the form of a 

mapping diagram which is worth repeating for its simplicity. He asks 

whether there are functions h end f such that figure 5.18 com~utes. 

h. 

f 
F 

Figure 5.18. 

h belongs to the class of continuous functions of the form 

h(x,y) = cjJ (x) + ¢ (y) and f is unrestricted. 

Buck sets himself the task of looking for properties that 

distinguish members of fw from other functions. The mapping of 

figure 5.18 indicates that such properties must arise from the 

form of h. If functions h(x,y) - cjJ (x) + \jJ (y) are defined on a 

rectangle 5 and P1,P2,P3,P4 are successive vertices of a rectangle 

in 5, with edges vertical and horizontal, then be observes that, 

and also that the converse holds. The property can be extended 

to any chain of 2n points Pi which are vertices of a closed polygon 

1n 5 with edges that are successively vertical and horizontal. The 

case for n - 4 is illustrated in figure 5.19. 
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AI--___________. ---------' P7 

Figure 5.19. 

The functions h defined on 5 form a proper closed 

suhspace Y. Buck gives the following theorem, 

'If F E: f w(S) then thin connected sublevel sets for 

f in 5 must be Y sets'. 

, 

This leads to an interesting result. Su~pose that 

h( x, y) = ¢ (x) + ljJ (y) is constant on a vertical segment a. in S. 

Then ljJ (y) must be constant on the vertical segment and h will 

then be constant on every segment parallel to a.. The above theorem 

then suggests that if F is constant on a vertical segment, then it 

must be constant on every parallel ~egment. Now consider f(x,y) ... 

(x - c)2eY where c is constant. It is easy to show that it satisfies 

the condition 5.2.2. However, consider the value of F(x,y) at the 

four points' (0,0), (CjO), (c,1), (0,1) and at any point on the side 

x = C of the rectangle formed by these points. It is obvious that 

f(x,y) • 0 on the side x ~ c but, on the side x • 0, f(x,y) varies 
2 2from c at y ... 0 to c e at y .,. 1. Thus, F cannot belong to the 

class F (5) on any open rectangle S that contains the line x ~ c • • 	 w 
This counter-example shows that, although it is necessary that 

5.2.1 should satisfy the differential equation 5.2.2, the condition 

is not sufficient. 
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These, and other considerations~ lead Buck to seek a 

local property for the Y sets. He dpro uces what he calls 'the six 
point construction'. This is based on an extension!. . . t....co s~x po~n s 
of the idea given by 5.2.3, i.e. 

h(P1) - h(P2) + h(P3) - h(P4) + h(P5) - h(P6) ~ 0 

located as in figure 5.20. 

figure 5.20. 

Now, if h(P1) ~ h(P4 ) and h(P3) - h(P6 ) then it must be true that 

h(PZ) • h(P5). It therefore follows that, given t~ points, one on 

each of two level lines, a geometric construction will produce a pair 

of points lying on a third level line. 

Suppose that P 1 and P3 ara given points on two level lines, 

(figure 5.Z1)~ If vertical and horizontal lines ara drawn through 

these points, as shown by the dotted lines, two further points 

on the given level lin85 will be obtained (P4 and P6) and two 

points on a third level line, P2 and Ps• 
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Figure 5.21. 

This is the first of Buck r s results which had previously 

been obtained by Steyskalova. The diagram is nothing more than 

Thomson's diagram on an intersection nomogram for an equation of 

tne third nomographic order, (figure 5.14). 

Buck does taKe the matter further, however. He proves 

a theorem which states that if h(x,y) :: <p (x) + t/J (y) on the 

rectangle 5, where tP and 1jJ are continuous and strictly increasing, 

then the six point construction applies locally everywhere in S. 

A further theorem states that if f E F (5), where 5 = IxJ,w 

and F is separately univalent on 5, (i.e. separately one to ona 

mappings), then for any a and c in I and band d in J, with la-cl 
and Ib-dl sufficiently small, there must exist x and y near a and b 

respectively? such that, 

F(a,b) F(c,y)D 

•••••••• ~ ••••••••••••••••••5.2.4r(c,d) = F(x,b) 


f(a,d) a F(x,y) 


This result is a statement of .the same property expressed 

by the third theorem of Steyskalova's paper (100). Although in a 

different form, I hold that equations 5.2.4 are equivalent to 

242. 

P't

--------........ 




equations 5.1.13 and I outline my reason for th;s l·n 
.L i'\ppendix IV. 

However, once again Buck takes the matter further and illustrates 
how the results may be applied. 

He considers the function F(x,y) ; x2 + xy + y2 and shows 

that it is not locally nomographic anywhere in the first quadrant. 

The method is to take a > 0, b > 0 and c and d such that 

a < c, b < d. Equations 5.2.4 yield, 

2 2 2 c + cy + y = a + ab + b 2 


2 2
+ bx + b2 ::= C + cd + d2x •••••••••••••.•••.••5.2.5}2 2 x + xy + y = a 2 + ad + d2 

and it is required to show that there exist infinitely many c and d 

such that the system 5.2.5 is inconsistent. Clearly in the general 

case this can be very tedious. 

He is led to the following conjecture, 

'A polynomial F(x,y) will not belong to the class fw 

on any open set unless it satisfies the differential equation 

5.2.2 and can be written as f( cJ> (x) + l/J(y)) with f,cJ> and l/J 

polynomials'". 

Buck investigates whether a ~peclfic function G can be 

approximated uniformly on compact sets by nomographic functions 

of the set F. He arrives at a criterion for approximate represent
w 


ation which is expressed in his theorem 15. The theorem is given 


in full. 

I Let G be continuous on S = Ix], where I :: (?, ~ and 

J :: [c,ill. Suppose also that Gx > (J and Gy > (J on 5, a > o. 
Let (u,v) be any point on 5 such that !2u - (a + b)1 < 2L/3 and 

12v - (c + d)\ < 2l/3 where L is the length of the shorter side of S. 

If G lies in the uniform closure of f (5) then for any suffiCientlyw 

small E (E < l (J /12 will do), one of the following statements 


must hold: 
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(1) there exist x and y in J such that 

< E:I G(a"x) - G(u"c)! 


I G(a"y) - G(b,c) I < E: 


r G(b,x) - G(u,y)1 < e: 


(li) there exist x and y in I such that 

I G(x,c) - G(a,v) I < e: 

1G(y,c) - G(a,d) I < e: 

<1G(x, d) - G(y,v)l~ e: 

Buck demonstrates the effectiveness of this theorem by 

reference to the function G(x, y) ;:. / + xy + y2 as follows, 

I r- - - - - - - - - - - .-------------. 

s 
I: a "" 1, b - 2 

J: c '" 0, d • 1 

·5 - - - - ~- - - - 

o 


figure 5.22 .. 


5 is the unit square of figure 5.22 and (u,v) is the point (1.5,0.5). 

The second statement of the theorem then says that the following 

system should have a solution for all sufficiently small e: 

Ix2 - 1.75[ < e: 
5.2.6ly2 _ 3\ < e: 


\(x2 + x + 1) _ (y2 + O.Sy + 0.25)\ < e: 


A suitable value for (J in 5 is 0.5, l '" 1 and, using the 

suggestion in the theorem, E: < 0.5/12, so we can take e:" 0.04. 

Two convenient values in 1 would be x =11.75 and Y :: 13. 
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The first two equations of 5.2.6 are satisfied. The 

left hand side of the third equation becomes 14.073 - 4.1161 = .043 

and therefore this equation does not hold. The equations 5.2.6 

cannot have a simultaneous solution for small E and therefore 

x 2 + xy + y2 cannot be approximated uniformlY on S by functions in 

the class f • By the use of small rectangles this result can be 
w 

extended to cover the whole of the first quadrant. 

Buck has performed an important service to theoretical 

nomography. Taken in conjunction with the parallel ideas of 

Steyskalova, Buck's paper suggests a way forward for further 

theoretical development. 
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3. Some Recent No~am~ 

With the availability of electronic computing aids 

it may be thought that nomograms are no longer used. This, 

however, is not the case. The following three exa~ples will show 

that there is still a place for nomograms. In addition, I have 

learned that quite recently nomograms have been used in the petroleum 

industry, to compute Viscosity, and also by the meteorological office. 

My first example comes from the Directorate of Overseas 

Surveys. This directorate has prepared a booklet devoted to nomograms 

for survey computations (103). fourteen nomograms of the alignmentI 

I 
 type are given, all for calculations frequently encountered by land 


surveyors; for example. the first three give the meteorological 

I correction for the Tellurometer, Geodimeter and the Wild DI 10 

Distomat respectively. An interesting feature is that the booklet 

j is supplied with a nomogram reader, an ingenious device necessary 

to read one of the nomograms~ The nomogram reader was developed by,i Mr. Bowring of the computing section of the directorate. The preface 

contains the following paragraph, 

'Nomograms ara simple devices which, in the right 

Circumstances, aid rapid computation with little loss of accuracy_ 

Provided their accuracy limits are recognised, they can be used 

to solve many survey problems'. 

The second example is a set of nomograms for morphometric 

gravel analysis which appeared in 1977 (104). These are the work 

of J.l. Van Genderen. The author points out that most methods of 

quantitative morphometric gravel analysis are very time consuming 

and as an illustration of this takes the computations necessary for 

the index of roundness when carried out in the field. He states 

that for one sample of 100 rock fragments it can take between one 

and one and a half hours. Even, he states, if done in the office 

using an electronic calculator it takes from one half to one hour 

to arrive at the required histogram. However, he claims, using one 
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of his nomograms the raw data can be converted into the final 

histogram in less than ten minutes. The nomograms themselves 

are quite simple as can be seen from the formulae which they 

represent. They are for the index of roundness Ir - 2r/Lj the 

index of flatness If = (L + 1)/2E; and the index of dissymmetry 

Id = AC/lj in which r7 l3 E and AC are all distances. 

Before leaving Van Genderen's nomograms it is worth noting 

his comment on the advantage of a nomogram over other methods. 

He states that 'the need is normally for a rapid method which can 

be employed on the spot, so that any anomalies or significant results 

can immediately be examined in the field'. Although the situations 

are different, this view is very similar to that expressed by 

Capt. C.E.P. Sankey in 1911 on the advantages of nomograms on 

military service, «50) and Chapter 37 section 3). 

,I 
The last example concerns the calculation of interest

I• rates, a process which is often more complex than is generally 

recognised. The particular problem is the relationship between flat, 

nominal and effective rates of interest for which the formulae are, 

I 9 = (1 + i/n) - 1 •••••.•••••.••.••••••••••••5.3.1 

~ 
•••••••••••••••• $ •••••f 1 + (iy - 1}(1 + i/n)ny 5.3.23, 

n 

~' y«1 + i/n)ny 1) 

t 
 where f is the flat rate,' i the nominal rate, 8 the effective rate, 


y the number of years and n the number of instalments per annum. 

The problem lies in the fact that, although equation 5.3.1 

can be rewritten to give i in terms of e7 equation 5.3.2 cannot be 

similarly rearranged so that i is given explicitly in terms of f. 

Given f, i (or e) can only be determined iteratively. Such an 

iterative procedure had been given in the Bulletin of the Institute 

of Mathematics in 1979 and this appears'to have prompted J. Rickard, 

of the University of Melbourne, to produce a nomogram for the 

same problem. His nomogram appeared in the October 1980 issue of 
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the same bulletin (105). It is elegant since it cQnt3ins only 

straight lines, or very good approximations to straight lines, 

and is read along lines which are parallel to the axes. The 

accuracy requirements in such problems make nomograms quite suitable 

as a method of calculation. This last example illustrates that there 

are still aress of computatiDn in which a nomo~ram is still the 

best choice. 
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Conclusions. 

The question which springs to mind at the end of this 

thesis is iHas nomography a future?'. In the widest sense I 

think it has not. It is true that in special cases, such as 

the three mentioned at the end of the last chapter, nomograms 

may still be the most suitable method of calculation, but as 

a general method of calculation their fate has been saaled by 

the advent of the pocket electronic calculator. This is not to 

say that whenever a calculator is used it will produce a result 

which in some way is better than that which would have been 

produced by a nomogram~ but rather that the former has some kind 

of psychological advantage over the latter. An answer is displayed 

in lights and therefore has some veracity although the calculation 

which led to it may not have been at all appropriate. There is 

another reason for the demise of the nomogram; it is the difficulties 

associated with anamorphosis. Although the approximation techniques 

of James-Levy and other Russian workers might have improved the 

outlook had they appeared earl~er~ the truth is that they were too 

late and when they came the electronic computer and calculator were 

more attractive alternatives. 

What of the application of modern technology to nomography? 

Two ideas S8em to be worth some investigation. The first idea 

concerns the use of the graphical display techniques of modern 

microprocessors. Although I have suggested that computers heralded 

the end of nomography, I was than thinking of the large machines 

of the 1960's and 1970's. Using the high resolution display of 

the modern microprocessor~ the construction of electronic nomograms 

would seem to be a possibility in those cases where vary high accuracy 

is not required. Advantages of such nomograms would include 

programmable transformation and magnification, something that 

earlier workers neve~ dreamed of. The second idea is more fanciful. 
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It is to simulate nu~erically within a computer some of the 

techniques of nomography. I see this as a way of getting 

reasonable approximations which would then be subject to refinement 

by one of the many techniques which exist for doing this. The 

advantage of such a method~ if there is an advantage in it, would 

depend entirely upon how good the approximation was and how fast it 

could be arrived at. 

As for work on the history of the subject, several avenues 

have been opened up by this thesis. A detailed study of geometric 

computation before 1840 would be a worthwhile undertaking. Then~ 

there is the question of the use made of nomograms in the various 

disciplines. This has only been touched on here because it was 

peripheral to the main theme. Also there are the characters themselves. 

A study of them would widen the field beyond nomography but it would 

be interesting to know something of the life and mathematical 

activities of Dr. J. Clark~ a man of obvious mathematical skills. 

The same could be said of Gronwall, 0.0. Kellogg, Warmus and 

James-Levy. Finally, of course, there is still Hilbert's thirteenth 

problem. 
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APPENDIX I. 

~assauls conditions for r(x,y,z)=O to be expressed 

in the form Z1(z)X(x) + Z2(z)Y(y) 1. 

1 A. 1.1 

Differentiate A.I.1 partially with respect to x 

...Z X' 0 A.I.2
1 + (XZ1' + Z2'Y)P 

Differentiate A.I.1 partially with respect to y 

Z 
2
yl + (XZ 1' + l2'Y)Q "" 0 A.I.3 

Eliminate Xl 1 I + l 
2

Iy from A.I.2 and A.I.3 

pyr 
A. I .4: -

this shows that Z is a function of ~ , fx-om which it 
qX' 

follows that the Jacobian of z and~ is zero, 
qX' 

i .. e" p 1-(~)
dX qXI 

0-
q 1- (~)

dy qx' 

On expansion this gives, 

Y" X" p- +q- -r.9.- 2 s + t .Q. 

yl XI 
 qP 

yll XIIor, p - + q ::z R A.I.5 
yl XI 

yllLet X" 
... U1' .. U2' 

XI Y' 

A.I.S becomes pU 2 + qU 1 .. R A.. I.6 
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Differentiate A.I.6 with respect to x 

dR.. - A.L? 

Differentiate A.I.6 with respect to y 

2Bs U2 + P U2 
I + t U1 = A. 1.8 

dy 

Di ffsrsntia te A.I.? with respect to y 

.£E. U2 U2
, dS 

t+ r + -u + .£g U A.L9 
dy 1 d y 1dY 

Equations A.I.6, A.I.?, A.I.B and A.I.9 will give U1' U2, U1 " U2' • 

::0hence .2.!:!.1 0 
dy 

Y" dU
U => hence -2 ::0 0

2 yl dX 

With these conditions satisfied, X and Y can be found. Z1 and Z2 

are then found from A.I.4 and A.I.1. 

Lecornu's conditions for f(x,Ytz)=O to be represented 

in the form Z1(z)X(x) + Z2(z)Y(y) a 1. 

The first part of Lecornu's reasoning is the same as Massau'sj 

from Z1X + Z2Y = 1 A.I.1 

he obtains A.I.4 but in the form 

ylq Z2 
A.I.10 

XIP Z1 

from which .. + In yl - In Xl1n (:) 1n (::) 
The substitutions T - f=-lnX', 9 m In VI are made,In(::} 
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giving, 

In (:1= T> 9 + f A.I.11 

DifFerentiate partially with respect to x 

a~ H~)) 	= T'p + X' X" 

Differentiate partially with respect to y 

= T"pq + T's~ H:))
2 

i.e. 	 l' a s--- '" Til + T'(In(:))
pq ax ely 	 pq 

let 	 v = s , u 1'" ddX~ ~n(;))pq pq 

then u '" Til + vTI. A.I.12 

Differentiate A.I.12 partially with respect to x 

dU d(TII + vT')p_.+ T'dv A.L13 
dX dZ dX 

Differentiate A.I.12 partially with respect to y 

.aJ! = a(T" + vT')q + T'2J!. A.I.14 
ay dZ dy 

from 	A.I.13 and A.I.14 

pq a(T" 	+ vTI) = p( dU _ T'dV):& q( OU _ TI~) 
dZ dy 3y a x ax 

giving 	 q Ju - p ~ 

ax dY


T' -
q 2.J!. 	- p 2.Y

ax dy 

Put 	 bI '"' Tf 


then at,) .. Tttp and - T"q.
~ 
dX 	 dY 
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Substituting in A.I.12 

.1 aw ... .1 aw :: U - vw 

P dX a y 

which are Lecornu's conditions. 
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APPENDIX II. 


If F(x3 y,z) = P,(X)R,(y,z) + P2(x)R 2(y,z) + P3(x)R3(Y'~)' 

then f(x,y,z) satisfies the ordinary homogeneous linear differential 

equation 

f 

f 
x 

f 
xx 

F xxx 

P1 

P, t 

P, It 

P, t , t 

P2 

P2 
, 

P II 

2 
P2

t f , 

P3 
P3 I 

P3" 
P3 ' I t 

= 0 

The necessary and sufficient conditions for the existence of this 

equation are (i), that the matrix N, given by 

f fy Fz Fyy F yz Fzz f yyy Fyyz fyzz F zzz 

• 
fx 

fxx 

f xxx 

Fxy 

fxxy 

F xxxy 

fxz 

fxxz 

f xxxz 

Fxyy 

Fxxyy 

Fxxxyy 

Fxyz 

fxxyz 

f xxxyz 

fxzz 

fxxzz 

f xxxzz 

Fxyyy 

Fxxyyy 

f xxxyyy 

Fxyyz 

fxxyyz 

F xxxyyz 

f xyzz 

fxxyzz 

f xxxyzz 

Fxzzz 

Fxxzzz 

F xxxzzz 

must be of rank less than 4, 

and (li ), that the matrix Nt , given by 

Nt = 

F 

f x 

fxx 

F 
Y 

fxy 

f xxy 

Fz 

f xz 

F xxz 

fyy 

f xyy 

fxxyy 

fyz 

f xyz 

f xxyz 

fzz 

f xzz 

fxxzz 

must be of rank 3. 
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APPEI\JOIX II I. 

To show that the bes t functional sc~~ is_ the 10.9 cu-i th!!lic 

scale, assuming that the error is measured by relative error. 

For a regular scale the scale factor l is constar.t and is given by 

L fex ) n 

x 
n 

If the scale is not regular the scale factor will vary with x. 
At Some point x1 the scale factor will be given by 

t(X) - f(X1 ))
L .. lim :: ff(x,)
x 1 x-)x1 
 x - x 1 

Two conditions are required of this scale, 

(i) that r = ex is constant, : is the ~alative error]Cx 
0:: a the error in x. 

and (ii) that m = leis constant. x 
x x 


m Lx ex • x

It follows that = is constant,r 

i.e. x Lx = C, where C is same constant 


• • • x f I (x) - C 


f' (x) .. C 

x 


f (x) ,.. C In x
1 

i.e. the bast scale is a logarithmic scala. 
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APPENDIX IV. 

A demonstration of the equivalence of a result of 


, Steyskalova and a result of Buck. 


Steyskalovata theorem 5tates that, for an equation F(x,y,z)=O 

to be of the third nomographic order it is necessary and sufficient 

that the following six equations are such that each is a consequence 

of the other five. 

F(XO'Y1'Z1) = 0, F(XO'Y2,z2) 0, A.IV.1 
F(X 2'Y1,z3) = 0, F(X 2'Yo,z2) = 0, 

Since F(x,y,z) = 0 is of the third order it can be rewritten as 

z = C(x,y). 

Taking particular pairs of the equations of A.IV.1, say f(xO'Y1'Z1) • 0 

and F(x1,yo'z,) ~ D,they can be expressed in the forms 

z1 = G(xO'Y1) = G(x"yO) 

Steyskalova's result can now be stated in the following form, 

if G(xO'Y1) .,. G(xpYO) 

and G(XO'Y2) = G(x 2,yO) 

then, 

if z3 = G(x 2'Y1) it follows that z3 '" G(x1'Y2)' 

or G(x2'Y1) '" G(x1, Y 2) 

Buck's result deals with the expression, 

Z .. F(x,y) == f(</> (x) + ljJ(y», 

again an expression of, the third nomographic order. 


His result states that for any a and c in the range of x and any band d 


in the range of Y, with la-ci and Ib-d! sufficiently small, there must 


exist x and y near a and b respectively such that, 

, 

f(a,b) ::: F( c, y) 


F(c,d) = F(x,b) 


F(a, d) - F(x,y) 
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The sufficiently small criterion apart, this is the essence of 

Stsyskalova's result with, for example, a corresponding to xo' 
c to x1, x to x2' Y to YO' b to Y1' d to Y20 
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