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The History and Development of Nomographye. Abstract of the Thesis.

That body of knowledge which has the name Nomography caonsists
of the theory and practice by uwhich the rasults of Geomstry are
used to facilitate numerical calcﬁlation. The subjsct existed
under various titles before 1891 when d'0Ocagne coined its present

namee.

Methods in use before 1840 are examined to determine the
foundations on which the subsequent structure was erected., 1In
particular, the development of analytical geomstry and of the

concept of level curves, or contours, are noted,

For the main period of development, up to 1900, the works of
Lalanne, Massau and d'Ocagne are examined with that of other less
important contributors. Lalanne published his ideas in 1843 giving
the first indication of a related theoretical problem, that of
'anamorphosis or the replacement of curves difficult to construct
by others more regular, preferably straight lines. Massau published
many important results in 1884 including the form of a determinant
equation which must be satisfied by components of a functiaon of
three variables if that function is to be represented by three
systems of straight lines. Also in 1884, d'Ocagne described a new
type of nomogram depending on the alignment of points; previous
nomograms had depended on the intersection of curves. The possibility
of alignment in the case of three variables is seen to be related

to Massau's determinant equation and thus to the problem aof anamorphosi

For the period from 1900 two main themes are followed. The
ma jor theme examines the attempts to solve the problem of anamorphosis
for functions of three variables. Surprisingly, this requires the
examination of comparatively recent material and it is found that
theres is no neat and tidy solution; at least not one that has yet
been found. The second theme considers the propagation and uss of
nomographic ideas with special reference to Britain, where they
were not readily adopted. Finally, some recent developments in the

subject are examined.
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Introduction.

That body of knowledge to which, in 1891, M.P. d'Ocagne
gave the name of Nomography, consists of the theary and methods
by which numerical calculations can be accomplished through the
use of the results of Geometry. The discipline was not created
by the act of naming, many fundamental results had been obtained
before this occured, but d'Ccagne was a most influential figure
within the subject and the name Nomography is rarely limited only
to describing the subject after 1891. 1In this thesis it refers

to the entire discipline.

No history of the subject exists, D'0Ocagne and Lallemand
both wrote on historical aspascts but their writings tend to have
a personal bias and in any case do not cover the whole period of
the subject's existence, (3), (26), (71). Those short historical
notes found in encyclopedias seem often to have been compiled fram
these same writings of d'Ocagne and lLallemand. There would seem
to be a place for a history of the subject written from an indep-
endent viswpoint. This thesis attempts to fill that place.

Having said that I must justify the scope of my thesis.

That which could have been written under the title 'The History
and Déuelopmant of Namography' would perhaps contain enough material
for many theses. As the first in the field I have been in the
happy position of being able to select the period covered and the
particular bias of my thesis. As for the period, I very saoon
saw that it would be possible to cover from the 1840's to the
present, which generally speaking is the period during which
nomography has existed, and also to give a little of the earlier
developments which led to the birth of the discipline. As a
mathematician the choice of a bias was easy. I would attempt to
trace the theoretical development of the subjecﬁ viewed as a
branch of mathematics. It was the necessary development of a
practical idea into a theoretical structure which interested me.

This development was necessary because the improvements of the



practical idea, necessary to make its use more effective, gave
rise to theoretical problems of some complexity., To thase who
beliesve that much of Pure Mathematics originétes as the refinement
of practical ideas; the histary of nomography makes an interesting
case study. Both the content and the time span are limited enough
to enable the student of such matters to picture the whole

development.

Although the approach is mathematical, I am conscious that
the subject may be of interest to those historians of science who
ara not mathematicians, I have therefors tried to confine the
mathematical arguments to the minimum consistent with a full
understanding of the underlying ideas. For a fuller mathematical
treatment the reader is referred to the ariginal papers listed
in the reference section but in just a few cases it seemed desirable
to give some amplification within this thesis and I have added soms

appendices with this in mind.

At this stage it is worth indicating how theoretical problems
arise in nomography. They arise as a result of a search for eleganc:
and simplicity., The most elegant nomograms are alignment nomograms
in three variables for they are easy to read and to construct, when
they can be constructed. If they consist of straight lines rather
than curves, then sa much the better. In this we have twoc problems
of fundamental importance to nomography; firstly, how can ws
transform a curve into a straight line and, secondly, hou can we fin
out whether a relationship between three variables can be representg
as an alignment nomogram? Investigation of this typa of question
leads into the realms of very interssting mathematics. A further
consequence of the idea that relationships in three variables are
to be preferred to relationships in four or more variables leads us
to cohsider the possibility of the superposition of functions, to
be specific can we represent functions of n variables as super-
positions of functions of m¢n variables? This suggestion is due

to Hilbert and is the substance of the thirtesnth of his famous



twenty three problems posed at the beginning of this century (1),

A further interesting consideration is the following. Once
we have produced a nomogram suppose that the frame in which it
lies is of an inconvenient shape causing some of the scales to
be too small or too large to be read semsibly. How can we
transform the frame so that it is more convenient and so that

the nomogram gives more meaningful results?

In recording the history of nomography this thesis places
special emphasis on attempts to resolve these theoretical problenms,
for not only are they of value to nomography, but they have an

intrinsic mathematical interest of their ouwn.

‘Une final point. Although claims of priority should not
play a very important fole in the history of science, their role
becomes mors important when one worker appears to taks the idea
of another and claim it as his own. The evidence suggests that
d'0Ocagne might have done this twice; with an idea of Massau's which
led to d'Ocagne's notion of critical points and with Soreaut's notion
of nomographic order which led to the d'Ocagne genus classification
of nomograms. The alternative explanation is ignorance of the
results of other workers in the field, In d'Ocagne's day this
could be forgiven; it is less acceptable today yet it seems to
have happened. R.C. Buck, in work sponsored by ths U.5. Army
Research Office, gave in 1976 results which had been obtained by
the Russian T. Steyskalova in 1959, Admittedly they used different
methods and had different aims but Buck should have knouwn of

Steyskalova's results. The evidence in these cases is presented.



CHAPTER 1,

The Origins of Gsometric Computation,

Examples of the early use of diagrams as an aid to
computation are not difficult to find. Whether they can be considered
as early examples of Nomography depends upcn ones interpretation of
the word Nomography. The interpretation accepted here is that a
Nomographic method is one which leads to solutions of a class of
similar problems rather than to a solution of a single problem. As
an illustration of this we may consider the Greek method of solving
the equation x2 + ¢ = bx described by Boyer (2), in which the
construction is a specific one for a particular pair of values of
b and c. This method cannot be called Nomographice A truly
Nomographic method would be one which allowed, at the time of reading
the diagram, a choice of values for the variables b and ¢ and then

gave X.

The early precursors of Nomograms were invariably concerned
with computations related to Navigation or Astronomy and usually
featured a moving element., D'Ocagne cites the Quadratum Horarum Generale
of Regiomontanus* which appeared in the last quarter of the fifteenth
century and which was used to find the solar time at the instant of

observation (3).

Many diagrams with moving elements are to be found in
Sir R. Dudley's "Del l'arcano del Mare" which was published in Florence
in 1661 and of which a fine copy is to be found at the National Maritime

Museum (4). These diagrams, known as 'volvelle' diagrams are intended

* -
Regiomontanus was Johann Miller who, after the fashion of the times,

was known by the Latin form of his birthplace K#nigsberg (King's Mountain'
He lived from 1436-1476 and amongst other trigonometric achievements

seems to have been responsible for the law of sines of spherical triangle
This would confirm his interest in the mathematics of Astronomy and

Navigation.



for such purposes as "to find the age of the moon™ (p3f3) or

"to observe and compute the altitude of the Pole Star" (p23 f107).

One should consider the examples cited so far as special
cases in that they do not arise out of a general theory of geometric
computation. An important step in the development of such a theory
was made when Fermat and Des Cartes developed coordinate geometry,
However, the step from development to application was a long one, for
both developed computational procedures which almost entirely depended
upon the straight lines, circles and conics of the older geometry
but ignored the multitude of other curves which the new geometry had
made available., Ffurthermore, their methods for determining the roots
of equations of the third and fourth degrees suffer from the same failing
as does the Greek method for solving the quadratic in that they are

specific to an individual equation and not general.

In addition to coordinate geometry certain other ideas
needed to become accepted before Nomography could begin to establish
itself as a useful discipline. The first was that of the graphical
representation of data for the purposes of estimation and prediction
which depended in part on the development of Statistics. Curves for
the representation of numerical laws of population and mortality by
age aﬁpear to have been in use towards the middle of the eighteenth
century. The German statistician Pfeiffer is known to have produced
such graphical tableaux. Later an application of this type to the
statistics of the consumption and maintemance of paving stones in Paris
was made by Minard in 1820 in a paper with the title "Plan for canal
and railway for the transport of paving stones to Paris™ (5). A second
important concept required was that of the representation of thres
variables on a two dimensional plane. This concept is important sincs
it permits the graphical representation of a double entry table. A
double entry table is nothing more than a table of values entered by
selecting a row, which designates one of the variables, and a column
which designates a second variable. The intersection of this.row and
column give ths value of the third variable. Such a table is the one

known as the Table of Pythagoras which'gives the result of multiplying

10.



two integers. An exampls is shown in figure 1,1,

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 é 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5110 15 20 25 30 35 40 45 50
6112 18 24 30 36 42 48 54 60
7114 21 28 35 42 49 56 63 70
81 16 24 32 40 48 56 64 72 80
8118 27 36 45 54 63 72 81 90
101 20 30 40 50 60 - 70 80 90 100

Figure 1.1

Some special cases of the graphical representation of
three variables on a plane are of quite early origin. They arise
from geographical or geophysical considerations, two of the variables
besing the coordinates which fix a position on the sutface of the
earth and the third representing the measure of some phenomenon
at that point. At the beginning of the seventeenth century, Halley
recorded lines of equal magnetic declination in this manner and

later Euler plotted the 1line of the magnetic meridian.

The first general application of the idea that three
variables could be represented on a two dimensional plane is due
to Philippe Buache who, in his "Essai de geographie physique" published
in 1752, described how, by taking soundings, one can chart submarine
channels and the slope of the sea bed in coastal waters. In particular
he did this for the English Channel, recording depths from 10 fathoms
increasing by units of 10 fathoms (6). The idea of level lines
representing topographic surfaces is clearly present in this work but
Buache does not take it to the logical conclusion of drawing contour

lines on land. This step was taken in 1780 by Ducarla of Geneva (7).
The works of Buache and Ducarla were descriptive in nature

and in no way represented attempts to calculate anything. For an early

application of the idea present in the concept of topographic surfaces

1.



to calculation one can note the Horary Tables of Margetts published
in London in 1790 (8), but the first purely mathematical application
is due to Louis Pouchet. The event which was to lead to this
application was the decision in France to convert weights and measures
to the metric system. Such conversion is greatly helped by the use
of double entry tables to convert,; for example, the weight of a given
quantity of a substance in the old system to the weight of the same
quantity in the new system. The authorities did indeed publish such
tables but an article of law dated under the Republican calendar as
"Germinal an IU"* states "in place of tables of relationship betwsen
old and new measures, which had been provided by the ordser of 8th.
May 1790, will be graphical scales to estimate these relationships

without having need of any calculation",

Pouchet, who was a member of the Council of Arts and
Manufacture, published in 1795 a work on graphical scales for the new
weights, measures and monies of the French Republic which included an
appendix called "Arithmetique Lineare", In this appendix he gave
graphical methods for the elementary arithmetic pracedures of addition,
subtraction, multiplication and division, for squaring and for the
extraction of roots. The method for multiplication is a graphical
equivalent of the Table of Pythagoras of figurs 1.1 and is given as

figure 1.2.

It will be seen that the curves are the family of
equilateral hyperbolae xy=c, where the constant ¢ determines a particular
member of the family. Elementary though the idea may be it represents
an important conceptual step forward. However, it is not clear whether
this advance follows in the footsteps of Buache and Ducarla in the
sense that Pouchet has plotted the projection of lavel lines of a
hyperboloid on to a surface or whether the hyperbolae are merely the
results of the variation of the products of two factors. The latter

appears to be the case,

* March /April 179s.

12,
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An area in which speedy calculations are required is
that of Ballistics and these calculations would normally have been
carried out by means of tables. Graphical procedures, if they arse
accurate enaugh, may well produce a faster result with less chance
of a mistake. It is therefore no surprise that in the early nineteenth
century graphical solutions to problems of Ballistics appeared, and it
is even less surprising, in view of the development so far, that
this should have been in france. In 1814 and 1818 d'Obenheim gave
graphical means for solving problems in Ballistics (9). Level lines
were used by Piobert in 1825 in order to verify firing tables faor
ricochet, which had earlier been calculated by Colonel Lyantey (10).
In 1830, Terquem gave the general principle of graphical double entry
tables applied to the graphical construction of Lombard's tables.
In the same volume Bellencontre summarises the works of d'Obenheim

on double entry tables as applied to the problems of artillery (11).

Curves of the type x2y = constant appear in a work by
Allix, a naval construction engineer. These curves are used to find,a
without calculation, weights and measures in the metric system. This

work was published in Paris in 1840 (12).

with the exception of Piobert's verification of ricochet
tables, the examples of the use of level lines given above are of
mathematical laws for which an expression in the form of a function of
two independent variables was known. The application of the technique
to laws resulting from experimental observation are less frequent. One
example of this by Capt. Di.dion appears in the "Journal de l'Ecole
Polytechnique". The author represents by curves the results of

experiments on the relative accuracy of bullets of different shapes (13

The development of railways in france was a spur to the use
of geametric computation. In 1844 Fevre produced a topographic type
plan which related the velocity of a locomotive to the weight of the
train and the gradient (14). Indeed, railway developmant had an

important effect upon the development of Nomography. Lalanne and

14,
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d'0Ocagne in France, and Massau in Belgium, were involved with the

state organisations connected with railway construction. The

examples used as illustrations in Lalanne's 1846 paper are concerned

with railway construction (5).

The first case of double entry tables and their corres—
ponding graphical representations appearing together is found in
both the French and the English translations of "A Complete Course
of Meteorology" by L.F. Kaemtz. The French translation appeared
in 1843 and contained an appendix by Lalanne in which he gave
graphical representations of 42 of the 113 numerical tables
contained in the original. The English edition, translated with
notes and additions by C.V. Walker, appeared in 1845, 1In the
preface to this work, reference is made to Lalanne as being the
first to generalize the representation of three coordinates in
one plane. In the appendix, reference is made to what is seen as
a consequence of graphical representation, namely, that interpolation

can more readily be carried out (15),

An important type of Nomogram which was developed in the
1880's is the alignment nomogram, the important feature of which is
that a line which joins two points on separate scales intersscts a
third scale at a point which gives the solution to the problem
being investigated. This idea had been expressed by Mobius in 1841
for multiplication only, but in two different ways. Firstly, he
noted that the line joining the points with ordinates Y4 and Yo af
the parabola y2=x cuts the axis of the parabola at a point with
abscissa YqYor The second solution he based on the theorem of

transversals of Menelaus (16).

By the early 1840's, the as yet unnamed subject that was
to be called Nomography had been conceived. The development of the
sub ject was about to begin in earnest with the work of Lalanne,

followed by that of Massau and d'Ocagne.

15,



CHAPTER 2,

The Development of Nomoqraphy as a Distinct Discipline,

1. Lalanne and Anamorphosis,

The first important advance to follow the idea of
the graphical representation of a double entry table was the
consideration of ways by which the construction of such a
representation could be improved without affecting its value
as a computational tool. This was the principal idea expressed
in Lalanne's paper of 1846 (5). Lalanne states that thers is
no reason why a double entry graphical table should not have
the sides of its frame graduated according to some non-regular
scale. Referring to a diagram which is essentially the same as
figure 1.2, he points out that if it was to be deformed by a causs
such as the unequal contraction of the papser, or if the sketch
was moulded on to a geometric surface, the accuracy would in na
way be altered because the relative position of a poiﬁt of
intersection of a vertical and a horizontal with a particular curve
before deformation would not be changed by that deformation; reading'
such a chart does not depend upon absolute measurement but on
relative measurement. He develops this argument by suggesting
that there would be advantage in replacing the original curves
by curves which were more simple and more easy ta construct, in
particular by straight lines which could each be fixed by no more

than two points.

Recognising that the deformation described has something
analogous to the effects produced by reflection in curved surfaces,
to which physicists had already given the name Anamorphosis,

Lalanne proposes that the new branch of Geometry which he believes
must result from these considerations should be given the name of
Anamorphic Geometry. In fact the name Anamorphosis seems to have

been more widely used.

The paper referred to here was not the first indication

of Lalanne's ideas on anamorphosis. In 1843 a paper had been

16,



presented by him to the Paris Academy of Sciences, on the
subject of 'the substitution of topographic planes for double
entry tables' and 'a new method of transformation of the
coordinates' (17). The 'Commisaires' wsre Cauchy, Elie de Beaumont
and Lame, who reported in September 1843 accepting the paper's
conclusions (18). In an interesting footnote to their report the
commissioners say 'In effect, supposing that X and Y are functions
of x and y respectively, one can generally reduce to the
construction of straight lines the solution of an equation of
the form

f(z) = X¢(z) + Yx(z)
f(z), ¢(z), x(z) designating three functions of the variable z
which one supposes a function of x and of y'. This is intended
as an extension to Lalanne's treatment and is takea up by Lalanne

in the 1846 paper.

Thus we have clearly expressed by Lalanne in 1843 the
idea of anamorphosis, an apparently simple idea but one which would
still be the subject of learned papers more than one hundred years

later.,

Before considering the method by which he proposes to
achisve anamorphosis, Lalanne makes some comments on graphical
methods. Certainly, some of what he has to say might seem rather
trivial today but this is because the construction of graphs is
now commonplace. for example, he explains how one may plot a
relation of the form ¢(x,y;z,) = 0 by giving z the successive
values of 0, a, 2a, 3a, ... and plotting the plane curve relation
between x and y in each case. In the development of this theme
he acknowledges the influence of Monge's Descriptive Geometry.

In stating the virtues of graphical representation he makes the
point that sometimes more information may result than was originally

expected and he gives the following example.

17.



The surface area of a cutting or embankment is given by
2

(Axy)

z = —

2(B F x)

— C
(vhere y is the axial length and x is the gradient).

The depth of the section is given by Aty
BT x

which he notes is 3z and thus, for a constant x, may be
dy

interpreted as the slope of a curve. This, houwsver, does seem to

be something of a special case.

Another advantage claimed for the graphical method is
that it can shouw properties of a function that are not shoun
explicitly when the function is written. To illustrate this he
takes the example of finding the roots of x3 + px + g = 0, where
p and g are both less than 1. The approach is to consider x as
a parameter and p and q as rectangular cartesian coordinates,

The graph, figure 21, consists of a set of straight lines, sach
line corresponding to one value of x. Lalanne abserves that the
envelope af these lines is given by 4p3 + 27q2 = 0 and that the
real roots of the equation number one, three with two equal, or
three unequal as the point (p,g) lies outside, on, or inside the
envelope, i.e. as 4p3 + 27q2 is greater than, equal to, or less
than zero. He also notes that the same figure can determine the
probability that x3 + px + g = 0 has three real roots when the
only knowledge of p and q is that p<P and q<Q. This problem is
resolved by comparing tuwo areas, one given by the curve

4p3 + 27q2 = 0, the other being 4PQ,

Lalanne attempts to explain how cne may bring about
anamarphosis for the given relationship f(x,y,z,) = 0, but
succeeds only in expressing in mathematical symbols what he has

already said in words.

18.



Figure 2.1

Lalanne's graphical procedure to find the roots of

x3 + pXx + @ = 0. p is measured along the horizontal

axis in the range -1 to 41, q along the vertical axis
_in the same range. The numbers on the straight lines
are the values of x. It is a curious fact that on
Lalanne's original the lines for the x values * 1.1,

+ 1.2, F 1.3 are positioned incorrectly.
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His arqument is as follous,
given f(Xy¥,25) = 0 ccee2e1a1
and suppose a transformation which sxpresses 2.1.1 as
Fo(d(x),0(y)ym(z)) =0 cevs 2.1.2
then, if we put x, =dx), y, =U(y), z4 =7(2)...2.1.3
2.1.2 becomes F(xq, y,, 2;) =0 ceees 2,144

If the axes of coordinates are graduated according to
X =0 (x) and yq =y(y), instead of equal parts then the projections
of the zq level curves will be straight lines if 2.1.4 is of the
first degree in xq and Y49 conic sections if of the second degree
and so on. He concludes by pointing out that the degree of 2.1.4 in
xq and y4 can be considerably less than the degree of 2.1.1 in
x and y, a statement with which few would disagree but of little

practical use,

The illustration given by Lalanne of anamorphosis are all
rather special in the sense that they owe much to insight and
intuition and little to mathematical analysis. The graphical
representation of z = xy is transformed from hyperbelae into
straight lines by letting X, = log x and Yq = log vy, with the
result that x4 + yq = log z. Lalanne's original diagrams are
reproduced in figure 2.2. The natural extension to functions of
the type z = ¢ (x) ¥(y) and z = ¢ (x) + Y {y) is made and the idea
of a class of functions with separable variables is expressed,
Furthermore, it is pointed out that, even if variables ars not
separable, they may become so by the substitution x1 = ¢(x,y),

Y1 = ¥(x,y) and the following example is given as illustration.
As with many of Lalanne's examples it is taken from his experience
a8s a civil engineer working on railway construction and in this

Case gives the volume of a cutting.

The expression is , _ ax

X +y
and the suggested substitutions are

y1 =X ty and Xq = ax2

20,
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Figure 2.2 ,
la}anne's illustration of a.namorphovsis. The

graph on the left is of 2z = xy, the values
of z being written on the hyperbolae, while
+hat on the right is of log z=1log x + log y.-
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giving zZ =X
Y4
then, by fixing z successi\/ely 850y 20,y 30y ececoaseay
we get Y1 =.% Xq3 Yq 7 I X1y Y1 T 1 X7 eeccenccnn,
2a 3o
i.e. a set of straight lines passing through the origin aof

the coordinates Xq3 Y1

Without giving any details Lalanne advocates the use of
projective transformations in conjunction with anamorphosis to
deduce ‘'an infinity of other analogous figures'. By doing so
he is anticipating something which has become an important

feature of Nomography.

Lalanne points out a few of the mathematical consequences
of anamorphosis. The most obvious of these is that the substitution
X4 = log x will lead to a shift of the origin since xq = 0 will
correspond to x = 1, He alsc points out that there is no reason
to suppose that the functions ¢(x) and y(y), used to graduate
the axes, should increase or decrease in a constant manner and that
it is possible that they have a maximum or a minimum. To illustrate
he uses y = a + bx #+ cx2 and applies anamorphosis to reduce it to a
straight line by the substitution Xq = a t bx + cxz. The straight
line is thus y = X4 but the parabola is not represented by the
wvhole of this line for, if we assume for the purpose of illustration

that b>0 and >0 then Xq = a+ bx + cx2 will have a minimum when

x=-b , i.e. when x4 = a - QE
2c 4c,

A further point that he makes, and which is worthy of nots,
is that for a function z of x and y in which the two indapendent‘
variables are separable, anamorphosis is not unique. Returning to
the exampls z = xy and the ahamorphosis already considered which
produced z 1= X + y1, he points out that a further anamorphosis

1
applied to the straight lines can produce concentric circles,
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The anmamorphosis required is to let x, =¢&1, y2 =/ and z, =/z4
. . 2 2 2
giving 22 = X + Y23
fixing zo in turn as QyB , Y eeses

we have the concentric circles
2 . 2 or 2 . 2 Bz 2 2 2
= = + =
2 T Y2 » X7 Y 2 KT YT e

Taking up the general point made by Cauchy in 1843 (18),
Lalanne contents himself by taking the expressiaon
f(z) = X(x) ¢ (2) + Y(y)p (2),

and making the substitutions
Xq = X(x), Yq = Y(y)

and pointing out that, for fixed values of z,

F(z) = xq ¢ (2) +yq 9 (2)

are straight lines.

Lalanne also makes the important point that anamorphosis is
not confined to cartesian coordinates but can be applied to polar
coordinates or indeed to any coordinate system and he illustrates
the point with reference to the hyperbolic spiral puw= a? which,
with the substitution p,= logps w1 = - logw becomes an Archimedian

spiral.

So convinced is Lalanne of the merits of geometric computation
that he advocates a Universal Calculator to replace ' the slide
rule, the use of which is so common in England'. His Universal
Calculator is reproduced as fiqure 2.3. Amongst the calculations
which can be carried out using it are multiplication and division;
raising to the powers of 2,3 and higher powers and finding the
corresponding roots; multiplication and division by 2173 the
calculation aof nrz, (4/3)Trr3;.simplification of calculations
containing g, (1/2)g, 29, /g, ¥ 2g; and the solution of ratios to
find chemical equivalents. The advantages that he sees for his
device over the slide rule include the following. Results depend
only on reading, there being no moving parts, and any shrinkagse or

deformation cannot influence the result (presumably shrinkage or
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1846 paper,(5).
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deformation of a slide rule may be of part of the rule only);
there are physical difficulties over the use of the rule which
he claims is not really portable while the chart is portable and
cheap. In these views, and others that he expresses, hé does
seeam to have abandoned rationality in order to advance his idea,
His final comment on the Universal Calculator is that he looks
forward to the time when it will appear in school rcoms and in
publib squares alongside clocks and sundials assisting in
calculations as the clock and sundial assist in tha mesasurement

of time.

Lalanne includes in his papsr a short section on the
application of graphical representation to certain natural laws,
by which he means laws governing population size and mortality.
The point that he makes in this connection is that ignorance aof
the explicit form of the function of a natural law need not inhibit
the construction of a graph., To illustrate this point I take a

simplified version of his exampls.

Suppose, for some species of living creature in a well
defined area, we have the following table giving the number living

at each age.

Age 0] 112131415
No. living 0]100f S0§40] 30} 20

The problem is to find the number of individuals betwesn the ages
of a and a,, (a1 > a).

If x is the number of individuals between 0 and a

and y is the number of individuals between 0O and a4

then, if z is the number of individuals between a and aq

z =y - x, which will be represented by straight lines although

x = f(a) and y = f(aq) are unknoun.

x and y can bs tabulated as follouws:

Age a1 1 213§ 4 5

x(or y) | 0{100{ 150|190} 220§ 240
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Lalanne's chart, figure 2.4, is constructed in the
following way. Two unscaled perpendicular lines of equal length
ara drawn, one for the x axis the other for the y axis. The z
lines are then constructed; z = 0 is the line joining the free ends
of the x and y axes and the other z lines are parallel to it and
at suitable intervals to provide a regular scale for z, They
scale is now marked using the information given by the table.

The x scale is identical to the y scale.

To find the number of individuals between two ages one
takes the horizontal through the lowver age, the vertical through
the higher age and takes the value of the sloping line on which

they intersect. Interpolation is possible.

By 1846 many profound ideas on geometric computation had
been expressed by Lalanne. The ideas had not been explored in great
depth but nevertheless they constituted a body of knouwledge uwhich,
on the one hand provided useful computational tools, and an the other

gave a foundation for Nomography on which those who followed
could build,
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Figure 2.4
Lalanne type chart for a natural law in

a case for which the explicit form of

the law is not known.

c 8
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2. Saint—-Robertt®s Criterion.

At the meeting of the Academy of Sciences of Turin an the
7th April 1867, Paul de Saint-Robert read a paper which represented
the first truly mathematical attempt to determine whether a given
equation F(x,y,z) = 0 could be transformed into an equation of the
form Z(z) = X(x) + Y(y), thus facilitating anamorphosis (19).
Ironically, in view of Lalanne's slightly contemptuous attitude
to the slide rule, Saint-Robert was led to his analysis by

consideration of a slide rule.

Saint-Robert was engaged in editing tables for the
calculation of difference in altitude bassed on the variations of
barometric pressure and temperatures when he conceived the notion
of a slide rule, analogous to the logarithmic rulse, by means of
which he could obtain mechanically the required results. He wrota
"In reflecting on this reduction of double entry tables into a slide
rule, I saw that one can, in certain cases, solve certain equations
with three variables by means of a slide rule graduated in a

convenient manner",

He states the problem in the following way.
Given the equation in three variables -
F(XyY5Z3) = 0 ceovevvccoscasscsccccnsascsosasssceslolal
is it possible to construct three parallel scales, two fixed
and one moveable,. in such a manner that in any position of the
three scales the corresponding values satisfy eguation 2.2.17
If the three scales AB, CD and EF are positioned as in figure 2.5,

EF being the moveable scale -

C

ofF-~-4a
O

.
|

|

|
|
|
-

)
la)

o ===+ o

Fiqure 2.5
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and a,b,c,d specific points on the scales, then Cd = Aa + bc
or, letting X = Ra, Y = bc and Z = Cd, then -
Z =X+ Y ceccecvsccsecvcccssccsacacosocseclelel
If we suppose that Z is a function of z only, X of x
only and Y of y only then, in.order that the slide rule may be
used to solve the given equation, it is necessary that the twa
equations 2.2.1 and 2.2.2 give the same value of z for the same

pair of values of the independent variables x and y.

Thus, the problem he sets out to solve is this,
Given an equation in three variables
F(X3¥52Z) = 0 secccocsnccesoccccncassonnsalael
can it be transformed into an equation
Z(z) = X(x) + Y(Y) vecccosscsccacacsoocs 2:242
such' that the values of z given by both equations are equal for the

same pair of values of x and y ?

In his solution, Saint-Robert firstly observes that which
Lalanne had noted, that there.is no problem in the case of z = xy,
which reduces to log z = log x + log y, nor in the case of
¢(z) = Y(x)X(y), which reduces to Z = X + Y when Z = log ¢ (z),
X = log P(x) and’Y = logx (y).

The barometric pressurs formula with which he was concerned

is of the type shown above, for it can be written as -

ZZ-az,y (274 + x) (yofy = 1)
A 1-az

and transformed into Z = X + Y by
Z2-~2a
Z =1og(=E=2%), X =1og (278 *+ x), y = log(ysfy - 1)
A1 - az
He notes in passing that he has constructed a device on these lines,

the ‘rhabdohypsologiste’,

For those forms of equation 2.2.1 for which the reduction

to the form 2.2.2 is not apparent by inspection, or after simple
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rearrangement, Saint-Robert finds a condition which, if satisfied,
shows that reduction is possible and gives a method of achieving

this reduction.

Starting with equation 2.2.2 and noting that x and y ars
independent variables but that z is a function of both x and y,

he proceeds as fallous:

ineﬂ Z(Z) = X(X) +Y(Y) ....‘00.‘.0........-CQOOOCOCI..ZDZOZ

and differentiating it partially with respect to x,

—a.;..a-.z- = X'
9z 9x
and with respect to y,
3Z.3z  _
9z dy
we haves-—~
-B—g- = x'/’a_z- = Y!/_&_
3z ax ay
If R =X_.', ’ thenR = azzax I.OI.'...C.....-.......2.203

Y’ 3z/3y

An expression for R can also be obtained from 2.2.1

i.e. F(x,y,z) = 0.

Differentiating partially with respect to x gives -

B.EJ,.QE.B_Z_ = 0 i.e.ai=-?_€£a£_

3x 9z 93x ax oF/az

and with respect to y,

3_E+a.£.a£ = 0 i.e.£=—m.

3y 9z 9y 3% 3Fhz .
Therefore R = 3F/9x
3F/3y.

Returning to the eqguation R = x'/y! and taking logarithms
to the base e of both sides we have 1rR = InX' - 1n¥' ;
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differentiating partially with respect to x gives =

3( 1nR 1 oxv
3 x X!

and again with respect to y gives ~

ax oy

Thus, Saint-Robert's criterion is as follows;

An equation F(x,y,z) =0
can be reduced to the form Z(z) = X(x) + Y(y) if R satisfies
the condition 32§ i) = 0
ax By
where R = 93F/3x (or R =‘Egééﬁj
o/ 2/oy)

If this condition is satisfied, Z(z), X(x) and Y(y) may be found
as follows;
for X(x), integrate 1nR _ Xm twice;

9 x X?

for Y(y), integrate Y' = X' which contains no x;
R

for Z(z), substitute X and Y in 2.2.2 and use 2.2.1 to eliminate
X and y.

Saint-Robert concludes his paper with two well chosen examples,
well chosen because a knowledge of higher mathematics, in the one
case of hyperbolic functions and in the other of elliptic functions,

enables the reader to check the correctness of the methad.

Saint-Robert's criterion is important because it is the first
step in a line of enquiry which many others followed, and because
it gives an sffective procedure for solving the problem, if it can
be solved, which leaves nothing to insight or intuition. As an
illustration of this, consider the case of z = xy referred to so

often already.
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F(x,y,2) =z - xy =0

..B_E = __y’ ..EE. = _x, R = .Y.
9% dy X
1nR = lny =~ 1nx, BSnR) . _ 1
3
ax X

2

9°(§nR) = (@, so the condition is satisfied;
dx 9y

Tt

hence, X''_ _ 1 s InX' = -1nx, X'='1 s X = lnx,
X!t X X
Y*=1.x_1 Y = 1ny,
3
X y Y

Z =1nx + 1y = 1n(xy) = Inz.

e 1lnz = 1nx + lny.

The constants of integration have not been ignored; they

32.
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3. The Contribution of J. Massau.

The year 1884 has an important place in the history of
Nomography. It was the year during which d'Ocagne published his
first paper on the subject, a paper which introduced alignment
nomograms and therefore marked the beginning of a new phase,

It was also the year during which a Belgian engineer, J. Massau,
published the results of his work,but in his case the work was
concerned with intersection nomograms and followed naturally from

the work of Lalanne. Therefore, in one year two papers appeared,

one of which'considerably enhanced existing knowledge while the
other branched along an entirely novel path., 1884 is also an
important year in a more general way. Before 1884 publications on,
or related to, graphical computation were occasional and demonstrated
gocd ideas rather than contributicns te a growing body of knowledge,
but after 1884, and in particular from 1884 to 1932, there was a
steady flow of papers on both practical and theoretical aspects

and this period must be regarded as the most important for Nomography.
In passing, it is of interest ta note that the subject seems to

have been dormant betueen 1932 and 1956 1in the sense that there
were apparently no steps taken to develop it, but that from 1956 onwards
there has been a renewed interest in it. This renswed interest
takes two main forms, one the application of computing and approx-
imation techniques and the other the application of mathematics

to the problems of anamorphosis and the superposition of functions. -
Throughout the period from 1884 to the present, houwever, Nomograms
have been in continucus use whether or not the development of the

subject was dormant,

Massau's paper is one which is full of interesting ideas,
some of which have survived still bearing his name, others have an
anonymous presence in the literature or are attributed to others,
while some have disappeared completely. Massau was a civil engineer
who was concerned with the construction of railways in Belgium just
as Lalanne had been in France., His papsr was published by the

association of former students of ths Ecoles Speciales de Gand (Ghent)
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and was part of a serises of articles under the general heading
'L'intsgration Graphique et ses applications' which appeared at
intervals between 1878 and 1900 (20). It is the sections numbered
177 ta 207 which are of particular relevance to this study. The
ideas on which the work is based have origins earlier than 1884,
for a sub-heading of the paper reads 'Developpement des theses

presentees au concours universitaire de 1873-74°,

A part of Massau's work which is well knouwn, is on the
expression of the equation F(x,y,z) = 0 in the form 21(z)X(x)+22(z)Y(y)=1.
1 defer consideration of this to a later section where I also examine

a similar exercise by lecornu which appeared two years after Massau's.

Massau begins the relevant section of his paper with a
review of the work of Lalanne, which is clearly the starting point
for his own work. He points out that Lalanne's methods are inconvenient
in that they require much time for the construction of charts. He
guotes an engineer named Ricour who, in order to produce four charts
for a particular problem concerned with railway construction, required
56 hours of calculation and 112 hours of drawing; i.e. one whole
week's work. Massau's work, therefore, has a practical object, to
make improvements which will reduce the total time requi}ed for the

construction of charts. To this end he must look to Lalanne's concept

of anamorphosis.

Perhaps the most important contribution of Massau to the
development of nomography was the introduction of determinants
into the discipline, although at that time he may only have been
using the tools of a more skilled mathematician. He presented a
theoretical argument which would bs the cause of much mathematical
activity in the future, raising a problem which will be considered
at length later. Under the heading 'Use of a general system aof
co-ordinates', he poses the problem of representing the variable w

defined by the equation -

f’(u,v,w) =U Q‘.....l.."l'..II.O...2.3.1
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Without explaining houw this could be done, he requires the

construction of two sets of curves -

f1(x,y,u) = D .-..ol..oc.t.ol.'.-ooo'0..--.00..02.302

Fz(x’y,v) = 0 .oono..t.nl"‘...c.c...anonilt...2'303

In a rectangular cartesian system having co-ordinates (x,y)

2.3.2 will represent curves, each one of which is attached to a
particular value of u; similarly 2.3.3 will represent v curves.,

Thus to each point of the (x,y) plane there will correspond a pair
of values, ons u, one v, which can be considered as curvilinear
co-ordinates at that point, Therefore equation 2.3.1 can be used

to obtain a set of curves representing w, expressed in the curvilinear
co—ordinates u and v, by fixing particular values for w. To obtain
the equation for w in the rectangular cartesian co-ordinates x and y
it is only necessary to eliminate u and v between equations 2.3,1,
2.3.2 and 2.3.3.

Massau now supposes that u, v and w can be represanted by

straight lines, in which case,

for the u lines; ax + by + ¢ = 0, where a,b,c are functions of u,
1] " " ® t ] ¥ " T 1 ] 1 "
v 3 a'x +b'y +c' =0, a',b',c V,

L 5 a''x +b''y +c'' =0, a'',b'',ct' " "oy,

On eliminating x and y he obtains the condition,
a b c
al b* c! = 0
a'l b'l cl!
This can be uwritten as a (u) b (u)
c (u) ¢ (u)

-a'(v) b*(v) -
2'(5) c'(\\:) 1 0

angw) b"(w) 4
c"(w) c"(u)

a form occasionally referred to as the Massau determinant.

Massau observes that this determinant contains six functions

and is more general than the form considered by Lalanne which only
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contained four functions. He has in mind here the form
suggested to Lalanne by Cauchy which can be written -

Z1(z) X(x) + Z,(z) Y(y) = 1. He further points out that his
method contains the latter, for if the u lines are given by

x = # (u) and the v lines by y = y(v),

then o (u) 0 1
0 plv) 1 = 0
a(w) B(w) 1
giving A(w) 1 +  B(w) 1 = 1
Hu) Wv)

which is aof the Cauchy form.

Massau continues his paper with rather brief notes on
topics which are so commonplace in later nomography that one accepts
them as commonsense, giving little thought to their origins. He

notes Lalanne's idea of graphical elimination, that is, if one is given
flu,v,t) = 0,
Fiu,t,tt) o,
and  fo(t,t',u) = O

then to find the relationship between u, v and w it is not necessary

to eliminate analytically t and t' but merely to plot the three
relationships on the same sheet and carry out the elimination by the
suppression of the curves t and t'. He also suggests the use of
transparent sheets, each carrying one set of curves, bsing superimposed
on a sheet carrying another set of curves, thera being sufficient

common variables to make this possible,

Massau devotes considerable space to the discussion of systems
of straight lines. He defines the degree of a system of lines as

follouws.

If the lines have for their equation ax + by + ¢ = 0, uwhers
a, b and c are functions of u, then, if the three functions of u
are each of integer degree n, the system is of degree n. The

discussion with which he follows this concerns itself with systems of
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the first and second degrees and, although it is not amongst the
most durable of Massau's contributions, it is worth some attention

for its interesting approach.

In a u-system of the first degree represented by
ax + by + ¢ = 0 it may be supposed, for convenience, that a = Au=-Ay4,
b = Bu—81, c = Cu-C,;, where A,Aq, B,Bq, C and Cq are constants.
Then ax + by + ¢ = 0 can be written u(Ax + By +C) = A,x + Bqy + Cy
or ua = B
It will be observed that if u = 0 then B =0 and if u = then
& =0, Massau then suggests taking a new system of coordinates
based on the axes CX and CY in which CX is the line B = 0, and so
corresponds to the value u = 0, and CY is the line ©®= 0 and corresponds
to the value u = «, Since the equation for every u-line in terms
of @ and fBis uo= B, it is clear that every u-~line passés through
the new origin C. In general, the equation of the new system is
AY = uX and the lines can easily be determined by making X = X
and Y = u. In fact the straight line X = )carries the scale of u

which Massau calls the axis of u (figure 2.6).
Alesl

V o u=3

u=0
c A X

Figure 2.6

A particular concern of Massau is the intersection of any straight
line with the lines of a straight line system. Suppose that the
system 18 AY = uX; cecenes2:3.4
and the straight 1line is given by:—

X = Xo + Ku'eoeeee2:3.5

Y =Yoo + Mu'eeeees2.3.6
where u' is the distance along this line from the point (Xo,Yo).

On substituting 2.3.5 and 2.3.6 into 2.3.4, we have:-

A (Yo + Mu') = u(Xe + Ku') ,
i.e, Kuu' + Xou -~ AMu® - AYo = 0O
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or more generally, Auu' + Bu + Cu' +0 = 0
which is of the form u' = Mu + N
M*u + N?
This last form leads to the theorem given by Massau that any
straight line is cut by a u-system of the first degree in a

homographic scale of u.

The praoblem of the representation of a function by three
systems of the first degree is given some attention. If the variables
are u,v and w then, by a suitable change of axes, one sest, say the
w-set, can have the form:-

y-—wx =0
x

Let the u lines have the form:-
ay + bx = ¢
and the v lines the form:-
a'y + b'x = ¢t
where a, b and c are first degree functions of u and a'y, b' and c!

first degree functions aof v.

If we eliminate x and y from thess three we have:-

w . b'c - be!
A ac' - a'c

which has the form:-

....‘.‘...Q‘.O......l‘..l...‘..."2.3.7

w =A<+ Bu + Cvu + Duv 2.3.8
A' + B'u + C'V +D.UV LI B BRI BY AW B BE BE B B BN Y WY B N B AR I OB 3 L[] ®

Massau now posas a more difficult and more practical problemj given
2.3.8 how can we draw a chart for w by means of three systems of

straight lines of the first degree?

Since a comparison of 2,3.7 with 2,3.8 is not possible, as
2,3.7 contains more coefficients than 2.3.8, Massau resorts to an

interesting alternativa.

In 2.3.7, w will be indeterminate in the case where ¢ = c' = O,
For w to be similarly indeterminate in 2.3.8 we must have
A+ Bu+Cv +Duw = 0

and A' + B'u + C'v + D'uv = O
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These two equaticns can be combined to form a second
degree equation in either u or v. Suppose that the roots are real

and that ugy and v, are a pair of solutions. With the substitutions,

- = gyt - =yt = 1 ? 1 = gt
u Ug u'y v Vg v, c u', c v',
we then have
] b'u! - bv!
-X aV' a'u' ........QG.I..QQ..’..‘0."..'..203’9

and

w = Bqu' + Cqv' + Du'v'
B1|U| + C1'V' + D'y'y?

'....QI...00....‘..0.2.3.10

which can be written

w= (By'+ Ev')u' + v'(Cq + (D-E)u') ceee2.3.11
(B1l+ E'v')u' + V'(C1' + (DI_EI)UI)

2.3.9 and 2.,3.11 can now be compared and if we choose E=0, E'=0
and A=1 then the three systems of lines ars:-

y - wx = 0

Cy'y = C4yx +u' (D'y = 0x~-1) = 0

Bi'y - B4x +v' = 0
in which C4, C4', B4 and B,' can be found from the given form,

and u', v' from the roots of the quadratic equation in u or v,

Massau also attacks the preceeding problem by means of
trilinear co-ordinates. Trilinear co—-ordinates ara a form of
homogeneous co-ordinates related to a fixed triangle ABC, the triangle

of reference (figure 2.7). The
c co-ordinates (a,B,Y) of a point P are
such that © is the perpendicular
distance .of P from the side BC,
B that from AC, and 7Y that from AB,
ay Band Y have the form p-xcosf-ysind .
The sides AB, BC, CA therefore corres-
pond to Yy =0, a=0, B=0
respectively, It is clear that only

two of the co~ordinates are required

to determine a point, the third can be

Figure 2.7 found from the relationship.aot+hg+cy=24 ,
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where a = BC, b = AC, c = AB and A 1is the area of triangle ABC.

Massau does not say why he has chosen to use trilinear
co-ordinates but it is a most appropriate choice for first degree
systems since, as we have already noted, all lines of a first
degree system intersect in one point. Three such systems will,
therefore, in general, give rise to three points which can be used

as vertices for the triangle of reference, as in fiqure 2.8.

Figqure 2.8

An equation of the form bB — c¢ Y =0, in which b and ¢
are of the first degree in u, represents a straight 1line for any
specified value of u, Furthermore, it is always satisfied by B = O,
Y = 0 showing that all of these lines pass through A. Similar
reasoning appiies to the v lines which converge on B and to the w

lines which converge on C. We have then the following equations:-

u -~ lines; bB = cY
v = lines; c'y = a'a
w ~ lines; a"a = b"B
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and if we eliminate from these three equations the co-ordinates
&, B and Y we have

a'c' b = a' b" ¢

It should be noted that each side of the triangle of refersnce
will correspond to a line from two of the systems; AB is both a
u line, say u', and a v line, say v". Similarly, we can say that

BC corresponds to v' and w" and AC to u" and w',

It follows that if u = u' and v = v", then w is indeterminate since
an infinity of w lines intersect the straight line of which AB

forms a part.

To make use of these results, Massau applies them in the case of
D+ Au + By + Cw + A'vu + B'wu + C'uv + Euvw = 0 c.0se2.3.12

which can be seen to be a form equivalent to 2.3.8.

In-order that w should be indeterminate it is necessary that
D + Au + BV + C'UV = U ...'.'...I‘203'13

and C+ A'w + B'U ¥+ EuV = 0 seecscncsseZalald

We can eliminate v between 2.3.13 and 2.3.14, getting

UZ(AE - B8'C') + u(AA* + DE - BB' - CC') + A'0 - BC =0 ..2.3.15
The problem is now resclved quite simplye
2.,3.15 is solved, assuming that it can be, for real u.
The two roots u' and u" are assigned, one to the side AB of the
triangle of reference, say u', and one to the side AC, u".
2.3.13 will now give corresponding values for v;

v", corresponding to u', is attributed to the side AB

and v', corresponding to u", is attributed to the side BC

The values w' and w" are obtained by expressing that which makss v
indeterminate. One such equation for this is:-

D+ Au +#+ Cwu + B'luw = 0 etecsscosecassovssocsnsecelel,1B
Substituting u' in 2.3.16 will give w" which is assigned to the sids

8C and then u" gives w' assigned to the side CA,
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v, W

M(u,v,w)

Figure 2.9

The triangle of reference then gives two lines of each
system, A system needs three lines to be completely determined.
To achieve this it is necessary to take a set of values satisfying

2.3,12, for example u = 0, v = 0, w = -0, and choose any point M
: c

to represent thase,

Then the u system is represented by AM, AB; AC corresponding to
u=0,u=u'y u=u"(figure 2.9). The v and w systems ars
similarly represented by three straight lines. It should be noted
that Fhe triangle of reference and the point M can be freely chosen

so that the resulting chart is the most convenient.

This particular approach is of some interest for in 1907
d'Ocagne published a paper describing his concept of critical
points (21). Although he was concerned with alignment nomograms
the same idea of indeterminacy based on a triangle is used. It is
unfaortunate that d'Ocagne, who ssems always to have been concerned
with claiming priority for his own ideas, did not give Massau the

credit which was his due., Of course, it may have been that d'Ocagne
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had not read Massau's paper himself and was familiar only with

its major results, but this seems unlikely.

Massau treats second degree systems alsoc by means of
trilinear co-ordinates. The equation of a u-~line is:-
10.U2 +mBU +nY = 0 ooo.-.-tao.c-o-.|.¢.2.3.17

in which 1, m and n are constants.

The line u = 0 corresponds to ¥ =0, i.e. AB in the triangle
of reference and, if we write 2,3.17 in the form

la +mBl +nyl_ = O,
u u

we see that when 1 = 0, i.e. when u is infipite, @ = 0 so that
u

the line u = « corresponds to BC of the triangle of reference.

If we differentiate 2,3.17 with respect to u we have

le + mB = U .....'..........'....‘..203.18
and if we substitute lau = — mB, obtained from 2.3.18, in 2.3.17,
2
we have -mB u +mBu +nY = 0
: 2
ineo mBU + 2nY = U 0..-0-00....0..-.2.3019

2.3.18 and 2.3.19 each represent straight lines which intersect in a
point on the envelope of 2.3.17. The equation to the envelope is
obtained by eliminating u between 2.,3.18 and 2.3.19 and is

m?82 - 4Inay = 0
which is the condition for 2.3,17 to have equal roots. The equations
2.3.18 and 2.3.19 give the points of contact of the lines u = 0 and
U = o with the envelope, for, when u = 0 and Y=0, we have B =0
or the point A and, when u = «and a =0, we have B8 =0 or the

point C.

Massau states the theorem that each straight line u = ug
of a system is cut by the others in a homographic scale of u of
which the'points are found on an auxiliary system of the first degree

given by o+ mB = O where U = u + u,. Furthermore, the u line
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parallel to u = » is cut in a scale proportional to u and can

be used as the axis of u.

Lines of a second degree system will not all intersect in
one common point as do those of a first degree system. Thus, such
a system may be represented by the whole lines shown in figure 2,10.

The points of interssction

Uy referred to in the theorem
are marked with circles.
They must satisfy the
twoe equations,

1u2a +muB +ny = 0

luozu *mugB +ny = 0

If we subtract these we have
1{u + ug)a +mB =0 2,3,20

or writing U = u + u,

1Uc1. +mB=0¢

Fiqure 2.10

This is the equation of a first degree system in U, a system which
converges on the vertex C of the triangle of reference. It has already
been shown that such a system would cut a straight line in a homo-
graphic scale of U, and, since u, is a constant in each case, in a
homaographic scale of u., This proves the first part of Massau's
"theorem. The second part follows from earlier work in which (i)

the axis of u is shown to be a line parallel to u = and (ii)

the line BC is known to correspond to u = »,

The system can be determined analytically in quite an
easy manner in the case where three particular tangents to the
wenvelope are given, If the tangents are CB corresponding to u = =«
with point of contact C, AB corresponding to u = 0 with point of
contact A and DE corresponding to u = Uy then the trilinear

co-ordinates %, B, Y are known since the triangle of reference is knouwn.
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It is necessary to find 1, m, n for the relationship
1u2a + mug + ny = 0

We suppose that the equation of DE is given in the form
Pa+ QB+ Ry = O

This must be identical with
luzoa +mugB +ny = 0

and therefore the equation to any line may be written

Pug + Q@E)B + RY = 0

o Yg

which determines amalytically the system.

It should be noted from earlier results that being given

the tangent u = « amounts to being given an axis for u, being

given the line u = 0 amounts to being given the origin for u and

being given the line u = u, is sufficient to find the scale of u

U= 00 (figure 2.11). It follouws then
that 1f on a tangent to a conic
a scals for u is set out starting
from any origin, and if, from
the peints on this scalse
tangents to the conic are
drawn, a system of the second
degree is obtained. 1If, on
another tangent, a scale of

v is set out, then another
system of the second degree

is obtained, furthermore,

a tangent will be, at the
same time, a line of u and

Figure 2.11 a line of v, There will be

. some relation between u and v and it is easy to see what it is since

the v line will be cut by the u lines according to a homographic scale
Tof u. A relationship of the form

Auv + Bu + Cv + D = 0

must apply, since it can be written in the form v = —(Bu_+ D)
Ay + C
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From the foregoing it can be ssen that the construction of a
second degree sysiem need not be difficult. For example, given the
equation in the form lu2 o +tmuB +ny = 0, the envelope is
given by m282 - 4lnay = 0. Given two tangents and their points
of contact one can make these points of contact C and A of the
triangle of reference and assign to the tangents the values of
u = «» and u = 0 respactively. They intersect at the point B of
the triangle of reference (figure 2.12);
The line 2.3.20, i.e. 1(utu )a +mB=0
becomes lu& + mB = 0 when u,= 0, a
first degree system converging on C
which will give the points of inter-
section of the second degree system with
u =0, i.e. AB, If we make ©¢= 0 in
lu%x +muB +ny = 0 we have

muB +ny = 0
a first order system converging on A,
which will give the points of inter-

section of the second degree system

with u = ©, i,e. BC. UWe then have

tuo points for each u line, Lines other

u=0
than u =« and u = 0 could have been
Fiqure 2.12 selected,

Finally, we note that if one of ®,B or Y is constant we
have particular forms of the envelope. If & is constant the envelope
m2 B“ = 41n Y& becomes a parabola, if B is constant it becomes a
hyperbola with o =0, Y =0 as asymptotes and if Y is constant it

becomes another parabola.

I have not encountered the use of trilinear co-ordinates in
connection with nomography outside Massau's paper and it seems likely
that the idea was never fully developed. Indeed, the evidence suggests
that his paper may have been more frequently referred to than read.

The only indication that anyone has taken this part of it seriously
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is the fact, already mentioned, that d'Ocagne appears tao have
taken Massau's ideas on indeterminate values and adapted them to

his own work.

After the digression into trilinear co-ordinates, Massau's
paper returns to more conventional ideas. He considers the case
of a function which can be represented by three systems of the
second degree., He returns to the point which he made early in the

paper that three systems of straight lines depend upon a relation

of the form:-

a b c

a' b' ¢ = 0

a" b" c"
but in the case of second degree systems a, a', a" .... represent
functions of the second degree in u, v, w., It follouws that the
determinant will give an equation of the sixth degree containing

2
U, v, wy, u, v2, w to the first degree.

The real problem is the inverse problem and Massau is the
first writer to express-it. He states it in the particular form
to which his work has led him, that is, given an equation of the

. . 2 2
sixth degree in u, v, w, U, V5, W, how can one construct a
camputation chart? He recognizes that the general method would

consist of identifying the given equation with:-

a (u) b (u) ¢ (u)
a' (v) b' (v) c' (v) = 0
a" (w) b" (w) c" (uw)

Massau states that this leads to laborious calculations which is
both a perceptive recognition of the nature of the problem and an
understatement of its difficulties. He does, however, treat some

particular forms.,

First he considers the casse

w=a+ bu + cv + duv .Q.l.'....c00.0.0"00203I21

a1+ b1u + c1v + d1uv
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The method is to take rectangular cartesian axes 0%X,0y and to

put -

I

X = DU + QU + dUV  ceevecscscovccanscneelele?
Yy = bqu ¥+ CqVv + dqUV ceeesecetcasccnsees2e3,23
© 2.,3,21 now becames

v (y *taq) = x + a

which shouws that the w lines form a system of the first degree.

We can eliminate from 2.3.22 and 2.3.23 v and u in

turn, giving -

x = bu - Y- bqu 3
c + du C1 +d1u --...............2.3.44

4
X~ CV = y - C'IV 3
b + dv b1+ d‘]U ...".""“‘0-002. .25

2.3.,24 represents a second degree system in u and 2.3.25 a second

degree system in v, The three systems can easily be constructed,
Houwever, there is an anomaly with which Massau deals at length,

It arises from the fact that if from 2.3.24 and 2.3.25 one calculates

x and y one does not return to 2.3,22 and 2.3.23; a denominator is
present which leads to an extraneous solution of form AGlv + Bu + Cv + D
= 0. Values of u and v satisfying this solution render w indeterminate.

Massau indicates how to deal with this problem.

His second example is wz +uwN +P = 0 ..60..2.3.26

m n

in which M, N, P are functions of the first degree in u, v and uv.
The method proposed is to put

x:

.-...--o.o.on-..o-o.-aot-ooo-oco.0.1203.27

000.0.oi.lota..tooo"ooloacuoocll..l2¢3.28

~
"
=lo =iz

" These transform 2.3.26 into Wl o+ wx y = 0, a system of second
degree straight lines. Again, from 2.3.27 and 2.3.28, we can
eliminate u, then v, to get the v and u lines, both of which arse

systems of the second degree. In this case also an extraneous
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solution presents itself. Massau treats this second example

a second time and in more depth by making use of determinants
because, as he states, the calculations become simple by so doing.
The importance of this lies not in the particular example but in

the use of determinants.

The brief description given here of Massau's contribution
to the development of namography bylno means covers the whole
of the material in his paper for there is much of a practical nature
concerned with civil enginesring. However, the purpose of this
thesis is to trace the development of the ideas present in nomography

and the study must be limited to that.

Massau's contribution to nomography is caonsiderable, His
paper bristles with ideas, some of which have not stood the test
of time, but those that have occupy respected positions within

the discipline.
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4, The First Papers of Maurice d'Ocagne.

When d'Ocagne published his first paper on nomagraphy
he was twenty-two years old and a student engineer; the citation
refers to him-as 'Eleve-Ingenieur des Ponts et Chaussees' (22).
The paper describes "A new method of graphicel calculaticn" and
attacks a problem previously investigated by Lalanne; (figure 2.1).

D'Ocagne approaches the problem in an entirely different manner.

The problem is that of finding the solution of an eguatien
of the type x" + px + q = 0. D'Ocagne concentrates in his later
development on the special cases of n = 2 and n = 3 which are of
the most practical value. However, the method is cdeveloped for a
general n. His approach is graceful, one is almost ‘tempted to
say beautiful, in its simplicity. It could today be of value to
anyone wishing to solve a large number of cubic equations, since it
provides good approximations to the roots which can then be improved

using a computing device. I have not come across any case of it

being so used.

The basis of d'Ocagne's method is the use of an unusual
coordinate system called by him 'Parallel Coordinates'. It will
be necessary to digress to describe briefly this system. For a
full account of the system one can do no better than read a set of
articles by d'Ocagne also published in 1884, in which he describes
two simple systems of tangential coordinates, the parallel coordinates
already referred to, and axial coordinates (23). Parallel

coordinates owe their origin to the line coordinates of Plucker (24).

, The basis of the system of parallel coordinates is-a pair of
parallel lines AU, BV and a transversal AB. AB need not be perpend-

icular to the parallel lines but in this simple description it

will be assumed to be.
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u v
N
M
w
i JB

Figure 2.13

In figure 2.13 the co-
ordinates u and v are

measured from A along AU

and B along BV respectively,
positive values upwards and
negative values dounwards.
Thus the pair of coordinates
(u,v) representing the points
M and N, where AM = u, BN = v,
define completely the straight
line MN,

Certain consequences follow from such a system, those relevant

to the discussion are:

(i) If the coordinates of a variable straight line (u,v) are

connected by a relation F(u,v) = 0, then the variable straight

line is a tangent to a certain curve, the envelope, having F(u,v) = O

as its equation.

(ii) If F(u,v) =0 is of the first degree then the envelope reducas

to a point, i.e. the equation v + au + b = 0 represents a point P,

(iii)
drawn parallel to the axes AU
and 8V to cut AB at q,

as a

(iv) From (iii) it

follows that P is between

If through P a line is

RU ahd BV if a is positive
and outside if a is
negative,

(v) If AP cuts BV in B®
then B8' = -p,

Similarly, if BP cuts AU in

A'y then AA' = -b (fig. 2.15).

a

u v
4
N
P
NI
M
A o 8
Figqure 2.14,
u v
BI
AI
P
A B
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The above results are applied to the solution of the
equation x™+ px + g = 0 as follous. Choose as variables p and q

and represent p by u and g by v, also replace X by a particular

value o .

The equation is now v + oau ra = 0
which represents a point P (in contrast to Lalanne's treatment
in which the corresponding equation represents a line). This
point is easy to construct by virtue of (v) above. UWe only
need to find the point of intersection of AB' and BA' where
ARt = —a™1 sndee = —a . s a check, or alternative to

one of the lines, we have the result of (iii) that:- QA = -
as

Taking a sequence of values of a , all positive in order that the

1
a

points lie between the parallel axss, points carresponding to the
values ay, Gy @3y eseence of the parameter are obtained. As each
point is obtained the corresponding value of o should be recorded

near to that point,

These points will lie on a certain curve Cn which can be
drawn when sufficient points have been plotted. Figure 2.16 shous
the curve for C3 which accompanied d'Ocagne's original paper; the
same general form applies for other values of n. Note in particular
that (iii) shows that when @ = 1 the point is always mid-way between

the parallel axes.

In order to find the roots of an equation consider the
example of figure 2.16, x> - 7x +6 =0,
We see, by comparing it with v + a u +o = 0, that n = 3,
@ corresponds to x, u = =7 and v = +6, so we must align the
point -7 on the left hand parallel axis (p on the sketch) with +6
on the right hand parallel axis (g on the sketch). The line
Joining these points intersects Cq at 1 and 2 and these are two
roots of the equation. There must now be a third root which, in

view of the sign of 6, must be negative, therefore in the equation
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3 3
x = 7x +6 =0, replace x by =x giving x - 7x = 6 = 0.
Solving this in the manner indicated above we find that there
3
is one root, namely +3. Therefore the third root of x - 7x + 6 =0

is -30

This method is the first example of an Alignment Nomogram
although neither word is used in the paper to describe it, The
superiority of the method of estimating values by aligning two
points over the method of estimating the point of intersection of
three lines is undeniable. Great credit is due to d'Ocagne for

introducing the method.
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D'Ocagne's alignment nomogram for xB-f px +-q =0.

Its simplicity is appreciated by a comparison with Lalanne's

nomogram of figure 2;1.
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5. Lallemand's Hexagonal Nomoqram.

In 1886 a paper was presented to the Paris Academy of
Sciences by Charles lLallemand in which he described his hexagonal
nomogram (25). This type of nomogram originated in 1883 when
Lallemand, employed by the "Nivellement general de la france",
was preoccupied with the simplification of the calculations carried
out by that organisation. He was later to become the director of
the Nivellement general., A brochure describing the method appeared
in 1885 but this was for use within ths organisation only, as
d'Ocagne makes clear in his '"Nomographie' (30). In a paper
on the origins and state of nomography presented to the Academy
of Sciences by lLallemand in 1922, the method is referred to with

~some pride (26).

The basis of the hexagonal methaod is the following property

of Geometry - I translate from Lallemand's 1886 paper.

"The algebraic sum of the projections of a segment

of a line on two axes having an angle of 120" betuween
them is equal to the projection of the same segment
onto the internal bisector of the angle betuween

these axes'.

Y

Figure 2.17.
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In the figure 2,17, OU and OV are the axss with 0OW as
their internal bisector. If XY is the given line then the result
states that-AD + OE = CF, A simpler faorm of the result is
obtained by making OX the straight line, in which case figure 2,18
applies and the result is 0OA + 0B = 0OC,

%
<

Figure 2.18.

The proof of this is elementary. For the use of figure 2.18 as a
nomogram 0OU, OV and OW can be scaled according to the lauws

f1(U), fz(V) and fi(w) respectively, in the directions indicated,
to give the relationship f,(u) + fz(v) - f(w) = 0. To read the
nomogram, given say u and v, it is necessary first to find X, the
point of intersection of the perpendiculars to OU-and OV at u and
v respectively. Then from X drop a perpendicular Dnto‘UM to find
the corresponding value of w. Lallemand suggests the use of an
oriented transparency which takes the form of a regular hexagon
on which is engraved the three diameters, which he refers to as
index lines, If the point of interssection of these diameters

is placed over X, then XA, XB and XC can be made to coincide

- with parts of the diameters and the task of reading the nomcgram
will be greatly eased. Of course, it will also be necessary to
engrave some parallel sets of lines, perpendicular to the index

lines, in order to orientats the transparency.
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The method is of interest partly because it appears
to be independent of earlier work on Nomograms and partly
because it is ths first example that requires an orientated
transparency. OCther writers had already suggested a transparent
sheet carrying an engraved line as an aid to reading a nomogram,
but the reascon for this was to keep the nomogram clean rather than

as an essential part of it,

There is more flexibility in the method than may be
obvious from a cursory inspection. The lines 0OU, 0OV and CW may
be displaced in directions perpendicular to themselves without
changing the positions on the lines of A, B and C in figure 2.18.
Figure 2,17 shous that the three lines may be displaced parallel
to themselves which implies that 0 need not be the origin of
the three variable axes; in this case A, B and C represent the
corresponding origins for u,v and w. Such flexibility means,
for example, that if it is convenient to do so, the three scales
can be the sides of an equilateral triangle, or, that if the range
of the variables is to be increased, then it can be done without
unduly increasing the size of the nomogram by displacing the scales
to accommodate the increased range. In figure 2,19 the increass

in the range is shown by the broken lines.
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Figure 2.19.
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Lallemand claimed more for his nomogram. He claimed that
it was applicasble to all equations in which, directly or after
anamorphosis, the variables could be separated into groups, of at

the most two, in a sum of products of functions such that:=-

Ezfq(x1,y1) Fol(X0sy0) Fal(Xz3¥3) eseveneass = 0
The method by which he proposes to deal with such an expression
is simply to replace the corresponding linear scales by diagrams
having two sets of 'isoplethes'. The word isoplethe occurs
frequently in Nomographic writings of this time; it designates
a curve having a fixed value for some parameter. The more
variables the more complicated is the nomogram and in this respect
Lallemand's idea is more limited than he himself believed. As an
illustration of what was done consider Lallemand's own hexagonal
nomogram giving the deviation of a compass for a particular ship,

'Le Triomphe'.

The formula with which it deals is
§=a +msinf +ncosg +b sin 2 r +ccos 2g,
where & is the compass bearing; a,b,c are constants particular
to the ship; m,n are known functions of © (the magnetic declination),

and H (the horizontal magnetic component).

It is split up as follows:-
w=24
v = m sing

U =necost +bsin 2 .+ c cos 28 + a

]

giving w = v + u.

@ and H do not appear explicitly on the nomogram as they are

obtained from the latitude ( A) and longitude (L) and therefore

a network for ( A,L) is substituted for a network for ( ©,H).

Figgre 2.20 shows the plan of the nomogram, the basis of which is
the esquilateral triangle ABC, and figure 2.21 is lLallemand's final

| nomogram. The dotted lines indicate an example where A= 42° N,

L = 20° y (Ouest), = 41-5° giving &= 11-8°.

Lallemand has certainly taken the simple idea to a very high

level of complication.,
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6, Two Early Attempts to Solve a Problem of Anamorphosis.

It has already been noted that Saint-Robert investigated
the problem of expressing the equation F(x,y,z) = 0 in the form
2(z) = X(x)} + Y(y) and produced a criterion to determine when
this is possible with a method for finding Z(z), X(x) and Y(y)
when the criterion is satisfied. Although Saint-Robert does not
appear to have been concerned with the application of his result
to Nomography, it has stood the test of time. As illustration
of this one can cite two relatively recent examples in which it
is considered worthy of mention; in "Nomography" by Otto published
in 1963 (27), and in an article by James-Levy published in
1959 (28).

Two further attempts at a similar problem were made in
1884 and 1886. Both were caoncerned with putting the equation
F(x,y,x) = 0 into the form Z,(2)X(x) + Z,(2)¥(y) =1 .....2.6.1

where z is considered to be a function of both x and y.

One may wonder why the form 2.6.1 was selected rather
than the form chosen by Saint-Robert. The form 2,6.1 is rather
more general in that it is a simplification of:-

Zy(z)X(x) + Zz(z)Y(y) + 23(2) = 0.

Also, Cauchy and his colleagues when considering lLalanne‘®s 1843
paper had remarked that the form f(z) = X ¢(z) + Y x(z) could

"generally be reduced to the construction of straight lines",

The first attack on the problem, in 1884, was by the
Belgian engineer J. Massau (20). In looking at his work we denote

parfial derivatives in the usual manner, i.e.
2
p=3z, =2z, r=23% s=22, t=f&z.
ax dy ax2 9 xdy 8y2

Firstly, Massau obtains a value R from these partial

derivatives which in turn will have been calculated from the




original equation F(x,y,z) = O.
His R is given by,

R=1rg-2s + tp .
p q

Two quantities Uq, a function of x, and Uj, a function
of y, are introduced and linked to the required quantities X and Y
by

Xto= Uy, yn o=

Uy
X" Y

By partial differentiation he is able to obtain from 2.6.1 the

equation

pU, + qU; = R

-...-....o.o......-..-.---..-....o2.6.2

Three more equations are obtained from 2.6.2 by suitable partial
differentiation. They are

rU2+SU1 +qU1' = L.........I...-O.'.l.l'.‘..2.6.3
dx

SU2+pU'2+tU1 = E_B' .....lO..l.."O.I.‘..'....Z.sod
ay

g__l:”z + rU'Z +__B_§U1 +?B~U‘1' = azR eesesassecsasenslabeD
ay oy ay 9 X3y

Equations 2.6.2, 3, 4 and 5 will give the values of Uq, Uy, Uq', U'5,

From the way in which U4 and U, are defined, the following
conditions must apply: 3Uq; = 0, 3Up, = O
3y a x

'.'.0.0....'2'6.6

Also from 2.6.1, by suitable partial differentiation, the
relationship

Z, = 2Y
12 g X

is obtained,

Q...i.........'.....’-.o"..I.I"G..2I6.7

- -

The method is applied as follows.

Form the following equations from the given F(x,y,z) =0
pPA+ qu = R

rA+ sy + qv

BR/BX .0....0'00".2.6.8

sA+ pm+ ty = 3R/3y
AJT + uQ3s + T +V 3g = aZR
3y 3y dy 9axdy
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Use the equations to find A and u

The conditions gA = 0, gp = 0 must be satisfied. eccvecs2.6,9
ax dy

Then we have X" = U, Yr o=
X! A

which will give X and Y,

The relationship betwseen Z1 and Z, is now obtained from 2.6.7,

ie. Z; = p ¥

1
22 q X

and the functions Z1 and 22 from the form 2.5.1.

It is possible that the coefficient matrix of 2.6.8 will
have a rank less than four, as is the case in the example given
below in which the rank is three. In this case one variable may,

in theory, be chosen arbitrarily but, in practice, scome care will be

required if the conditions 9 = 0 and dp = O are to be
ax 3y
satisfied.
. 22
Consider the casse F(x,y,z) = z - x'y = 0.

Then p = 2xy2, q = 2x2y, r = 2y2, t = 2x2, s = 4xy, and R = -4xy.

We have the equations

yA 4+ xu o= 22

yA + 2xy + x2v = 2

2yA + xu o+ yzﬂ = =2

4yA  + 4xu 4+ 2x2v + 2y21T = -4

This system reduces to

yA + xu = =2
Xy o+ xzv = 0
yr +yin = 0

In order that ths first equation may be satisfied, it is possible to
choose A as a function of y only and u as a function of x only by

. . 2
taking A = -1/y and u = -1/x. These give v=1/ and T = 1/y2

but we do not require these.
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The conditions 32 = 0 and 3u = 0 are satisfied.
9 x dy

We have X"_ -1, Y" -1 leading to X = 1nx and Y = lny.

1
Xt x o ¥Y' Ty

Then q . Z5 Y' leads to Z, = Zq4 = Z, and XZ, + YZ, = 1 gives
p Z4 X!

Z = 1/in(xy) = 2/inz. Therefore the form is 2lnx + 2lny = Inz.

The second attempt was in 1886 and is due to Leon LeCornu,
a French mining engineer (29). LeCornu begins his paper with a
reference to Lalanne's work on graphical tables and anamorphosis
and poses the problem of finding when a given relation betueen
three variables F(x,y,z) = 0 can be put into the form
ayX(x) + by¥(y) + ¢, = 0, uwhere az, b, and c, are functions of

z and z is a function of x and y.

We have an additional clue to his reason for starting with
this form. He quotes from the French edition of Culmann's "Traite
de Statique Graphique" thus, 'On ne peut donner de régle générale
pour transformer F(x,y,z) = 0 en azx' + bzy' + cz = 0' (here x' is

a function of x only and y' a function of y aonly).

The results of LeCornu's efforts ars given.

The required form becomes 21(z)x(x) + Z,(2)¥(y) = 1
which, after partial differentiation and some manipulation, leads

to a set of conditions of possibility which are:-

13w = 13w = u-vu
p 3x q 3y
where 1 Bz{ln(q/b)} R v = s
Uy = — .
pg Oxdy pq
qBu ~ pdu
9x dy
N-
qQu ~ pav
Ix dy

and p,qg,s have their previous meanings.

If the conditions are satisfied, then w is a function of z. A

quantity T is calculated from T = J udz.
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.

T is now expressed as a function of x and y using the original

relationship F(x,y,z) =0.

The relationship 2.6.7 obtained by Massau, i.e. Z, =pY',

)
22 qX
also applies in LeCornu's proof. Oenoting ln(é{) by T, 1nX' by -f
Z
2

and 1nY' by g, the relationship can be expressed in the form

f +g =l%%—T.
P

It follows that ln{g)- T is the sum of a function of x and a function
p

of y which are f and g respectively,

Then X = Jef dx, Y = [e3 dy are calculated.

Finally, the relations Z4X + Z,Y = 1 and Ly = Z1eT enable
Z, and Z, to be calculated.

2.2

It may be instructive to consider the case of z = x"y" to

compare the method with that of Massau.

Thus, ln(g) = 1nx - 1lny

P
and 3 In (g} = 1 , 3% 1n _q) = 0
ax p X axay |p
Therefore u =0 and v = 1} , w =0
2.2
Xy

hence u-vw = 0

dw = 0, dw = 0

9 x dy

The conditions are satisfied.

We now have T = Sf0dz = 0
f +g = 1lnx - 1lny
giving, f = 1lnx, g = ~lny
o X feGlnx dx = 1nx
Y = JfeinY dy = 1lny
Z; lnx + 22 Iny = 1
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but Z,= 2,87, d.e. 2,=1

2 1
O Zy In (xy) = 1
Z1 = 1/1n Yz = 2/inz
o lnz = 2lpx + 2lny

The methods of Massau and LeCornu are similar in the basic
philosophy of using partial differentiation; they differ only
in detall., UWriters on the subject, when they refer to these
methods at all, tend only to make the point that Massau's requires
four integrations and LeCornu's requires three, but this hardly
seems to be a point of any great importance. Both methods are
important in that they are successful attacks on an important

problem in Nomography. Further details of both proofs are given

in Appendix I.

It will have been observed that, as in the case of the
example which illustrated Saint-~Robert's criterion, the examples
which illustrate the methods cof Massau and LeCornu do not take
account of constants of integration. This is because it is a
feature of such methods that constants of integration eliminate

themselves,
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7. D'0Ocagne's 'Nomoggraphie!',

D'0Ocagne's 'Nomcgraphie - Les Calculs Usuels effectues
au moyen des Abagues' was published in 1891 (30). The author uwas
twenty-nine years of age and had already a wide practical experience
behind him in the Corps des Ponts et Chaussees and on detachment
between 1885 and 1889 toc ths marine hydraulic service., This
experience would doubtless have made him aware of the need to perform
calculations with speed and with minimum error and this inturn
would have heightened his interest in the techniques of geometric
computation. Before 1891 no book had been published which dealt
with either the principles or general techniques of Nomography,
and on this score alone the book represents an important event in
the development of the subject. The fact that it is a compact,
concise and elegant book adds further to its importance; as an
introduction to the subject it compares most favourably with books
written more than half a century later. It is also the first work

which describes Nomography by that name.

Earlier sections of this thesis have referred to intermittent
papers which have appeared on the subject and we have alsa seen
that in one case, that of Lallemand's hexagonal method, a brochure
was published specifically for ths use of the Nivellement General
de france and was not made available to the public. We may assume
with some confidence that in the period between 1842 and 1891, that
is the period betueen the year in which a law was published committing
France to establish a network of railways and the year of the
publication of d'Ocegne's book, a considerable body of knowledge had
been built up within the technical departments of state. In his
book, d'Ocagne presents this material and other material known at
the time and attempts successfully to extract general principles.
Much of the material is based on the work of Lallemand and d'Ocagne
himself while some is earlier work, but it is all developed consistently
and presented in a form which the reader of a more recent text, such
as "The Nomogram" (31), published in 1963, would instantly recognize.

In fact, many types of nomogram are here publicly recorded for the
first time,
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In his foreword d'Ocagne compares Nomography with
Descriptive Geometry and finds a similarity in that the latter
rests on the use of a few simple propositions of Pure Geometry
while the former rests on a few principles of Analytical Geometry,
This sets the tone of the book; it is to be a mathematicians book
in which underlying principles are all important, rather than a
collection of techniques. The importance of the book to a history
of Nomography is that it represents the state of the art as it

was in 1891; no other source gives us such a comprehensive vieuw,

The work begins with equations containing not more than
three variables, presenting us with the theory of intersection

Nomograms. It is presented as follous.

If the result of the elimination of x and y from the three
equations

F’](X,y’a) = 0 o.o.oooc..oooo.oo-o.2-7.1
FZ(X,Y’ B) = D o-.'o.oo.on-alo.oca0207.2
F:S(X,Y,Y) = 0 ooono-ocoooo.--ao-o02.7.3
is F (Q’B’Y) = 0 oooo.oooo.ococo-con-2.704

then to construct a nomogram of equation 2.7.4 it is only necessary

to construct the three systems of curves defined by equations

2.7.1, 2.7.2 and 2.7.3 in which one varies respectively the parameters
o, B, and Y, taking care to inscribe the value of the parameter

in a suitable manner on each curve. These curves he calls

'isoplethes' respectively for the parameters @ , B and Y. Consequently
a set of values of the three parameters satisfy equation 2.7.4 when

the corresponding isoplethes meet in a point. Thus, one of the
parameters in 2.7.4 may be found uwhen the two others are given. Ue

recognise here the clarification of an idea from Massau.

This then gives the principle behind the simple

intersection nomogram of figure 2.22.
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This idea is now simplified since it is rscognised
that two of the equations 2.7.1, 2.7.2 and 2.7.3 may be chosen
arbitrarily. If, for example, we so chooss equations 2.7,1
and 2.7.2 then equation 2.7.3 can be obtained by eliminating
Y and B between them and the given equation 2.7.4. It makes
practical sense to choose equations 2,7.1 and 2.7.2 to be as simple
as possible. UWe therefore put

x = &, y = B
when equation 2.7.3 becomes F(x,y,y ) = 0.

We thus have a nomogram of the type shown in figure 2,23,
m N

N
\\\\\ 3
B S~
\

B N

[ &

X,

Figure 2,23,
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We recognise here that we have arrived back at a chart of a
type very like that of Pouchet for 292, = Za given in
figure 1.2, but the difference here is that d'Ocagne has given

the principle on which it is based.

The ratural topic to continue with is anamorphosis
and this is what d'Ocagne does, starting with a simple illustration
vhich is no more than a tidier version of Lalanne's earlier work.
Taking as his example an equation which is a variant of that
suggested to Lalanne by Cauchy,

Fla ,8,Y) = f (h(Y) + ¢ (BYb(Y) +¥,(¥) = 0 ..2.7.5
he takes for his first two equations X = F{A) steeveeecsscesanZe?eb

Y S0 {B) veceencococcan2 7.7
whence he arrives at

xw'](Y) + Y‘p Z(Y) + lp:r,(Y) = D i...lt'o...‘...‘..2.7.8
Thus the isoplethes for @ and B are again parallel to the

axes but this time not equally spaced.

The isoplethes for Y are alsoc straight lines which are
tangents to a curve which can be found, if it is wanted, by

eliminating Y between equation 2.7.8 and its derivative with

respect to v .

This is also Lalanne's work put in a more mathematical
form and made more concise., It is worth noting that the gap between
Lalanne's paper on anamorphosis and the publication of those same

ideas, concisely and mathematically expressed, is forty-five years.

D'Ocagne next examines an idea that had been expressed seven
years earlier by flassau. He considers the problem of looking for
the general form of equations which are representable by three

streams of linear isoplethes,

He observes that Fi(x,y,a ), Fo(X,Y,B) and Fdx.y.Y)
must have the following forms,
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-
W

g =xf(a) +yf (a) +f. () =0

-
1

=x4,(8) +y4,(8) + 6,(8) = 0

LI A ] .-0.2.7.9

]

= x P, 0y) +y b (7)) + va(Y) 0

w
n

and that the form of F( @, B, Y) = 0 must therefore be:-

Fla)  fya)  fala)

|
()

0,(08)  ¢,08)  ¢5(8)

.....0...0....2.7’10

\P‘l(Y) ll’z( Y) Y ( Y)

when these conditions are satisfied. Nomograms of the type

shown in figure 2.24 are then abtained.

31\

Figure 2,24.

D'Ocagne then makes the remark, which in the light of
subsequent work must be regarded as a considerable understatement,
that *It is not always easy to see whether a given equation
in three variables can be put into this form'. He adds a
footnote which is worth quoting in full. 'The common character
of all equations susceptible of reverting to the determinant form
(above) express themselves by partial differential equations
obtained by the elimination of the arbitrary functions which enter
into that form. These functions are six in number (because on
each line of the determinant one function must be a linear

combination of the other two), and the analytic problem consisting
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of eliminating them will not want of a certain complication,
This problem has been completely resolved, and in a very
elegant manner by M. Ing des Mines Lecornu (C.R. tCII p 815)
in the case where the determinant form reduces to

FCa)wqa(y) +¢(BYVa(y) + v3(y) = 0O
M. Lecornu has not only eliminated the four arbitrary functions
that limit (the above) but alsc shouws the way in which they can

be determined when one has verified that the form is possible’'.

We observe that no mention is made of the work of Massau
nor of that of Saint-Robert. It is possible that d'Ocagne was
unaware of both of these efforts in 1881. However, when his Traite
de Nomographie appeared in 1899, d'Ocagne devoted some space to
both (32).

He gives a case, frequent enough in practice he claims,
where it is easy to verify that the equation can be put into the

determinant form, namely -
X, BV () +x (e, 800 ,(Y) +xu,8)b4(v) =0

.l‘oo.--..o.oo-.O002-7.11

in which it is sufficient to put
x=_)_(1§0‘,8) and y =__X2g0l|8)
X3(o,B) x3(a, B)
and to eliminate, in turn, B and a from these equations. If the

result of the eliminations are of the first degree in x and y
fees xFi(a) +yfyla) +fala) =0 eoiienieaine... 2.7.12
X¢1(B ) + Y¢2(B ) + ¢3(B ) = D ooonoao;ooaoo--o.207.13

these equations are used. A third equation is obtained by
eliminating @, B between 2.7.12, 2.7.13 and 2.7.11. Since system
2.7.12 and system 2.7.13 are equivalent to the system -

x = X1(*,8), y = X ,8)
X3(0‘ s B ) ‘ X3(‘1 s B )
the third equation will be
x V(Y) +y b,(7) + ¥ (Y) = 0

1.

T



D'Ocagne considers it desirable to give a name to an equation
which is repraesentable by three sets of linear isoplethes and

proposes the term 'equations a triple reglure’.

In passing the remark is made, again echoing an idea of
Lalanne, that circles are almost as easy to draw as straight
lines and that therefore, for certain cases which are not 'a triple

reglure', circular isoplethes may be the answer.

Binary scales, due to Lallemand, are briefly discussed.
The idea of such a scale is that it is constructed so that one
point may have two interpretations. They are not of great
importance to this study. Examples appear in Lallemand's nomogram

of figure 2.21.

A second idea attributed to Lallemand is also briefly
described. It is that of the graphical elimination of a variable é

between two equations. for example consider:- -

Fla,B,Y)
¢(0'-':B'3Y )

Cne can construct both nomograms taking in each the scale y = Y

as shown in figure 2.25,

Fiqure 2.25.
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Given for example o« =2, B =1, B' =3, it is easy to see

that «' = 3 by following the broken line.

Although Y 1is 5 in this case the value plays a passive
role, It can be seen that the method could be extended by allowing
the scales of ¢ and a' to coincide, if this was thought desirable.

We note that this idea of grephical elimination had alsoc been given

by Massau in 1884.

The remainder of the book is devoted mainly to the elaboration
of ideas already described in this thesis. A large section deals
with Lallemand's Hexagonal Nemogram and in particular the extension
of it to deal with equations having more tham three variables.
Graphical addition and graphical multiplication are dealt with
in full, but these are forms of the Hexagonal Nomogram and, although

ingenious, add 1ittle to the advancement of the subject.

As one would have expected, d'Ocagne's earlier work on
parallel coordinates and the related nomograms is dealt with at
some length, Here, however, unlike in his 1884 paper, he uses
the term 'points isoplethes' to describe the duals of his isoplethe
lines. Otherwise the work in this area is repeated with more

glaborate examples.

Finally, one must note d'Ocagne's brief reference to
the principle of homography. This is important because he is
suggesting the.use of geometric principles to change the appearance
of a nomogram so that it may be read with greater sase., He mersly

notes that the transformations -

x' = agx * bayy * ¢,

dx + ey + ¥

y' = 31x * by * ¢y
dx + ey + f

transform points on a straight line to other points on a straight

line. However, homographic, or projective, transformations have

become most important features of nomography.

73.



We thus have a clear picture of the state of nomography
in 1891. Intersection nomograms were well established; alignment
nomograms less so but they were on a sound theoretical basis;
hexagonal nomograms had been developed to their full extent;
anamorphosis was being regarded as an important problem, although
perhaps being underestimated, and the idea of using geometric

projections to improve nomograms had been souwn,
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8. The State of Nomography in 1893,

Two events took place in 1893 which can be taken as
indicators of, on the one hand, the status of d'Ocagne and
his new discipline, and on the other, of the attention that

Sritish engineers had paid to Nomography.

The first event was the International Mathematical Congress
held in connection with the World's Columbian Exposition in
Chicago. Many famous mathematicians read papers at this
conference. As examples we can cite Charles Hermite, who read
a paper on elliptical functions and David Hilbert who read one
on the theory of Invariants. Also reading a paper was d'Ocagne.
His paper was called "Nomography: On equations representable by

three linear systems of isoplethe points" (33).

If one can judge a man by the company that he keeps
then it seems that by 1893 d'Ocagne's standing as a mathematician
was high. One must assume that some kind of selection or invitation
was necessary before a paper could be presented at such a conference.
0f course, d'Ocagne does seem to have been something of a showman,
he had more than a passing connection with the theatre, and he did
not let an opportunity pass that would enable him to publicise
Nomography, but I think it must be accepted that by this time he

was an important mathematician.

The paper itself is interesting and well presented. It
deals with a special aspect of alignment nomograms, those in which
the three scales, or systems of isoplethe points as he likes to
call them, are on straight lines and in particular when the
points on those straight lines are equally spaced. It is a paper
ahead of its time on a theme which d'Ocagne would return to four

years later.

The other event of 1893 was a report to the British

Association for the Advancement of Science on 'Graphical methods
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in Mechanical Science'. This was the third part of a report,
the preliminary part of uwhich had been presented in 1889
with a second part in 1892. The author was Professor H.S.

Hele~-Shaw of University College, Liverpool,

It is no surprise that these reports deal largely with
Graphical Statics, but it is a little surprising that some
recent nomographic ideas have no place in them. The nearest
that one comes to nomography is in the 1892 report uwhere the
following appears; "Falling under the head of 'graphical tables!
are the constructions devised by M. L. Lalanne ...0... AN example
of one of these tables, called by the inventor an 'abacus' was
shown as a wall diagram to the Mechanical Section. The ordinates
and abscissae of this diagram are not numbered according to their
actual values, but are logarithmic, exactly as the scale on a
slide rule., By means of this diagram operations of multiplication
can at once be performed, and by a slight modification products

such as a2b and the yézb can be readily obtained",

The ideas of Nomography had therefore not penetrated to
the British engineering establishment by 1892 except for an
idea from 1846. This may have been due to poor communication of
ideas; it may also have been due to the poor mathematical background
of many British engineers, for elseuhere the report suggests that

graphical statics are preferred to calculations for that very

reason,

However, British military engineers were a little -more
forward looking, for also in 1893 there appeared, in the
Professional Papers of the Corps of Royal Engineers, an article
on the 'Graphic Solution for Equations of the second, third and
fourth powers' which was truly nomographic in spirit (34), It
was a translation by Major W.H. Chippindall, R.E. of a papér by
Lt. Julius Mandl of the Imperial Austrian Engineers. The work

has a very practical purpose as can be seen from the opening
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paragraphj

"In order to avoid the use of logarithmic tables and
the necessity of obtaining the second and third roots in the
solution of equations of the third and fourth pouwer, the
accompanying table was constructed for solutions in which greater

exactness was not required than the first tuo or three fiqures".

The 'accompanying table' referred to is a graphical
table making use of a transparency which itself can be constructed
by tracing lines already on the table. The theory is based on the
fact that variocus sums and products of the roots of the equations

may be expressed in terms of the coefficients of those equations.

In the case of the second degree equation

2+ Ax +8 = 0

P9 00 s PO SO GEe RSO ODR BSOS ...'2.8.1
we have, if we suppose the roots to be x4 and x,,
X1 +X2 = =f

seoese 000000008 0000.000.0.208.2

X1X2 = 8 .'.a.l....c..c.0.....¢'.-.2¢803

Equation 2.8.2 represents a straight line, supposing x4
and %, to be cartesian coordinates. Furthermore, whatever the

value of A, the straight line always has a slope of -1,

Equation 2.8.3 represents, for varying B, a set of

rectangular hyperbolae referred to their common asymptotes as axes.

The intersection of 2.8.2 with 2.8.3 will then have for

abscissa and ordinate respectively the values of X4 and x., which

2
satisfy equation 2.8.1 for some given A and B. The proposal

is therefore to construct such hyperbolae on a rectangular cartesian

framework and to have a straight line on a transparency uwhich can
be used to represent a line of slope -1 for any A, enabling the
appropriate values of Xy and X5 to be read. If the whole diagram
is square then the line with a slope of -1 is parallel to the
diagonal joining top left to bottom right, Figure 2,26, uwhich is

not to scale, shows the general appearance.
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Figqure 2.26.

Moving to equations of the third degree

i.e. x3 + sz + Bx +C =

if we take the roots to be X4y Xp and xz then

X1 + X2 +X3 = _A .............-....2.8.5
X1x2 + X1X3 + XZX3 = B 10000'00--00011000208-6
and X1X2X3 = “‘C . .'C'lc"...‘.'...¢2.807
Letting
x2 + Xy = 2
and x2x3 =y
thE.’n X1 +Z = —A , t.to..ao.--oo.aoonqzca's
><1Z +y = B ....-.-........-...2.8.9
aﬂd X1y = —C oo-o-on-o-.o-c--v~'2'8010

and if we eliminate z between 2.8.8 and 2.8.9 we have

y = x12 + AX1 + B Oluol.occnud-o.t400208011
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If we now consider X4 and y to be co-ordinate axes with
x4 a@s the abscissa and y as the ordinate then 2.8.10 again
represents a rectanguldr hyperbola while 2.8,11 is a parabola
with the constant equal to unity, the axis parallel to the ordinate

axis and the vertex aluays downuards.

2.8.11 may be rewritten

2
y-(a-_A> = (x4’ +_f_\>2 e rereiseerenneaaes 2.8.12
4 2

showing that the vertex is given by

. 2
AN ) B~-A
2 4

It follows that a knowledge of A and B, which we have,
will fix the position of the vertex but otherwise all parabolae
given by 2.8.11 are the same shape. Therefore our transparency
should alsc carry this parabola, its axis and the tangent to i;s

vertex, The axis can be the straight line referred to earlier,

The intersection of the parabola with the hyperbola is
equivalent to the simultaneous solution of 2.8.10 and 2.8.11;

3 2
that is, to the solution of x4 + Axq +Bx, +C = 0. It

follows that to solve 2.8.4 we must find the co-ordinates of the
vertex of the parabola; position the transparency so that its
parabola has its vertex at the point with those coordinates and
its axis parallel to the ordinate axis, and then note the abscissa
of the points of intersection of the parabola with the hyperbola
given by 2.8.10.

Normally there will be three such abscissas corresbonding

to the roots of 2.8.4 , x4, x, and xs.

If the scale is such that only two intersections are given,
i.e, we only have X4 and x,, the third root will be given by 5.8.5,

i.8, x5z = -A - Xq = Xo. If the equation is such that the inter-

sections fall outside the diagram, then substitutions of the type
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x =m& or x =& + muwill correct the situation, for example
x3 - 38x2 + 461x - 1,768 = 0 becocmes

3 2
E- - B8BE&E“ + & +42 = 0 after the substitution

x = &+ 10 has been made, the roots of the original equation

being given by
&, + 10,8, +10, &5+ 0.

For the equation of the fourth degree

raxS + k% +Cx + 0 = O

ll.......‘bI-l'.'l.'02l8C13

we have

X1 + X2 + X3 + Xd = _A -aoooc.--ou.oo-.oco-o.2.8-14
X1X2 + X1X3 + X1X4 + X2X3 + X2X4 + szd = B c.cc002Q8.15
XqXoX3 + X{XoX4 +* XqX3Xg4 * XpX3X4 = =L ceieses..2.8.76
X4 XX 32X 4 = D

oo..‘.ooac.o-oo.nc..l'.-.00.00-02.8017

The substitutions
Xq * X, = m, X3 t X4 T 0y XXy = Py XzX4 = Q

reduce equations 2.8.14, 2.8.15, 2.8.16 and 2.8.17 to

m+n = =A ceecsssscecssscncscssssleB.18
mn +p+qg = B P - I =
mq +np = =C tesescsacssessenenvessealeB.20

pg = D veovsscscssescacsensvasleBe2]

2.8.18 and 2.8.20 give

m=-Q}Q—C2, n=~A/Ag~C
p-q p-9
substituting in 2.8.19, and using 2.8.21 with the substitution
pt+tqg=2z, wueget
3 2 2 2 -

2> = 92 + (AC - 4D) z - {C” + D(A®" - 4B)} = 0...2.8,22
Thus the fourth degree equation 2.8.13 can be transformed into
the third degree equation 2.8.22, for which we can obtain a root

by the method already described.

Having obtained the root z, we can find p and g from
p+g=2z and pq = D
and then m and n from

m+n=-A andmn = B -2
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myn,p and q are all that are required to cbtain x4, X5, Xz and x,.
Although 2.8.22 may have three roots it is immaterial which of

the three are used as all lead to the same set of values far

Xqs X9y Xz and x,. Figure 2.27 is reproduced from Major
Chippindall's original paper, P is the parabola which must be
transferred to the transparency as also must its axis ab, the

tangent to its vertex, CD, and the line AB which contains the

point a.

As has teen ncted, Major Chippindall's paper, or perhaps
we should say Lt. Mandl's, is nomographic in spirit in that
solutions are provided for a whole class of equations in which
the coefficients are considered to be the variables., There is,
of course, no reason to believe that the ideas owe anything to
the work of Lalanne, Massau or d'Ocagne. UWhat is of interest is
the reason why an army engineer should appear to have a better
grasp of the importance of gecometric computation than the civilian
engineers who reported to the British Association. The reason
is that officers of the Royal Engineers at this time were much
better educated in science and mathematics than the civilian

engineers,

During the latter part of the nineteenth century there was
such concern in Britain over the state of technical education that,
in March 1868, the government ordered a Parliamentary Select
Committee, chaired by Bernhard Samuelson, to look into the praoblem.
In its report the committee said that "a hindrance second only to
the defective elementary education of the pupils is the scarcity
of science teachers and the want of schools for training them".
Although the reasons may be different, the situation one hundred
years later seems to have a certain similarity. One of the measures
taken by the government to remedy this situation was to allou
officers of the Rayal Engineers to supervise the examinations of
the Department of Science and Art and to inspect science teaching

in schools. The reason given for this solution was that nowhere
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else could a suitable body of science inspectors be found.

It only became possible to dispense with thelr services touwards
the end of the century. The report of the Board of Education
for 1913-1914, stated that officers of the Royal Engineers 'in
the early days of the Department were one of the few bodies of

men in the country with an organised scientific training! (35).
Later, we shall see that d'Ccagne's ideas were also

introduced into Britain by army officers, this time of both the

Royal Engineers and the Royal Artillery.
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9., A Theoretical Problem of Alignment Nomoqgrams.

So far theoretical problems in Nomography had been
concerned with anamorphosis and as such had been related to
intersection nomograms. However, the alignment nomogram
developed by d'Ocagre has a parallel theoretical problem,
Sriefly, it is this. Suppose the three curves of figure 2,28

to be given by the parametric equations,

(1) E =99(x) ,n =95(x) ; (i1) & =¥(v) , n =4()
¢ 5(x) ¢ (%) Yoa(y) Y oa(y)

(ii1) & = 8,(2) , n = 84(2)
83(2) 83(7—)

7 \ \ 5

Fiqure 2.28.

If the straight line ABC cuts the curves as shouwn then
the values of x at A, of y at B and of z at C must be connected

by the relation -

82(z) - woly) YAy) - 80

83(z) va(y) _ ¥aly) $3(x)
g_q_gl_l - ‘.%L‘zl iqm - i}iﬁl
83(z) vz(y) V3(y) $3(x)

since the gradient of AB is the same as that of BC. This relation

can be expressed in determinant form as:-

B4.
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¢1(x) ¢2(x) ¢3(x)
() u(y) ds(y) = 0

The thecretical problem is:-

Given a relationship F(x,y,z) = 0, can it be expressed in the
determinant form given? If it can, then an alignment nomogram

can be constructed.

This theoretical problem of alignment is the same problem
as that revealed in connection with anamorphosis by d'Ocagne, (see
equations 2.7.9 and 2.7.10). The same, that is, from a pure
mathematical point of view; the geometrical inferpretation differs
according to the particular case. I have found no evidence to
suggest that the dual nature of the problem had been appreciated
by the end of the nineteenth century.

The first attack on the alignment problem was by Ernest
Duporcg in 1898 (36). He gave seven canditiens which, if satisfied,
showed that such a form was possible and also provided enocugh
information to enable that form to be obtained. However, the method
is more satisfactory at the theoretical level than at the practical
level, it being very cumbersome for a moderately complex problem.
Yet, as the first attack, it is one that doubtless had influence
on later attempts. The authors of these make reference to Duporcqg
and it is therefore of some interest to indicate his approach,

particularly since his paper is rather obscure.

Although not said explicitly, Duporcqg's starting point is
the recognition that if F(x,y,z) = O can be expressed in the
determinant form then it must be capable of being written as,
F(x,y,2) = P1(x)Rq(y,2z) + Po(x)Ry(y,z) + P3(x)R3(y,z) = 0 ...2.9.1
With this in mind he is able to construct three 4 x 4 determinants
containing F(x,y,z) and forms of it involving three arbitrary and

distinct values of x, namely a, a', a"; and similarly of y, viz,
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b, b*, b"; and of z, viz. c, c', c", so that the desterminunts

are all identically zero. OJne of them is given hers,

F(x,y52) F(xyb,c) Fx,b',c') F(X,b",c")
Fla,y,z) F(a,b,c) F(a,b',c') F(a,b",c")
F(a',y,z) F(a',b,c) F(a',b*,c') F(a',b",c")
F(a",y,z) F(a",b,c) F(a",b',c') F(a",b",c")

®ee vnae 0-2.9.2

To demonstrate that 2.9.2 is identically zero it is only
necessary to consider each function F replaced by the corresponding
expression given by 2.,9.1. The determinant 2.9.2 is then seen

to be the sum of 81 determinants of which the follouwing is

an example.,

Rq(y,z)Rp(b,c)Rz(b',ct)Ry(b",c") | P1(x) Po(x) Pa(x) Pq(x)
p1(5) Pz(a) Pz(a) P1(a)
Pi(ar) pPyla') Pa(a') Py(a")
P1(a") Py(a") Pa(a") P4(a")

This determinant is identically zero since the first and last
columns are the same. The other 80 determinants, by virtue of
the way in which they have been constructed, must each contain
at least two idéntical columns and consequently must each be

identically zero. It follows that the composite determinent

is identically zero.

The knowledge that 2.9.2 is identically zero leads, on

expanding along the first row, to the following expression,
F(x,y,2) = U(y,z)F(x,b,c) + V(y,z)F(x,b',c") + W(y,z,)F(x,b",c") 2,9.3

So far we have 2.9.2 written in the form of 2.,9.1 but with only

the functions in x knouwn,

It should be noted that 2.9.1 is one of three possible forms
that must hold if the problem is to be resolved, the others would
have isolated the variable y in one case and z in the other in the
same way that 2,9.1 has isolated x. To each of these two forms

will correspond an appropriate determinant similar to, but different
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from, 2.9.2. It is for this reason that Duporcg has imposed

three determinant conditions on a, a', a", b, b', b" and ¢, c', c".

Equation 2.9.3 enables three functions U(y,z), V(y,z) and

W(y,z) to be found. It is next necessary to isolate the separate
functicns of y and z. Let them be gq(y), gz(y), 93(y), h1(z), hz(z)
and hx(z).
Then, F(x,y,z) = | F(x,b,c) F(x,b',c") F(x,b",c")

myg1(y) mogo(y) m3g3(y)

n1h1(z) n2h2(z) n3h3(z)
where mq, My, M3y Nq, Np, Nz arE constants.

Therefore it is reguired that

U(ys2) = monaaaly) hs(z) = mgnas(y) hy(z)

]

AqRq(y,2) -mB4(y,2)

i.e, the determinant

Uly,z)  Aqly,z)  Bq(y,2)
U(b,c) R1(b,c) 81(b,c)
U(b',c") A1(b',c') 81(b',c')

must be identically zero.

A similar condition applies for the determinants in V, A,, B; and
W, Az, Bg. These are then three more conditions to be satisfied.
From them can be obtained A1 and My, as illustrated above, and
similarly XAy, Hpy Agy Vge The values of the A's and u's are

known in terms of the m's and n's:

they are:-
A1 = moNz, U, = mzn,
Ay = m3nq, Wy = mn3
A3 = mqny, Mg = M2Ny

from which the seventh condition follouws,

A A =
that k1 ) M M, u2 My
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Cne problem still remains and that is to find the
A's and 8's. Since they are combinations of g's and h's the

prablem is reduced to finding these.

Consider the relationships,

U(y,z) Aaga(y) hq(z) - Hogq(y) ha(z)
u(Y,Z) = A391(Y) hz(z) - u392(Y) h1(2)

Putting in turn z = c and z = ¢' in the first relationship and
combining the two resulting expressions we get

g4(y) = 81U(y,0) + SZV(y,c')

Treating the second one similarly we get an alternate expression

94(y) = Yju(y,c) + Y,u(y,c')
where B84, 52, Y1» Yp are constants.,

The other values can be found in a similar fashion.

The importance of Ouporcq's paper lies in the fact that it
focussed attention on an important problem and suggested a line

of approach for its solution. It has little value as a practical

aid.
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10. The Lives of Lalanne, Lallemand and d'Ccanne,

Many of those who have been cancerned with Nomography
have been very interesting men. The lives of three of the main
characters in the early development of the subject are briefly

described here,

Leon Lalanne.

Lalanne was born in Paris in 1811, became a student first
at 1'Ecole Polytechnique in 1829 and then at 1'Ecocle des Ponts
& Chaussees in 1831, In 1846 he was a responsible engineer engaged
on the construction of railways from Paris, After the revolution
of 1848 he became Commandant of the 11th. legion of the National
Guard. In 1849 he was arrested but released almost immediately
and, following a coup d'etat, he lived abroad for many years being
engaged on public works in, amongst other places, Spain and
Switzerland. He returned to France in 1860 and from 1877 until
his retirement he was the director of 1'Ecole des Ponts & Chaussees,
Later he vas President of the board of the Omnibus Company of Paris.
He was responsible for perfecting many calculating devices and
was the author ar part author of many publications, including works
on the Paris Metro. He was elected to the Academy of Science in

1879, and he died in 1832.

Charles Lallemand.

Feuer details of the life of Lallemand have been recorded
than of the lives of Lalanne and d'Ocagne. He was born in Meuse
during 1857 and died in Haute Marne during 1938. Amongst the
appointments which he held were Inspector General of Mines and
Director of the Nivellement General de la France. He was elected

to the Academy of Science in 1910,
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Maurice d'0Ocagne.

D'Ccagne was born in Paris in 1862, He was an engineer
of the Corps des Ponts & Chaussees but from 1885 to 1889 he was
seconded to the naval hydraulic services, first at Rochefart
and then at Cherbourn. He became director of maps and charts
at the Nivellement General in 1901 and Inspector General of roads
and bridges in 1920. He devoted much time to the teaching of
geémetry, nresumably as a part-—time teacher; he was appointed
Professor at 1'tcole des Ponts & Chaussees in 1894 and at
1'Ecole Polytechnigue in 1912, In addition to his expertise in
Nomography, he was an authority on calculating machines and a

student of the history of mathematics,

There was another side to his abilities; under the
pseudonym of Pierre Delix he ventured into writing. The most
notable of his literary efforts was a one act comedy, called
'La Candidate', which was given more than one hundred performances

at the Cluny Theatre in Paris during 1888 and 1889.

He was elected to the Academy of Science in 1922 and died

at Le Havre in 1938.
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11. The End of the Century.

The year 1899 saw the publication of d'Ocagne's large
work 'Traite de Nomographie' (32). This work gave theory and
practical examples and was the first standard text on the subject.
With its publication, Nomography could be regarded as a distinct
discipline for it now had all the hallmarks; a set of general
principles, the theoretical problems of anamorphosis and alignment

and now a treatiss.
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CHAPTER 3.

Development in the Farly Part of the Twentisth Century.

A short span of ysars sxtending either side of 1500
was very fruitful in the production of ideas which helpsd
nomography to sstablish itself as a branch of mathematics.
The theoretical problem which Duporcq attacked in 1898 has

already been noted; namely, given a relastionship F(x,y,z) = 0O,

can it be expressed in the determinant form

94 (x) ¢2(x) ¢3(x)
vi(y)  wy)  wa(y) = 07
04(z)  6,(z)  84(z)

If it can, then an alighment nomogram is possible.

Howsver, this problem is the ultimatae one in nomography
and there are others, more sasy to deal with, which were baing
considered during this period. A line of thought was being
explored which rslatsd the algebra of a relationship to the
geometry of a corresponding nomogram., For exampls, in the
cass of the relationship F(x,y,z) = 0, an alignment nomogram could
have a straight lins 8s a carrier for each of the variables. A
term often used for such a carrier is 'support’, a term which I
will alsoc use when it is helpful to do so. It is alsoc possible
that F(x,y,z) = 0 could lead to a nomogram heving thres curved
supports or to some intermediate combination of straight lines
and curves. Again, the supports could be concurrent or nonconcurrsnt,.
All of these properties may be revealed by an sxamination of the

relationship F(x,y,z) = 0 and it was to this type of problem that
minds turned at this timse.

D'0Ocagne was the Pirst to investigate this problsm. The
paper which he presented at the Chicago sxpaosition of 1893 was
on alignment nomograms having three rectilinear supports. The

subject was given a more rigorous treatment in 1897 when he
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published a papsr in Acta Mathematicaj; a paper which was
incorporated into his 'Traite® two years later (32). This

will be examined shortly when the 'Traits' is reviswed.

In 1901, R. Soreau proposad a classification system
based on the linear dependence of the component functions of
F(x,y,z) = 0. Putting this expression in determinant form,

- for in this aspect of the work the assumption is made that
this is possible, the following compact form is obtained,

f1(0'1) 91(0’1) 1
PA)  ay(e) 1| = 0
f3( ag) g3( %) 1

The supports in the xy plans are given by the squations,

x = fq( ) X = fz(ﬂz)} x = f£3(03)
y = g,4(%) y = g,(%) y = 95(9)

Consider the support of o,. If a linear relationship
exists betwssn f1(2q) and g4( ), i.e.

2
£4(%) = c5 + cq94(%4) in which (c,° + c12) 0

then f,(o,) and g1(a1) are said to be linear dependent. It follows
from this linear depsndence that a l1inear relationship exists
between x and y, in fact it is x = ¢ + cqy. Thersfore the support
of o, will be a straight 1ine. On the other hand, if no such
linear relationship exists, i.e. if the only possible values for
the c's are cg = c, = 0, then the support given by x = £q(24),

y = g1(a1) will be some curve other than a straight line. Thus,
the number of linearly independent functions in F(x,y,z) determines
the nature of the supports, This numbsr Sorsau called the
'Nomographic Order' of F(x,y,z) = 0 (37).

An examination of the detsrminant form
A r4(%) g81( %) 1
fz( 02) 92( 012) 1 = 0
f3(a3) 93(&3) U
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shouws that in this case the nomographic order is ons of

3,4,5 or 6, If it is 3 then thers are three rectilinear supports;
if it is 4 then thers are two rectilinsar and one curved supports;
if it is 5 then thers are one-ractiiinaar and two curved supports

and if it is 6 then thers ars three curved supports.

During the following ysar d'Ocagne introduced his oun
classification system (38). This is based on the gecmetry of a
nomogram; one with three rectilinear supports is of gsnus O,
two rectilinear and one curved supports give a nomogram of gesnus 1
and so on. In fact the gsnus of a nomogrem is the order of that
nomogram less three, It is most unlikely that d'Ocagne was unaware
of Sorsau's system and if this is the case then the introduction
of his own system looks rather like an attempt to kesp himself to
the fore of developments and is not to his credit. Certainly,
Soreau felt this and it ranklsd him for years. In 1922 he asked
why d'0cagne had "called nomographic genus my nomographlic order®,

pointing out that it was only a question of scaling down the
number (39).

1, D'Ocagne's 'Traite de Nomographis'.

D'Ocagne publishsed his 'Traite de Nomographie" (32) in
1899, The introduction is dated 15th. May 1899 and one may
assume that the twentieth century had dawned by the time the work
was in gsneral circulation. As far as 1 am aware the work has
never been translated from the French and yet this in no way seems
to have diminished its influence. The svidence of personal
acknowlsdgement or some less direct evidence, such as an unusual
use of symbols, suggests that d'Ocagne’s ideas spread rapidly to

America, Britain, the rest of the continent of Europe and Russia.

In the main, the work is a complete summary and description

of existing knowledge illustrated with many examples. The chapter
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headings show this; they are:-

I. Equations with two variables,

II. Equations with three variables - intersecting
nomograms .

ITII. Equations with thres variables - alignment
nomograms.

Iv, Systems of two squations,
V. Equations with mors than thrse variables,

VI. General Theory. Analytical developments,

Chapters IV. and V,, while based on earlier werk, also
contain certain technical additions which are little more than
methods for linking two nomograms togsther,

The final chepter on ganegal theory and analytical
davelopments 18 most interesting since it serves as an indicatar
of the state of the development of nomography as an academic
discipline, The chapter has two sactions, the first is a general
study of charts from the point of view of their structurs while
the second is a study of equations which can be repressnted by
means of a given type of chart., Intaresting though the first
section is, the subjsct matter hés not proved attractive to
subssquent investigators. The objective set by d'Ocagne is to
determine and classify all possible methods of reprssentation
applicable to equations with n variables. The davelopment concerns
itself with the superposition of planes but in practice the number -
of planes which can be superposed must necessarily be limited.
For a limited numbsr aof supsrpositions the theory is helpful

but is not of the same calibre as that of the second section.

The objective of the sscond section is to recognizs whethsr
any given equation is associated with a particular type of chart
and, 1f it 1s, to extract the information nescessary to construct
that chart., D'0Ocagne knows how to solve this problem, in theory
at least. His method is to sliminate the arbitrsry functions from
a general equation, This will result in some partial differential
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equations which must be satisfied by an equation of that typs.
The solutions of thess equations will lead to the components
raquired to construct the nomogram. This was not the first time
that d'0Ocegne had expressed this idea, for it occurs in his
"Nomographie' of 1891 (30). It is also the basis of the work

of Saint-~Robert, Massau and LeCornu, The inherent difficultiss
of this approach are fully recognissd, for he points out that

the calculations are gensrally inextricable lsading to solutions

only in a few special casses,

Thirteen gensral types of equations are listasd as bsing
thosa which have occured most frequently in the courss of thse

'Treite', They are:—

I, faloy) + £(a) = £3(%)
1. P4(2q)P3(%3) + (%) 3(az) + ¥3(%3) = 0O
III. | f4(%) 01(%) ¥1( %)
(o) o(0y) V(%) = 0
Pilog)  da(ag)  ¥a(2s)
IV, A0 2 ()P (%) + 1 (%)M, (a,) d4( )
+ v () v () bs(0) = o

where A, 7U1, Y 4 ere linsar functions of % or %,

V. Pq(aq) + Po(0p) = £3(03) + £4(%)
VI,  F(o)f (%) + 0,(%) = £1(a)f, (%) + ¢,(%,)
VII.  (¢4(a,) = 0,(0,))(¢5(aq) = ,(a)) + (£,(2) = £,(2))(F5(%)
- f’4(0-4)) = (
VITT. f,(% B,) = f,(%, 6))
IXe  Pq(oq,8q) + F2(02,85) = £3(3,83)
X, f1(0'1)f3(0'3: 83) + f2(a2) ¢3(a3) 83) + 1{13(&3’ 83) = 0
P00 B (0 B Uy(e F))
P30, By) 43005, 85)  ¥5( %, B)
XIT.  £.(0) + £(0) + cecsrencanccinenaee ¥ F (%) =~ 0O
XIII. £q(04,8y) + €500, 8)) + coceccnacnen # r(2,8) = o
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He admits that ths msthod which he has outlined has only besn
applied to types I, and II., but hs conscles himself with ths
remark that they are the most common types in practice. Type III.
he states can be rsduced to certain functional equatiaons which
must be identically satisfied. He is, of courss, referring to the

work of Duporcq which is later acknowledged and resproduced,

The most important section of dfOcagne's last chapter has
alrsady been refsrred to in passing; it concerns itself with the
algsbraic theory of equations representabls by alignment nomograms
having three linear supports, i.e. those which would later bs
described as of genus 0 or order 3. The precise problem that hse
sets himseif is this. Supposse that in a gensral form of an
equation, such as one of thosse listed above, all of the component
functions are algebraic so that one has a general type of algsbraic
equation represented by a particular nomogram; then how, for any
given equation, can one form ths corresponding components and
under what conditions are they real? The reality of the components
is necessary for it to be possible to construct the nomogram.
Furthermors, he proposes to seek a solution which will offer the
greatest simplicity; this simplicity he interprets firstly in terms
of a nomogram havihg linear scalses and then considers the trans-—
formation of these linear scalss into reqular scales, 0One of
d*Ocagne's reasons for this investigation is to reveal the

mathematical dspth of a superficially simple problem.

A linear scale is one in which the cartesian coordinatss

of a point are given by x =m,%*n, y =m,a *n,
aa + b aad + b

where o is a parameter and mq, my, nq, Ny, @ and b are constants,
If homogeneous coordinates are used we may write them as -

X = mga +n,, y =m0 +n, t=aa+b,

Such nomograms will be either of ths type in which the supports
are not concurrent or of the typs in which the supports are
concurrent, By a homographic transformation the first of thess

types can be represented by two supports which coincide with the
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x and y coordinate axass , with the third support as the line
at infinity. After a homographic transformation the second
type can be represented by supports two of which coincide with

the x and y coordinate axes while the third is the bisector of
the angles betwsen these axes,

After such a transformation the scales in ths case of the

non-concurrant supports may bs reprssented by

(1} x =mqoy +ny, y=0 t=py% oy
(i1) x=0 Yy = py% *dy ot =my% 4,
(iii) x = pyoq + Qs y =mg% +ny, t =0

The relationship which these scales represent is given by -
Myt g 1% * 9
o P20z * a2 mg02 *nz | = O
Psog * O3 M3y *ng 0
which can be written as -
(myq + nq)(mz22 + n2)(m323 + n3) + (P11 + a1)(p2%2 + a)
(p3a3 + Q3) = 0 s0e Jot.1

or 88 -

m(e 1+ 31)( a2+ 32)( as"' 93) + p( u1+ t1)( 0'2"' t2)( as"' t3) = 0..3,1,2

Similarly, in the case of the concurrent supports the scales may be
reprassnted by -

(1) X =m0, + g, y = 0 R t=p,% +aq,
(11) x = ] y = myay + 0y, t = py, +q,
(111) x = mzo; + ng, Y = mzogt ng, t = =(pzo3 *+ ag)

which can be written as -

_E_Lq'] + 91 +22g2 + g2+239-_3 + 93 = 0 eoncssseercsssesccnsIeled

mi%q + 0y mp0y * Ny mgag + ng

or
t‘l * tz + t3 - N .‘C‘.."...."..‘......3.1.4
0~1 + 84 (12 + 8, Gqa+ 83
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In the -foregoing, a4qs o 8nd @ 5 are ths variables repraesented

on the scales,

Both 3.1.1 and 3.1.3, and their alternative forms, arae
expressions of the gsneral form,
Ruqogoz + Biagdzt BpO3%y + B3% % + Cq% + €% + C3% + D =0

..0...0...3.1.5

The problem may now ba rephrased.

Given an equation of the form 3.1.5, under what conditions can it
be expressed in ons of the forms 3.1.1 or 3.1.3 such that the
coefficisnts ars real?

The following notation is used —

3
Fg = TB{Cy - AD, Ef = AC{ - BjBk,
i=1
Fy = Fy = 284C4, Gy = B;D ~ Cjck’ (1,J,k = 1,2,3)

D'Ocagns also makes use of a quantity A which ha describes
as the discriminant of 3.1.5 rendered homogensous. Houwsver, the
quantity arises naturally as the discriminant of a quadratic equation

and it will aid understanding if its introduction is deferred.

The basis of d'Ocagne's rsasoning is a comparison of 3.1.5
with an appropriate form of 3.1.1 or 3.1.3, dspending on the case

being investigated. For examplse, consider the case of non-concurrent
supports,

Put (x1 - -s’ ln 3.1.2

this gives P(t1 - 31)(( P tz)( Gt t3)) ®= 0 seeccosescs3al,b
The sams substitution in 3.1.5 gives

(8 - As )o,0q + (Cy = Bysy) Oy + (€, - 8483)0, + (D - Cysy) =0

LA N 2 J O".Ol'.3.1l?
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Now if 3.1.2 and 3.1.5 are squivalent forms then so also are
3.1.6 and 3.1.7.

In other words, 3.1.7 must factoriss,

The condition for this is that -

(B1 - As;)(D - C1s4) = (C3 - B2sq)(C2 - B3sq)

Using the notation given above this bacomses
E1s12 +Fysy + G, = 0O

which is abbreviatsd as ¢1(s1) =

In general, by similar reasoning,

¢;(s5) =0 and ¢,(t;) =0 for i =1,2,3,
Denote the two roots of ¢i- 0 by pi' and pi",

Je1e.2 can now be written -

Moy #00)( 2y +P,1)(%g + Pgt) + B 4 P M)( O+ P )0  +04") =0
svseessscncscesdslel

The form 3.1.8 can only be obtained if 01' and py" are not equal,

for i1f they are for just one value of i then (aj + pj') is a factor

end the required form is lost, It has already been noted that thay

must be real. Thersfore it is necessary that the discriminant A

of ¢i = ( is gresater than zsero.

2
i.e, for o= Ei;i + Fisy + Gy 0
A= F¢© = 4Gy > 0
In terms of the coefficients of 3.1.5, but using F_, wa have
: 2
A =F - 4(B1C18202 + B0 B4Cy + BACB.C, ~ AC,CCr— 8182830)

Hence for 3.1.5 to be representable by thres linear non-concurrent

scalas it is nscessary that A > 0.

It now only remains to find the values of M and P of 3.1.8,
since the values of P ars given by ¢i =0, i = 1,2 and 3. Thess
values may be obtained from two of the sight equations of the form

MR' + PR™ = K
which are obtained by comparing coefficients in 3.1.5 and 3.,1.8 as

follows,
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Variable RY R¥

R R K
a o o
123 1 A
%% e’ p3" B3
constant 01'92'93' 01"02"O3" D

Consider two of these equations -~

] "
NRO + PR0 = Ko

t + " o
NR1 PR1 K1

These give -
p = M

Ry'Kq = Ry'K g R1"Kg = Ry"K4q
Equation 3.1.8 now becomes -
"W . R ™ : ' ' 1 K o
(Ry"K = R"K ) Ca g+ o) apr et ) (o g0 5') + (R 'Ky = Ry'K )
Cogt 0™ gt 0" o5t o5 = 0

and thse non—-concurrent problsm is solved,

Turning to the problem of concurrent scales, 3.1.4 can be
written in the form,

N(oy + 87)( ay* 8,)(0y + 85) — to( oyt 8,)( a5+ 85) = £,( 3,4 8,)
( Gt 33) - t3( PR 31)( u2+ 32) 2 0 ceeee3e1.9

As in the previous case it can be shown that a,, s, and s;

are respectively roots of the squations ¢i- 0, 1 =1,2,3. Once
again these roots must be real. However, if ths roots of ¢1 = 0
are unequal, then the problem reverts to the case of non-concurrent
scales; therefore the roots of ¢i = 0 must be squal and & = O

is the condition necessary for 3.1.5 to be represented by thres

linear concurrent scalss,

If p4,P, &nd p; are roots of ¢, = D then 3.1.9 becomss,

N( ag+ p4)( oyt p,)( agt pg) = t,( oyt p,)( ogt Pg) = t,( oA+ P,)
((agt pg) = ta( o4+ 0,)( 0yt Py) =0 ..e03.1.10
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The coefficients N, t4, t, and tz are cbtained by comparison of
cosfficients between 3.1.10 and 3.1.5. As beforse, eight

equations are possible.

D'Ocagne next investigatss how the linear scales may be
transformed into regular scales. A general homographic trans-

formation aspplisd te the homogenecus coordinates x = fi(ai),
y = (%) and t =¥ (@), (i = 1,2,3), is obtained by taking,

x = APy v g0+ vl [M MW

y = >\2f1 + ],12¢1 + \)211)1 in UhiCh. }\2 UZ \)2 f v}
b= APy v ugdy Vgl Ay vz V3

A regular scale may be obtained by making the appropriate t constant
and different from zera. In other words, in A;f; + Mgy ¥+ valy

the term in oy must be zero and the constant term different from
zera. Applied to the case of the non-concurrent scales the

gensral homographic transformation ylelds,
(1) x = (Aqmq + Y1P1)a1 * ANy Y49,
A
y = (Cgmy +Yp oy + a0, ¥ vo0,,
a (A o A
b= (gmy + Y300)% + 230y * Y39,

(11) % = (uqpg * vqmaagy +uqdz * v 4Ny
y = (Mopg +Ymp)ty + Hoap +Yony,
b= (gpy *Ygmk, FHad, TV 50,
(111) x = (A qpy *Hymalrg +Aya5 +u,ng,

y = (Aopy *uamidag *A,a5 *ung,
t = (A3p3y *ugmzky *Azaz +uang,

The conditions for regular scalses are therefors,

Aami + Yzp, = 0 with  Agn, + Yaq, o

p3p2 + 'Y3m2 - 0 uith uaqz +T3n2 f 0 .000003.1011
A

A gpg + Hyms 0 with 483 +Ugnz F O

The problem then is to satisfy as many of the conditions
3.1.11 as possible. Each one that is satisfied gives a regular
scale, If thay are all to be satisfied thsn it will not be possible
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for more than ona of la, W4 and V3 to be zero,

In order to have thrse regular scales the following

equations must bs consistant,

A

amq * Vapg = O
HaPp * vgmy; = O
APy * Mgy =0
i.s.
mp O P1
0 P, myl = 0, 1i.s. m,momg ¥ P4PP3 = o

p3 3 1]

Comparing 3.1.1 with 3.1.5 gives A = 0. This condition is necassary
but not sufficient,

Since conditions 3.1.11 only contain slements from the third row
of the determinant -

Aq Hg Mg
Ho= A ¥ 1
A3z Y3 T3

it follows that the first two rows may be chosen arbitrarily provided
that H ¥ 0.

If, for example, AS # 0 then we can take .M- 0, 4= 0, v4= 1,
Az = 0, My ™ 1,‘¥é = 0, in which case, if m MM = =P.poPay

(1) X =pyoy +q,, y=0 t o= 2Azny * Y39
(ii) X = madg + Nos Y ™ poog + A2, £t = H34qz + Y32,
(111) x =0, Y = Mgug + Agy £ = X505 + pang,

Here the scale for ¢, is the x axis, for a5 the y axis and for 2,
the straight lins YaX + Hay = 1a

In the case of concurrant scales the same reasoning applies,

giving as conditions for regular scales the following,

Agm, + Y3P 4 o with Azny *vaq, £ o
HaMmsy + YaP2 = 0 with usﬂz + y3q2 { g
(xs"' 113) My = Y3p3 = 0 with (As + Us)ns - 'Y3q3 f 0
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If all three scales are regular then the relationship
mqmzp3 * mipom3 * pqmamy = O
must hold. If it does, comparing 3.1.3 and 3.1.5 gives A = 0,
As in the first case this condition is necessary but not sufficient;

arbitrary values may be given to the first two rows of H, provided
that H # 0.

An analysis of the various posaible casas of both types of
system leads to the following tabls, in which + denctes a positivs

quantity, @ a non-zero quantity and 0 a zero quantity,

TAN E; -E'j E A Reqular scales.
+ ¢ g d g Gis ©3

+ g g g i Ays s Oy
+ g ) 0 ¢ Ggs %0

+ g 0 0 ¢ gs Opo

+ d 0 1} 0 iy aJ, L
+ 0 0 0 d @30

+ o 0 0 0 (31)‘0) %4 a_p

0 ¢ g d d %1 %o

0 ¢ g '] 0 ai’ aJ’ ak
0 g d g g %19 %0

0 g 0 o d gs Qs

o ) 0 o 0 %y aj, %

By way of illustration consider the following cases.

(1) oy -o3 = 0

We have F, = -1, F, = -1, E1 =, 81 =0, A=Q, A= 1, EZ-D, E5 = 0.
It can therefors be represented by three linear, non-concurrent

scales of which two arse regular.

(11) 1 +1 =

A
0.1 (12 a

3

Uriting this es opdy + 0403 — 040, = 0
we have FO‘U,F1'0,G-0 e A=

1
’51-1,52-1,23-1, A=0
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It can be represented by thraes linsar regular concurrent scales

It is of interest to note that the case in which A < g

was examined vsry shortly after the publication of d*Ocagna's
'Traite'. In November 1900, G. Fontens gave a non-algebraic
transformation which changed the valus of the discriminant (40).
Starting with equation 3.1.5 he made algsebraie substitutions

of the form C1=01' + a and obtained a reduced form for variables
X,Y,Z, which ars linksd to(%,qg%, by combinations of the

coefficients of 3.1.5.
The reduced form is,

EXYZ + €(YZ +ZX + XY) + (X +Y +2Z) +1 =0

where € is +1 or -1 according to the value of the product

8182830.

If € = -1, the reduced form is,
XYZ + (YZ + ZX + XY) - (X +Y +2Z) -1 = 0
with discriminant A= =16,

However, the substitutions X = tanh U, Y = tanh V, Z = tanh U
where U + V + W = 0 leads to the squality X + Y + Z = -XYZ,

This changes the reduced form to,

Z2XYZ + (YZ + ZX + XY) -1 = 0
which has a discriminant A = O,

The finsl section of the *Traite' dsals with the

representation of equations of the form,
Ayoy” + Agay” + Azey + 2Bq0p05 + 2Baz0q + 283040, * 20404 * 200

+ 2C303 +D = 0
by means of straight lines and intersacting circles. it is
intersesting but not as important as thse section desling with regular
scales and certainly not as important as the problem to which d'Ocagne

might have addressed himself, namely the representation of a relation

between three variables by his form III, i.s.
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f1(u1) ¢4(ay) w1(a1)
tho)  bylay)  Upla))| = o
fs(Cﬁg) ¢3(OL3) R’J3(O¥.3)

It must be a matter for regrst that d'Ocagne did nat chooss to
develop the work of Saint-Robert, Massau, LeCornu and Duporcq.

He might have anticipated Gronwall or Kellogg, whose work is

discussed later.

Finally, before lsaving the 'Traite', it is worth commenting
on a footnots which appears on page 209, for it may throw light on
how some of d'Ocagne's ideas crossed the Channel. He mentions
that he had visited Professor C.V. Boys at the latter's laboratories
in the College of Scisnce, London, during May 1896. ODuring this
visit Boys stated how useful he had found logarithmic graph paper
to be. D'Ocagne clearly means the Royal Collega of Science, now
a part of Imperial College, and we can be fairly certain that

Professor Boys received in return advics on the merits of Nomagraphy.
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2, Hilbert's Thirtsenth Problem.

At ths Paris International Congress of 1900 David Hilbert

called the attention of mathematicians to twsnty thrse outstanding

mathematical problems (1),

Problem numbsr thirtsen was described

as the "Impossibility of ths solution of tha general eguation

of the seventh degres by means of functions of only two arguments",

and was expressed in nomographic tsrms,

To understand the problem in ths form in which 1t was

presented it is necessary to start with d'Ocagne's concept of

points with two dimensions which he introduced in his *Nomographis® (30),

as doubly isoplethe points and developed in his 'Traite' (32).
idea is quits simple and has been met with befors,

the functions of o4 and 81,
have o, and 81 successively
is two systsms of curves, ons

other B,, which ars given by

By teking sets
similar to that of figure 3.1

1’
respectively.

The
Supposse that

X = f1(a1,81) and y = ¢1(a1,81) have
eliminated betwaen them. The result
having 0y as parameter and tha
F(xsy524) = 0 and G(x,y,8,) = 0

of velues for & 4 and B, a network

can be constructed. In the plane

of the network every point has associated with it a pair of

values (o4, B;) which satisfy simultaneously x = f1(a1,81) and

y = ¢1( 04 B,)-

Fiqure 3.1.
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This idea can be extended so that if, for example,

there are thres such networks for,

(1) x = P4(0q5B1)s y = $(0458)
(11) x = f‘2(OL2’ Bz)s y = ¢2(a29 82)
(111) x = f3(0q, Bs), y = ¢5(0 4, 8)

and if they can be usad as an alignment nomogram as shoun in
figure 3.2,

Fiqure 3,2.

then the equation of which the nomogram is a solution is given by,

f1(d1’ 81) ¢1(0‘1,81) 1
Folags 82) DALY =0
fs(a 39 83) o} 3( 03)8 3) 1

There is, of courss, no reason why such a system should
be limited to only three sets of intersecting lines, or indesd,
that a particulsr set of values, say 0,4, should not be identical
with those of, say, 0 ,.
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Presumably with thess ideas in mind, Hilbert points ogut
that a large class of functions of three or more variables can
be represented by the above principle alone for, as the trans-
lation of this problem by the American Mathematical Socisty states,
"namsly all those which can be generated by forming first a function
of two arguments, then squating each of thess arguments to a
function of two arguments, next replacing sach of thess arguments
in their turn by a function of two arguments, and so on, regarding
as edmissible any finits number of insertions of functions of tus
arguments”. As an example of a member of this class, Hilbert
cites svery rationsl function of any number of arguments as it can
be generated by the processes of addition, subtraction, multiplication
and division, sach of these processss producing a function of only
two argumants. It 1s now a small step to consider the roots of
those equations which may be solved by radicals "in the natural
realm of rationality" to use the words of the American translation,
Such roots demand the four opsrations of arithmetic togsther with
the extraction of roots; this last process being a function of one
argument only, and we sss that the roots of such equations also

belong to the class of functions under consideration,

Turning his attention to particular equations he considers
the general equations of the £ifth and sixth degrees. There iz a
process known as the Tschirnhaus transformation, involving the
extraction of roots, which may be used to transform equations, The

following theorsm applises;

By means of a Tschirnhaus transformation whoss coefficients
involve a cube root and three square roots, any equation of degree
n in x can be transformed into an equation of degree n in y in

n-1 n-2 n-3 d
which the coefficients of vy ', ¥ and y are all zero. (A goo

‘account of tha Tschirnhaus transformation may be found in (41)).

The gensral equations of the fifth and sixth degrees may

therefore be expressed as,
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ys + py2 +qgy +1=20
(in which the coefficients of yn—1 and yn_Z only
have besn reduced to zera),

and

y* +py?ray +1 =0
— _ -3
(in which the cosfficients of y" 1, y* 2 and y" have bean

reduced to zero).

Both of these equations now havs coefficisnts which depend upon
only two paramsters, p and q, and can be solved by nomography.
Indeed, in 1884 d'0Ocagne had produced the first alignment nomogrem
the subject of which was thse cubic squation x:3 +px +q =0

which, in principls, is no different from the squations given
above (figurs 2.16).

Hilbsert now considers the equation of the seventh degress.

Making use of the Tschirnhaus transformation he need only cansider

the form -
x7 + px3 + qx2 +rx +1 =20

about which he makes the follewing conjecturs,

"It is probsble that the root of the equation of tha ssventh
degree is a function of its coefficients which does not beslong to
this class of functions capable of nomographic construction, i.s.,
that it cannot be constructed by a finite number of insertions of
functions of two arguments. In ordsr to prove this, the proof would
be necessary that the equation of ths seventh degree x? + px3 + qx2
+ rx +1 =0 is not solvable with the hselp of any continous functions

of only two arguments.”

Hilbert concludes the statement of his problem by saying that
he has satisfied himself by a rigorous process that thers exlist
analytical functions of three arguments p, q and r, which cannct be

obtained by a finite chaln of functions of only twe argumants.

It is not possible to say when d'Ocagne learned of Hilbert's

problem, he may have been prasent at the congress, but his
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response was swift (42). On the 17th September 1900 he presented

a paper to the Paris Academy of Sciences on the nomographic
resolution of the squation of the seventh degree. He begins

with a reference to Hilbert's problem and continues with a very
brief comment on his idea of 'points with two dimensions' recognizing
that a chain of such networks is the solution sought by Hilbert,
Howevar he does not pursus this line but introduces the idea of a
moveable element, not a new idea since it is a necessary part of
Lallemand's hexagonal nomogram. The point being made by d'Ocagne

is that in the method of aligned points we have a moveabls straight
line as a nscessary component and that its use is equivalent to the
introduction of a asystem of lines in two dimensions, However this
is not so in his sclution of the sseventh degree equation since it is
obtained by the moveable straight line intersecting three scalss

and in this case the line is a necessary component of a function of
the three variables p, q and r.

Briefly, d'Ocagne's method is as follows.
He starts with an squation of the form
X4t pX, * Qxq ¥ TX, = 0
in which the xj's ars functions of x and p, q and r may taks any

values within given ranges,

This equation can be expressed in the determinant form,

-1 q 1
1 T 1 |= 0
Xq4 = Xy - X4 * px, 1
x4 ¥ %3 Xg ¥ X3

and hence as an alignment nomogram of three scales -

(1)  &=-1 ’ n=aq
(11) €= 1 ’ no=r
(141) ¢ . x4 =X5 , n = - X432 DBX5
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In the case of x4+ px3 + qx2 +tx +1 = § the follouwing

substitutions are mads,

Xy = x7 + 1, X, = x3, Xg = x2, Xy =X
in which case scale (iii) becomss,
E o= 1-%x 5 n = - x7 + EXS + 1
1+x x + x°

and if x is eliminated bstwesn them,

I xR
B=E o+ 3%

Thus, for each valus of p there is a curve in the (§,n) plans.

Additionally, the & axis is a scale of x since L= 1 - x
1 +x

From scales (i) and (ii) it is ssen that the values of q and z
lie on lines parallel to the 7|, axis and at a unit distancs from

it on either side.

? 1 .
-6 15
i 14
L3 43
2 LIS
Ll {t
o ; o
:;.'- o0 x=3 :r,:ls—- .;‘:o é'

Fiqure 3.3.

Figure 3.3 illustrates the schems. In the discussion
gscale factors have been ignored although they would cobviously ==
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very important for a sensibls and accurate nomogram,

Ingenious though d'Ocagne's work is, it i1s no answsr to
the problem possd by Hilbert. Although Hilbert posed his problem
in nomographic terms it is relatsd ta the much wider problem of
the complexity of functions. There does not appear to havs besn
much progress made towards resolving it until the mid-1950's,

In 1956 A.N. Kolmogorov proved that every continuous function of
n variables can be represented in the form of a superposition of
continuous functions of three variables (43). The following ysar,
V.I. Arnol’d was able to modify this thsarem reducing the number
of varisbles from three to two (44).. Also in 1957, Kolmogorov
published a theorem, one consequsnce of which is that, within
appropriste limits, the function f(x1,x2,x3) may be expressad as,

7
P(xqs%ps%z) = Z;hq(¢q(x1,x2), X3)
q=1
where all the functions are continuous (45).

These interssting results do not dispose of Hilbert's
problem., The distinction must be made bstween algebraic functions
and continuous functions of two variables. Hilbert's problem is
algebraic in origin, since it arises out of attemptis to eliminate
as many coefficients as possible from polynomial equations -

oK

Lax = 0

K=0

]

but he rscognises its morse general application and appears to
expect that the seventh degree equation could not be sclved evan
by continuous functions of two variasbles. The work of Kolmogorov
and Arnol'd show that this last supposition waes wrong but Hilbert's
original problem remains unsolved, It is still not known whether
the equation -

x7 + px3 + qxz +rx +1 = 0
cen be solved by a finite numbsr of superpositions of algebraic

functions of two varisbles.
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3. The Spread of Nomographic Ideas,

The story of the developmsnt of nomography so far has
been the story of the discipline in the hands of specialists.
To be sure, most of these spscialists wers snginesrs who
developed their ideas in order to achisve practical ends but the
important fact is that they were developers; no case of an
engineer or scientist taking these ideas and suggesting how
they might be applied to his own discipline has yet bsen citsd,
The sarliest such cases of which I am aware date from around the
turn of the century, some before but most after, but there may
be other casass which I have not found. There is evidencs in many
of thess cases that it was the works of d'0cagne, usually his
Traite, which were responsible for the spread of these ideas,
It is of interest to assembls the available evidence to ses
when, and for what spplications, the ideas of nomography were

transmitted to those who would wish primarily to be ussers,

In Britein, the first indication of the use of gsometric
methods in computation in the new century is rather disappointing.
In 1903 the Minutes of the Procsedings of the Institution of Civiil
Engineers contained a short item by R.S. Scholfield an *The use
of logarithmic scales in plotting curves' (46). In this article
the author states the desirsbility of raplacing-curves by straight
lines whensver this is possible and makss the following suggestions,
apparently unaware that some of them had appesred in print as
much as fifty ysars sarlier. Ffor expressions of the form ab = ¢
he suggests plotting log a + log b = log c and for xR = ku2 the
suggestion is to plot thes v's to a scale of squarss to obtain
radial straight lines passing through the origin. His third
suggestion, in a case whers curves approximate to hyperbolae of
the form xy = constant, is to use polar coordinates with a base
line divided logarithmically. Sound though these ideas are it is
regretable that they needed ta be published for the Institution
of Civil Enginsers ss late as 1903.
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Perhaps ths first published sccount in English of
nomographic methods was a seriss of articles by John B. Peddls
which appeared in *The American Machinist! during 1508 (47).

The purposs bshind these articles was clearly a practical ons
as the choice of publication suggests, Undoubtedly many American
engineers encountsred geometric computation for the first time
on reading them and it is very possible that the same is true of

British enginesrs for the publication seems to have haed a wids

circulation.

During the following year there eppeared in the Journal of
the Royal Artillery a very short paper describing a 'Scale for
the graphic calculation of dsflaction and angle of sight problsms',
by Ceptain R.K. Hszlet, R.A. (48). The 'scale' was an alignment
nomogram which had as variablas the range R, height H and angle S
connected by the formula H = R Sin S. The limits for the variables
conformed to the requirements of artillery at that time. This
particular nomogram was apparantly on sals, for Hezlest states
the following: "The scale is printed on a stout card 6" x 43" and
the sdges of the back of the card havs bsen graduated with ussful
scalss for mep reading purposes, one edge being left blank so
that it can be graduated with a degree scals to suit the user's

length of arm.

The cards may be obtained from Messrs. W. Watson & Sons,
313, High Holborn, Londan".

The following year, 1910, Hezlet wrote a longer paper
for the Journal of the Royal Artillery entitled 'The Graphic
Representation of Formulae' (49). He begins this paper with the
statemsnt that it is the outcome of a study of two works of d'Ocagne,
thg"Trait-‘ and 'Calcul graphique et Nomographie', ths latter
having been published in 1908. Pointing out that thers did not
sppear to be an English equivaslent of the french words 'Nomographis!'
and 'Nomogramme’, he coins the word 'Nomogram' to describe the

graphical chart and this eppears to be the first time that the word
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nomogram is used in a British publication. Thse substance of

ths paper 1s the application of nomograms to soms formulas

in ballistics and in particular of alignment nomograms which
Hezlet prefers. He makes no attempt to sxplain the theaory

bshind such nomograms, referring the curious to d'Ocegnea’s

works, but gives rules for the construction of certain nomographic
types, illustrating them with examples from ballistics. The
formula types dealt with are -

(1) f1(z1) + fz(zz) + r3(z3) = 0
(i1) f1(z1) + Fz(zz)f3(23) = 0
(111)  Pi(z)ag(zg) + P,(z)ha(z5) + P4(z5) = O

Thoss requiring methods for formulae involving four, five or

six variables are agein referrsd toc the works of d'Ocagns.

The importance of Hezlet's two papers lies in the fact that
they mark the introduction of d'Ocagne's ideas into Britain.
Hezlet has the honour of being the pionser of nomography in this
country but he always disclaimed originality, being fulsome in
his praise of d'Ocagne. 1t is not known whether d'Ocagne and
Hezlet ever mst, they may havs done for Hezlst served in France
during 1915 but ths conditions then would not have bsen conducive

to such a mesting.

In 1911 another soldisr, this time from the Corps of Royal
Engineers, showed a familiarity and sppreciation of d'Ocagne's
works, Captain C.E.P. Sanksy wrote a paper with the title "Moving
loaeds on military bridges® which included several pagses on 'The
graphical representation of formulae®' (S0). The fellowing is taken
from his paper, "The subject‘of graphical charts in genseral is a
most fascinating one, and many books and articles have been written
on it. Among these may be mentioned Traite de Nomographie by Maurice
d'Ocagne, a work that is most exhaustive in its treatment;...".
Other authors mentioned are Peddle and Scholfield. Thus it is
clear that d'Ocagne's work was known at least to officers of the

two technical corps of the British army by 1911, In his general
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remarks, Sankey complains that graphical charts ars not
sufficiently used on service and gives reasons why the military
should be interssted in them. Making the point that, in gensral,

8 graphical chart is only an economy if ths tims required for

its preparation is less than the aggregate time nscessary far the
separate calculations which it will replace, hs obssrves that on
military service priorities are different and that a small saving

of time, even on only one occasion, can be very cheaply purchased

by the time required to prepare such a chart, The brief review

of nomographic methods given by Sankey is concise and comprehensive
and is designed to whet the appetite of the rsader; it includes

the ideas of anamorphosis, of intersection nomograms and of alignment
nomograms and is accompanied by many charts prepared by thes author.
An appendix on alignment nomograms, which gives a brief introduction
to parallsl coordinates, is included.

If the idseas of nomography were to gain wider accsptance
in Britain then it would be necessary for a text on the subject
to be published. Such a text was written by Hezlet. It was
published by the Royal Artillery Institution in March 1913 and
cost two shillings and sixpence (51). It is a very lucid and
concisa little book which shows the author to be a compstent
mathematician although he disclaims all originelity except in
so far as the examples are concernsd., All aspects of nomography
likely to be wanted by scientists or enginesrs are included
with enough theoretical support to satisfy the theorstically inclined,
but those not so inclined are recommended to disregard theory
entirely at first and go straight to the examples. It is a measurs
of the ability of the author that it is quite possible to use the
book in this way.

In spite of this excellent little book, British ignorance
of nomography was apparently still widespread in 1920. This was
so sven in Hezlet's own organisation, for he found it necessary to

write a short note in the Royal Artillery Journel with the title
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'What is a Nomogram?' (52). In this he takes a calculation, which
would have besn familiar to his readers, concerning wind corrections
to the lins of fire and draws both an interssction nomogram and an
alignment nomogram for it. He makes two points; firstly, that a
nomogram is mors nsarly foolproof than a normal calculation and
secondly, that an alignment nomogram is to be preferred tg an

interssction nomogram.

Perhaps it was this widespread ignorance of nomography
"that prompted a member of the British academic establishment to
publish a book on the subject, for in 1920 there appsared 'A First
Course in Nomography' by Selig Brodetsky, then Reader but latar
Professor of Mathematics at the University of Leeds (53). The
book is no more than it claims to be, i.e. a first course, but
it must have besn very ussful to the enginesr who wanted an

introduction to the technigues.

It was not until 1932 that anything 1ike a text book on
nomography was published in Britain and sven then it could not
compare in any real senss with d'Ocagns’s ‘Traite', This was
'The Nomogram! by Allcock and Jones which, through its various
editions, became the standard British text (54).

Before examining the rather more sparse esvidence of the
spread of nomographic ideas to other countries, it is worth
looking at some aspects of Hezlet's life, It is strange that those
men who have beaen concernsed with nomography and whose lives are a
matter of public record have been unusually versatile men, as we
have sesen in the cases of Lalanne and d'Ocagne, Hezlet is no
exception, A professional soldier, he was an expert in ballistics
wvho spent a great part of his career in ressarch and experimentation
on gung and ammunition. During the First World War he was tuwice
mentioned in dispatches and awarded the D.S5.0, bsfore his spacialisad
knowledge caused him to be returned to Britain to s post at the
Ministry of Munitions., He rsached the rank of Major Genersl and
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amongst his appointments was that of Commandant of the Military
Collegs of Science. This would be enough for most men but in
retirement Hezlet took the normal undergraduate course at the
Royal Vetsrinary Collegse, Edinburgh, and, at the age of 67,

qualified as a veterinary surgecn. He died at the age of 83,

In passing we may note that Brodstsky was no less
versatile., Born in Russla and brought up in East London, he
won his way to Trinity Collegs, Cambridgs, and was Senior Wrangler
in the Mathematics Tripos of 1908. His mathematical carser was
one of considerable success but in addition he was dedicated to
the zionist cause. Amongst the appointments which he held in
this connsction were, member of ths Board of Governors of the
Hebrsw University, member of the executive of the Zionist World

Organisation and President of the Board of Deputies of British

Jeuws,

In France one would have expected d'Ocagne's ldeas to havs
been accepted spesedily, not only because hs wrote in French but
also because many of those most 1likely to use his techniques might
well have been taught by him. This had heppened in the cass of
a naval officer, one Liseutsnant Perret, who learned about slignment
nomograms by attending classses given by d'Ocagne at 1'Ecols Poly-
techniqus in 1894-1895. In 1904, Perret published a paper on ths
application of alignment nomograms to problems in Nautical Astronomy
and, in the following year, he addressed the French Academy for
the Advancemsnt of Science at its meeting in Cherbourg on the same
subject (55). His paper is a substantial one having, as Perret
states, "ths purpose of interesting our friends in the use of a
pracedurs which can render to them real service". Stating that
nautical problems are normally soclved by the use of tables and
that these are of great convenience when the related aquaiion
contains only two or thres variables, he points out that an increass
in the number of variebles can greatly diminish this conveniencs.

As an example he cites the method of determining the azimuth of a
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star, when the latitude, hour angle and declination are knoun,

for which the tables consist of several volumes, Ha chooses

this problem as his first sxample. Howsver, befors he dsals

with this he gives a short sxplanation of the theory of alignment
and of parallsel coordinates and this is clearly intendad for the
user rathsr than the theorist. His approach is a very simplse ans.
It is bassd on comparing a given equation with the equation

au + bv + ¢ = 0, which represents a point in the case whers u and v
are parallel coordinates., In figure 3:4, if M is the point from
which u is measursd and N that from which v is measured, then P

is the point having au + bv + ¢ = 0 as its equation.

=

8in

= O

Fiqure J3.4.

If cartesian coordinates are superimposed on the diagram in such
a way that the x axis colncides with MN, the origin O with ths
mid point of MN, and the y axis parallel to the v and v axes,
then P is given by,

x-Q,b_a y-_c
b+a b+a

where MN is af length 2%,

Thus, for an equation of the form,
%(as)f1(a1) + 11)2(03}?2(@2) + lpa(az) = 0 0‘..0000.&0..03.3‘1
on comparison with eu + bv + ¢ = 0,

we may Write, u = f1(a1), v = fz(az) 80000 50 080 900.3.3.2
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and a = KP1(0C3), b = \Uz_(as)’ c = ws(ds) esvessase 0edeled

The equations 3.3.2 give directly the graduations of the

parallsl axss U and V.

The equations 3.3.3 lead to the cartesian coordinates of points
in the plans, sach point depsnding on the particuler valus of O ge
Thess coordinates ars,
x =, Yolaz) = vqf{aa) and y = —¢2Q31
U)z(dz) + 1,[)1(0t 3) \UZ(OL3) + ¢1(013)

It can he sasan that if<13 is eliminatsd from these coordinatss

the result is an equation of the form F(x,y) = 0. Te sach point

of this curve there will correspond a particular valus of ‘13.

Thus, three scalss, one sach for a1,(12and 05, 3re obtained quite
simply and without having the problem of putting 3.3.1 into a
determinant form, an obvious advantage to the user. An alignment

nomogram of the form obtained is shown in figure 3.5.

0

Fiqure 3.5.

The azimuth problem has for its equation,

cot A sin H +cos L tan © — 8in L cos H ® 0 seseee3e3.4
in which,

L is the latituds,
© is the angle of declination,
H is the astronomical hour angle,

A is thse azimuth of the star.
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Comparing 3.3.4 with au + bv + ¢ = 0, ws have

u = cot A’ v = tan 6 QC"'&.OQC-.'COGI'3I3IS

a = sin H, b=cosly €= = 3In L co8 H ceeveecccceselelel

giving, x = 1cosL ~ sinH, vy = sinlL caosH esosevovssessIadal
caslL + sinH cosL + sinH

Equations 3,3.7 give a seriss of points which depend on two
variables, namely L and H, and therefore amount to en interssction
nomogram which can, qgiven that L lies betwsen -1/2 and Tr/2, be such
that x <]1l; i.a8. it 1liss betwesn the vertical scales u = cot A

and v = tan O,

The construction of the scales given by 3.3.7 is not as tedious as

it may seem for, by eliminating in turn L and H, we arrive at,
413 %tan?H - xZcosZH + 21x(1 + sin?H) - 1%cos?h = o} 558

AlzyzcotzL - x%ein?L - 21x(1 + coszL) -1%40?% = @

which represent hyperbolae having the x axis as diamster.

The appearance of the nomogram is shown in figurs 3.6.
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Perret givss much practical advice on the construction
of this nomogram, advice that is to help ths navigator construct

a nomogram which would be of uss at ssa,

The second exampla is concerned with the prediction of
occultations. This again is treated in a very full manner,
starting from that which would be familiar to the sailor and
then splitting the problem into sections which can be dealt
with as dsscribed in the preceading exampls,

It is of interest to note that during the same ysar
d'Ocagne was working on the nomographic solution of spherical
triangles, a topic of soms importance to astronomicel navigation
and surveying, areas to which nomography was being applied at
this time (56 and 57). Alsc in France, it is recordad that the
physics course at 1'Eccle Polytechnlque mads use of an alignment
nomogram to carry out calculations for Van der Wesal's gas equation.
Unen the warship 'Republique' was tested, the chief marine engineer
carried out many of the nscessary calculations by nomograms. In
surveying, a work by Capt. de Larminat called 'Topographie pratique’
had a supplement which contained eight nomograms dealing with
various ordinary calculations of surveying, while Capt. lLelargs,
writing in the 'Revue de Genie', gave nomograms relating to
telephotographic surveying (58). The world of business was also
making use of nomograms; an actuary by the name of Poussin published,
in 1904, a seriss of alignment nomograms dealing with insurance
problsmas (59).

These are but a few of the examples which show how, in
the early years of the twentieth century, nomograms, and in particular
alignment nomograms, had become accepted as an important aid to

calculation in many branches of knowledgs in France.
Those countries in which France had some influence, sithsr
through language or by the presence of French citizens, might also

be expected to have tsken to nomographic ideas. This would certainly
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have been true of Canada, where one can assume that the French
language would not be a grsat barrisr, and of Egypt, where

French sngineers would have been prominent in the Susz Cansl

Company.

In Canada, E. Deville, a well known land surveyor who
was head of the CGeodestic Service of Canada at the time in question,
presented a paper to the Royal Socisety of Canada on the uss of
nomography to find the Altitude and Azimuth of the Pols Star (60).
In many respects this is a parallel papsr for survayors te the
one written by Perret for navigators for it is concerned with
eliminating calculation from a problem met with continually in ths
exarcise of that particular activity, The paper has a section
on the graphic repressntation of equations which begins with an
acknowladgement to d'Ocagne for his Yexhaustive investigation of
the subject'., It is followed by a brief account of that part of
the subject required for his purposss; this part is of a higher
mathematical standard than the similar part given by Perret.
Oeﬁille explains how interssction nomograms and slignment nomograms
can be connected through ths principle of duality and gives the
determinant form for an interssecting systesm of thres straight lins
sets, In visw of the fact that in the introduction he makes ths
remark 'soms surveyors prefer no calculation whatever',; one wonders

whether such surveyors got anything from this part of the paper.,

Deville's approach to the two particular problems, the azimuth
of the Pole Star and its altitude, is along the same lines as
Perrst's, i.s. the appropriate formula is put in a form suitable
for the precise problem and then compared with au + bv + c = 0.
Deville differs from Perret by introducing moduli, or scale
factors, at this stage. The final nomograms have the appearance

of great simplicity.

In Eqypt, nomograms were produced by the head of the
Irrigation Service for calculations dsaling with the flow of water
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in canals and over weirs (61). Problems on ths strengths of

railway bridges werse solved by Farid Boulad, an enginser with
Egyptian Railways, using alignment nomograms (62), It must also
be noted that the next major advance in nomogrsphy was to be
contained in a series of articles by Dr, J. Clark written in

1907 when hes was Professor of Mathematics at 1'Ecole Polytechnique

in Cairo. Thess arse examined in the next ssction,

Nomograms were produced in Italy befors the end of the
ninetesnth century. Professor Gorrieri produced some on problems
concerning the strength of loaded beams (63), while Professor
Molfino of Livorno carried out a study similar to that of Perrst
in France (64). Professor Pesci, alsoc of Livorno, used alignment
nomograms to solve prablems in naval kinematics (65). Problems
related to artillery were also the subject'of Italian nomograms
by Ronca (66), and Ricci (67).

In Spain, General Olleroc used alignment nomograms to solve
problems in ballistics (68).

In Holland, an enginser named Vaes produced alignment
nomograms to solve problems arising in the construction of
marine boilers (69).

Moving eastwards we find that W. Laska, Professor of Geodesy
at the Technical High School, Lvov, in the Ukraine, had used
alignment nomograms for topographic calculations by 1905 and was
in the process of collaborating with an engineer named Ulkowski
to produce a collection of technical nomograms (70). I have not

found any trace of this collsection.

Nomography was introduced into Russia, according to the
Russian Encyclopedia, by M.N. Gerasvanov during the period
1906 to 1908, but d'Ocagne records that Colonel Langensheld had

used alignment nomograms for ballistic calculations in Russia with
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the implication that this may have besen before 1906. OD'Ocagnse
also acknowledges ths work of Gerssvanov and credits him with
the invention of @ new type of nomogram called ‘a points
equidistants' (71). I have not found reference to this type of

nomogram anywhsre else.

It is clear that by the end of the first decads of ths
twentieth century the discipline of nomography had spread far
from its birthplace of France. It is also clsar that it was
taken up more enthusiastically in some countries than in others.
In Britain thsre seemed to bs a reluctance to take up the ideas
and they were never to bscoms as important as they deserved to bea.
The countriss which were to contribute most to Nomography in
the future were Poland and Russia, both of which were very activs
in the 1950's. The United States also retainsd an interest in
the subjsct., One can speculate on reasons for this state of
affairs but it can only be speculation for there is no real
svidence. British enginesrs appear to have been devotsd to their
slide rules and this, together with the insular attitude to which
Britain has always bsen prona, was probably snough to confine
nomography to a minor role. It is not easy to account for the
sustained Russian interest, which extended throughout the 1930's,
a seemingly static period elssuhere, except by suggesting that
the nomographic approach to problems may have been more in tune
with the Russian temperament and outlook. The grsat interest in
Russia and Poland in the 1950's is easier to understand for at this
time the West was making great strides forward in the development
of electronic computers and the East European countries may well
have felt that-they were being left behind in the fisld of comput-
ation; to improve nomographic techniques would at least have been
an interim measure to narrow the gap. Recent American interest
might be just & normal reaction to ths Russian intersst but this
could be an oversimplification; there is universal intersst in
the problém of complexity of functions, a problem which originated

in nomography.
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From about 1907 onwards, the publications dsaling with
nomography at all levels proliferated greatly. A study of
the development of nomography can henceforward only taks account
of those developments which advanced the discipline in some major
way or brought out soms vital point, It therefors follows that
some worthwhile contributions will be left out while soms, perhaps
less worthwhile, will be included because they illuminate the
particular point being made., The task of providing a catalogue

of nomograms over the years is a differsnt task from ths one

in hand,

127.



4, The Contribution of DOr, J. Clark.

ODr. Clark first presented his ideas on nomography in
1905 to the Cherbourg congress of the French Association for the
Advancement of Science, It was also at this caongress that Lt.
Perrst presented his paper on the application of namography to
nautical astronomy. UWhereas Perrst's work had appeared in print
tha year before, Clark's did not eppear until three years after
the conference. When it did a2ppear it was in the Revue ds Mecanique
and was split into secticns, the first appearing in October 1907
and the last in May 1908 (72). The Revus de Macanigqus is rather
an odd choice since the work itself is mathematical; d'Ocagna's
introduction begins with the comment that it 'diverges somswhat
from ths ordinary bounds of that received'; but it is not known
why that publication was chosen, Very little has bsen recorded
about Clark the man, At the time that his articles appeared hs
was Professor of Mathematics at 1'Ecole Polytachniqus in Cairo.
He doss not seem to have been particularly fluent in french since
his articles were translated into French by G. Fleuri, another

professor in Cairo.

D'Ocagne's introduction is curious. UWhile praising Clark's
work it naverthelsss conveys the impression that most credit is
dus to d'Ocagne himself. In one senss this is truse, for d'Ocagne
can rightly be considersed the father of the subjact, but if
Clark's work depends on any one idea, that idea is Sorsau's notion
of nomographic order. The tendsncy of d'0Ocagne towards self
aggrandisement in his later writings is most noticeable, Tsaken
with his apparent plsgiarism of ths ideas of critical points
from Massau and of nomographic order from Soreau, one is left with

a fesling of regret thét an able man should conduct himself in
such a way,

Since the time of Lalanne the i1dea that a nomogram should
contain as many straight line supports as possible had become a

guiding prinbiple. In practice, using the classification ideas
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of Soreau and d'Ocagne, this meant searching for a nomogram

of genus n-3 when the equation was of nomographic order n,

n being 3;,4,5 or 6. Clark's important contribution was to take
this principle and investigate the construction of nomograms

when it was not followed. The result was that he sought nomograms

of genus grsater than n-3 for equations of nomographic erder n.

The quality of this mental process must be compared in
nomography with d'Ocagne's work which lsd to alignment nomograms.
In mathematics gensrally thers is a grsater precedent for it.
Clark¥s abandonment of what may be called the 'anamorphosis principle!
is of ths same type of reasoning as that which led to the abandonment
of the parallel principle in Geometry, and which in turn led to the

discovery of nen-Euclidian geometries,

Clark's work begins with an examination of the general

equation of the fourth nomographic order which hs writes in
the form,
P3(agf1fy + aqfy + agfp + az) +¢ 3(bgPqfy + byfq + bafy + by)

+y 3(cofif2 + €11 + cof2 + €3) = O

D P . DY P

The problem posed is to investigate under what conditions this
equation may be reprssentsd by a nomogram of thae same order, i.s.
by two straight lines and one curve, or in d'Ocagne's classification,

of genus 1. 1t should be noted that if ¢3 = (J in the genersal
equation then it 1s reduced to the third order.

As the canonical type of ths fourth ordar equaetion Clark
takes,

FqFz + Fodz = Y3 secsescscrsnsssscosssscossdede?
It is the form given by Cauchy when he conslidered Lalanns's
paper on anamorphosis, The problem is now to find under what
conditions it is possible to pass from 3.4.1 to 3.4.2, or vice-verss,

by a homographic transformation.
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If 3.4.1 is written in ths shorter form,

Fax +¢ay +Pgz = O ssansassessassesscaness seadyd
then Clark's first condition 1s that a valus of A must exist
such that x + Ay can be factorised, When the condition that
A should be real is applied, the result goes back to d'Ocagne's
work on the third order squation for it is no mors than that ths
discriminant of f3x + ¢3y = 0 should be greatsr than or squal
to zero, It therefore follous that a first condition for the
representability of a fourth order squation by a nomogram of the
same order is that all equations of the third order obtainad by

making fa or ¢3 or ws squal to zero must be repressentable by a

chart of the same ordear,

Starting from 3.4.2, Fq and F, are written as,

Fpo= Xy F, = %
by ¥,

thess forms being linear functions of f4 and f, respectively.

This is necessary since in the canonical form it is thess two
functions which repressent the straight lines, Clark's process
for showing when 3.4.1 and 3.4.2 are homographic transformations
of aach other involves at one stage a comparison of equations
which indicates that the z of 3.4.3 must haua¢a‘% as a factor.
Furthermors, when this factor is removed an expression linear in
1 and 1 is left, unless 1 and 1 ars constant in which cass it is

W ¥ Y Y2
linear in f1 and fz. This leads to some practical rules,

Decompose x +A y into factors. There will at the most
be two values of A .
If the two values of A are real and distinct then

x +hy = 2,0,

x *hy = 2,0,
and the required factors are aitherdﬁwz orQ1QZ . If
division by one of the pairs mekes z linear then the
equation is of the required form, if not it is irreducible
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to that form.

1f the two valuss of A are rssl and equal then x + Ay = ¢1¢2

and the required factors aradﬂWz » If z is rsndered linear

on division by w1w2 then the equation is of ths required form,

i?f not it is irreducibla, If there are no real valuaes of A

the squation is irreduciblse,

By way of illustration consider the following equationj

Ars(fy + a)(Fy + ay) + Boy(fy +by)(F, +by) + Tus(fy +c,)

(f’z + c2) = 0
Firstly nots that since x,y and z ars all decomposed into factors
then these factors must contain those sought.

X +\y = ”1 + 81)(1’2 + a2) + A(f’.l + b1)(f2 + b2)

shows at once that the squation is not reducible unless two factors
taken from different terms are identical. This howsver is based
on the Pact that x +\y cannot be factorised. Suppose that it has

factors, say (f, + a1)(f2 + b2), then the coefficient of Y., after
division, is - '

(fq_* cq)(f, + cy) . (1 + EL:__‘;‘A) 1 4+ 22,:_.22>

(f1 + 31)(f2 + bz) f1 + a4 fz + b2

which is only linear in 1 and 1

if (c- ag)(c, - b,) = 0,
f.e. if ¢4 = aj or ¢ ™ bos which again shows that the equation is

jrreducible unless two factors taken from different terms ars

identical.

of some intsrest for their generality are two forms given
by Clark as examples. The first is -
= constant,.
f,fs* f2¢3 1+ kf,f, whers k is a con
He points out that this equation is of the form -
= + kf,F
faefs t Tofs = 11K

where c 02 are constants representing degenerate linear functions

1’
of f1 and f2 .
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Following the method used above, both sides can be divided by
c,¢, giving -~
fifp * B0 = 1+ kOP,
cq cq G4Co €4Cp
showing that the right hand sids is only linsar when k = 0,

Hence, f1f3 + f2¢3 = 1 + kf4f, is only reducible to the
canonical type 3.4.2 if k = 0,

The sscaond example is -
f1f3 + f2¢3 = f1f2 + k

If k f 0, then putting m = 1/« the praviocus form is cobtained,

If k = 0, thsn on dividing by f1f2,
1f, + 1%, = 1 is obtained which is the
3 3 r 3

2 1

cananical type 3.4.2.

Hence f4f3 + o3 = fqfp + k
is only reducible to the canonical type 3.4.2 if k = 0,

Clark is able to condenss thesse rssults into a more managsable
form in order to 'recogniss at first sight whether an squation of

the fourth order is representable or not’,
He rswrites squation 3.4.1 in the form -

PfoR3 + £4B3 + FC3 + D3 = 0  ecccescccccscscencededod

and concentrates on the coefficients Az, B, C3 and Dz,
vhere - Az = agf3 + bydsz + cy¥s3
By = @,f3 4 boo; +c Uy
C3 = ayfq +byb, +c U,
D3 = agfz + byds *+ c3ls

Firstly, if any ons of the coefficients is zero, then equation 3.44

2000006000880 0.0.3'4.5

reduces to forms which can bs seen to be sguivelent to the canonical
form 3.4.2,
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If all the cosfficients are different from zero, then an
examination of their forms shows that a linsar relationship must

oxist between them, i.8. aA 3t bB3 + c63 + st = 0

This means that D3 can ba eliminated from 3.4.4 provided that
d ¥ 0, giving,

(f1f2 _.3 ) A3 + (f1 —'% ) 83 + (fz‘_ﬁ ) C3 = 0 s0essssaded.b

By applying the method described earlier, for representability

it is necessary that -

fifz - 2
( d? should be linsar in 1 1
f. = by,/f, - cC f. - b f, - ¢
("1 d)( 2 d) 1 3 2 5
Put X4 = fq4 - b, Xop = f9 —c , then
d d
X, +by/X, +c, ~-a
1 =("2 = =
( d)( d) d must be linear in 1, A1
X14X2 X1 X 2
i,e. bc~-2 = 0 i.e. ad -bc = 0
d2

If d = 0, then some other coefficient is eliminated, say

83 it b ¥ 0, and the argument repeated, giving the same result.
This result is quits general,

Returning toc equation 3.4.6 and making the substitution

Xy= fq ~-b , Xg=fz2-c3;
d d

(X1 +'%)(x2 +‘%) A3 + X183 + X2CS = 0

i.a. X1f3 + X2¢3 = X1XZ + bc - ad
2
d
which reinforces the result obtained earlier that -

f1f3 + f2¢3 - f1f2 + k is only reducible if k = 0,

It is also possible to express the relationship ad - bc = 0
in terms of the constants of squation 3.4.1, for the relationships
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3.4.5 may bs expressad in a determinant

of A3,83,C3 and D3 are a, b

form in which the minors

> € d. The condition becomes

31 32 33 BU 81 82 a8 a, a, a

0 %2 23| |8 24 23
b1 b2 b3 X bU b1 b2 - b0 b2 b3 X bD b1 b3 1]
Cq Cp C3 €g €4 Cy cy €, Cx g © 1 3
These results can be summarized

to give two canonical forms for
the fourth order squation.

It has already bsen establishad that all equations of ths
fourth order can bs reduced te the form

f1 f3*f2¢3 "'f1 fz‘*’k
If k = 0 then %§3+ %3f3 = 1 which is of the form Fy Fy + F, 0, = 1
.“.’.......3.4'7
If k # 0 then a substitution of the form f, -.% and other simple
2
transformations lead to ths form
FqFpFy v (Fy +F, )0,=1

.....00000003.408
Reduction to this last form is impossible if k = 0 showing that
3.4,7 and 3,4.8 are mutually exclusive,

Clark has therefors arrived at the important result that all
fourth order equations can be reduced to one of the forms 3.4.7 or
3.4.8. Those which can be rsduced to the type 3.4.7 can bs
represented by a nomogram of the fourth order, those rasducad to the
type 3.4.8 can not be represented by a nomogram of the fourth order.

To the form 3.4.8 Clark gives the name ‘symmstric'.

Clark next proves & most important theorem which states that
svery equaticn of thse third or fourth order is representable by a
nomogrem sither of the same ordsr or of two orders higher., The
demonstration of this thsorem is quite simple. Starting from
squation 3.4.1 and dividing throughout by the term
cg f1 f2 + Cq f1 +c, fz + Cq the resulting form is

xfy +yds + ¥y =0
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in which x = af1£2+a1_f_1+azﬁ *+a,
c0f1f2 + C1f1 + czf’2 + 4

y = bofqfo * bqfq + bofy + by

C°f1f2 + C1f1 + szz + C3

From these last two relations it is possible to eliminate F1 and f2
in turn resulting in linsar squations in x and y.

Three linear equations in x and y result,
xXq +ydq +¥q = 0

XX2+Y¢2+LL’2 = 0
xf3 + y¢3 + ¢3 = (

00000'000.000'....«'0."0!0394.9

from which it follows that -

X1 ¢1 ¢1 ,
X2 ¢2 11}2 = D .0..00-.0..‘0l.a.o-a.o.o-..304010
f3  ¢3 V3

This shows that the variables of a fourth order equation can bs

separated into the dsterminant form. Furthermore, since this

form can ba written -

G,  Hy 1
G, Hy 1{ = 0
Gy  Hy 1

it will represent, in general, an equation of the sixth order.

If in the original equation ws = (0 then this squation is of the
third order. The determinant will now bs of the form —

G, H* 1
G, Hy 11 = O
G3 o 1

which, in general, is of. the fifth order.

In this argument it is assumed that no linear relationship exists
betwsen G1 and H1 or between Go and H2 since, if such a relationship

did exist, then a normal type of nomogram would bs possiblse.
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A second remarkable theorsm follows, It states that

this methed always leads to supports for the scalss of O, and O

1 2
which are one and the sama conic,
To see that this is so it 1s necessary first to demonstrate that
a4 and o, have supports which are conics. From the determinant

form 3,4.10 it is seen that the supports of the scales ars givan

by -
X = .2(..1 ? y = ._3'2.1 for o,
q”1 11)1 )
and x= Xo y = iz, for a,
v, vy

From the process by which the functions ¥; , ¢; and Y i (4=1,2)
have been obtained it becomes clsar after a simple investigation

that, in gensral, ths functions ars of the second degrss in fi and

consequently conics,

If Jﬁi is denated by X; and _%1 by Y4 then X, is a function of f4

v
i i

and X2 is a function of f2. To demonstrate that the conics ars

the same it is necessary to show that, if for soms values of f,

and f X, = XZ, then Y

1
The first two aquations of 3.4.9 can be written as -
xX1 + yY1 +41 = 0
xX2 + yY2 +1 = 0

and on subtraction the result is -
x(X; = X,) +y(Y, -Y)) = 0O

from which it immediately follows that if X, = X, then Y, = Y2

unless x is infinite or y is zero, which will not generally be
the cass.,

It is of interest to note that the inherent gsometric symmstry
is not reflscted in an slgebraic symmetry of the initiasl relationship
as will be sean in ths following example from Clark.
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(1 + 1)h2 -1(1 +p)h - 1(1 ~1)(1 +2p) = Q@
3

This is of nomographic order four since the four functions 1,p,h

and h2 are linearly independent.

It is an example of the form sxamined sarlier when it was found
that a nomogram aof the fourth order could only be obtained if two

of the factors happened to be identical. This is not the case here.

To apply Clark's method, divide throughout by one term, say (1 + 1).

+ 1 - 1+ 2
h2 o re) 10 =1)( £:)

(1 +1) 3 (v +1)

Let x -.L.LL'LQ.). and y = (1 = 1)1 + 2p)

(1 +1) (1 +1)
and 3.4.11 becomes

0@..'....03.4.11

....'3.4'12

h2 - xh -1y =0
3
From equations 3.4.12, eliminate first p and then 1, giving the

two linear equations in x and vy,

o A1 1+]

= 1
1 1-1
and 2x 1 +y 1 = 1
1+p 1+ 2p
The determinant form obtained from these last three squations is
2 1 + 1 _1+1 1
1 1-1
1+p 1+ 2p
h 1 h?
3

The support of 1 is given by x #-Zil;:—Ll, y '7%%—:;%%——
whence , on 8liminating 1, xy + x - 4y =0

The support of p is given by x = , 1 _ s ¥™ 1
P 1 +p 1+ 2p

which, on eliminating p, gives xy + x = 4y = 0.

Thus 1 and p have the same conic as support.

One point needs to be emphasised. It is that if two scales have the
same support the scales do not necessarily coincide. In general,

every chord of the conic is a line of alignment.
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The next logical step is to search for an squivalent
symmetry in the algsbraic relationship., Starting from the
detsrminant form, if 04 and o, are to have the sams support thsn,
if the support of(x1 is given by x = f1, y = F(f1) that of e,
must bs given by x = f2, y = F(fz). The detsrminant form must be

£, F(fy) 1
£, F(F,) 1 = 0
£y b 1

If this is applised to the determinant form considerad above, namely

, A+ _a1+1 1
1 1-1
|
2 1 - o
1 +p 1+ 2p 1
h 1 h2
3
1 +1 2
then f1 = 2 9 f2 -
1l 1+p
2 2:— ¢
i = = 2
giving 1 t-2° p T,
-.1+1n f1 1 = f?
and T-1 4-74"’ T+2p 4-F,

revealing ths symmetry that was only implied.

The revised determinant is

f1
£, rges 3 1
_f2 -
ro T, 1 0
h 1 h2
3

showing explicitly the symmetry.

At this stage one can ses that Clark's original aim has
‘been achieved in that an equation, 3.4.11, of the fourth nomographic
order for which no nomogram of the fourth order can be constructed,
can nevertheless be represented by a nomogram assoclataed with the
sixth order, as fllustrated in figure 3.7.
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Figure 3.7.

It is necessary to bring togsther various pieces of Clark's
work to ses its averall significance. The following form represents
a third order equation or a fourth order equation not representable

by a chart of the same order.

f1 f2 A3 + (f1 + f2)83 + C3 = 0 ‘..'QQ.O.’OC.‘.3.4O13
Let x = f, f, and y = (f1 + fz)
then, following Clark's procedure, these linear equations are

obtained,

X - yfy + r12 =0

x = yf, + fzz =

XAz + yBy + €3 = 0
leading tc the determinant

2
r r, 1
2 -
f2 fz 1 0 ..'.....O.‘....3.4'14
-85 Csy As

from which it is seen that the support of o, and of G, is the
parabola y = kz.
A homographic transformation can always transform this parabola

into another conic, a circle has obvious advantagas,

To the determinant 3,4.14 and its associatsed aqustion 3.4.13
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Clark gives the name 'Canonical form of conical charts' becsuss it
encompasses all equations to which the method applies, i.e. all
equations of the third ordsr and all thoss of ths fourth order not

representable by a chart of the same order,

It is of intsrsst to look at soms examples of this form.
Consider the multiplication formula f, fz = f3 which led to one
of the earliest nomograms of Lalanne. It is obtained'by putting
ARz =1, By =0 and C; = ~Ff4 in 3.4.13 giving the determinant

2
£ f 1

2 -
£y £y 1 0
0 ~fq 1

which has as support fora 4 and 0, the parabola y = x2 and for
Cq the 1ine x = 0 which is the axis of that parabola, (figures 3.8.)

X5
v & and. 0(1

Figure 3.8. f1 fz = fa

the determinant is "

2
f, L8 1
2 -
f2 f2 1 0

which nseds to be transformed by dividing by the terms in the
middle column giving
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1 1 1
2

£y f

A a 1 = 0
2

B 4

i f2

Lo 0 1

}

R

. 2
Again oy and ., lis on the parabola y = x“ but a 3 Now lies

on y = 0, the tangent to the vertex, (figure 3.,9),

\ O<34

Fiqure 3.9: f1 + o, =fq

The two precesding examples are capabls of being represented
by straight line nomograms, i.s. of ordser 3, but hers their
representation has been of order 5. The following exampls has a
negative discriminant and therefore cannot be reprssented by
straight linss,

tan(a+B) = tana+ tan B

1 - tanctanB

can be written fz = f t f2
1 - f1f2
ar f1f2f3 + f1 + fz - f3 = g
The determinant is -
2
f2 f2 1 =
-1 —f3 f3
or -
2 1
f1 f12
f2 f2 1 = 0
- A -1 1
f3
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in which cesz o and B 1is on the parabola y = x2 whils
(o + B) is =~ the line y =-1,(figurs 3.10),

|
|
|
|
I
I
l

i (X + B)

Figurz 3,10: tan{a +8) = tanO + tan B

1 - tanotanB

Thesz thres examples all illustrats third order equatiens
and it 1s interesting to note in passing that the method offers a
flexibility, in addition to that available as a result of homographic
transformaiisn, which is not possible in the case of fourth order
equations wich yield to this method. The flexibility lises in
the ability o modify the relative positions of the scales.

In e cass of f4f, = f3, the equation can be reuritten as
fo(Xf,) =3f5, which will give symmetry with respect to f, and
Afye Similacly, fq +f) = f5 can be written as £y + (f, #+1) =
(f3 + 1), wich is symmetric in f, end f, + A,

The ¥zlus of this devics is sesn in the cass of f‘lfz = f3 if
it is writtsn f1(—f2) = -f,, giving the determinant -
2

71 f12 1
~-f, fz 11= 0
o f3 1

In this vere®an ths scales of f1 and f, are in opposite directions

from the =xts , (figure 3.11).

. 0(3

, X,
1.6\

Figure 3,11z f(=f2) = =fs.
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Clark gives construction methods for his conical nomograms,
He calls this assembly of techniques the synthetic method Ffor ths
construction of conical charts, Firstly, he dsscribes a mathod of
d'Ocagne's for the construction of a linear scale in which, to fix
a scale it is only nscessary to know three points on it 0 =
and two others, say, @ =0 and 0@ = 1, He then uses this to solve
the analogaus problem of constructing a linsear sheaf of rays from

three dimensioned rays., There is a simple geometric construction
for this,

To construct the nomagram, Clark starts with the determinmant

form—
£ f1z 1
fa f, 1= 0
-85 C3 Az

In practice f1 and fz will have limits to their ranges, In figurs

3.12 the limits are a,b for f4 and a',b' for f,.
oo

Figurs 3,12,

The anharmonic ratio (AA'BB!') = k is a fundamental property of

the arrangement.

I1f ths scales AB and A'B' are required to be opposite
sach other, and ABA'B' is to form a rectaengle, then a2 suitable
rectangle ABA'B' is drawn and the vertices ayb,a',b' are marked
as in figurs 3.13. Then,_taking A' as the origin of a sheafl the
three rays A'8, A'A and A'B' are sufficisent to determins the sheaf.
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Similarly, B8' can be

taken as the origin of

thres rays B8'A', B'8S and

B'A and this sheaf completed.
The intersection of the
caorresponding rays will

then give the scale of f1.

A similar construction

% [ from A and 8 will give

the scale of fae

Fiqure 3,13.

The conic is thsesrefore determined by the choice of four
dimensioned points A,B8,A',B'. The order in which the points
are positioned determines whether the conic is an ellipse or a

hyperbola, Figures 3.14 and 3.15 illustrate this,

e , \ /
A N P B N //
\/ N,
//\Q / \\
/ \

R’ A

Fiqurse 3.14. Figqure 3.15,

As for the third scals, if it is exterior to the canonical

parabola it will also be exterior to any other conic chosen.
The alternative to choosing the four points is to choose
the conic. In this case ths anharmonic ratio k must be pressrved,

For the circle of figure 3.16 this results in the angls o being
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2
detarmined by tan o = k.

Fiqurs 3.16.

To illustrate these points, consider equation 3.4.11 for

which the determinant form is -

1+1 1+1
2 1-1 1
1 1
1
T 1+ 2p = 0
h 1 h2
3

The relationship betwsen 1 and p is given by equating the first
terms of the first two rows, giving -

1l = - S1 + E! or 8] Ll 1 0...0;3.4015

p 1+1

Suppose that the extreme values of the scales 1 and p ars 1/? and 1

in both casss,

The corre8pohding values of 1 and p are found from 3.4.15 and are
given in the following table. They ars used te construct the
scales of p and 1 as indicated in fiqures 3.17 and 3,18,

Points A B AY g* |
p 1 a | =2
2 2 3
1l -2 ~3 1 a
2
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Figure 3.17: Sheaf for ths Figure 3.18: Sheaf for the
construction of p. construction of 1.

The h scalse can bs found by locating four valuses of h., For
example, if h = 0 ths original equation gives 1 = 1, p = —1/2,
which locates h = 0 at A, Similarly h = 1 is at A'.

To find the valus of h at which its support cuts AB', put p = 1

and 1 = 1/2 in the original equation, i.e. make use of the alignment
of p, 1 and h. This gives h = =1/3 (or 1 which has already bsen
found). The point for which h = -1/3 1lies somswhers on AB', To

fix it, put h = =1/3, p = 1/2 (the point B) in the original
equation; this gives 1 = 10/23 and enables the point C, where

h = -1/3 to be fixed precisely. Similarly, the point D on A'B where
h = 3/4 is located,

The h scale can now be complsted using the sheaves emanating from

B and B', //“‘;
—T~ 7 i

.7 AN,

8/ 5/ \09

AN ,D 78
{ N\
{

(S

Figure 3.19.
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Figure 3,19 illustrates ths arrangemsnt of the scales. Figure
3,20 showing the construction lines, is reproduced from Clark's

paper.

In his synthetic method Clark has achieved a transformation
from one conic to another by a simpls geomstric procedurs. In
order to emphasise this simplicity he illustrates the complexity
of the analytical transformation of a parabola y = x2 and its
axis x = 0 into a circls and a chord of that circle. Thers is
nothing new about his method but his point is well made. Houwsver,
he concludes that ths resl advantage of the synthetic method is
not so much to avoid a complicated analysis as to be able to start
with the most advantagecus disposition of the scalss and to know,

a priori, the degrss of freedom that one has.

In the devslopment so far ons fact has not been brought
out, It is that in Clark's msthod for getting ths determinent
from f1f2A3 + (f1 + f2)83 +Cz = 0 i.s. by latting x = £4f,

and y = f4 + f,, an ‘extraneous factor is introduced. This can be
"seen from the determinant form,

£ £.2
1 1,
f’z f2 1 = (1]
-8B3 C3 Ay

gither by noting that if f4 = f2 it becomes identically zero and
therefors (f4 — ) must be a factor, or by expanding it. The
expanded determinant gives,

(f2 = f1)(f1f2A3 + (Fp + £1)B3 + C3) = O

Clark then poses this guestion. If it is possible to achieve
symmetry in two variables through multiplication by an extraneous
factor, then is it possible that symmetry in three variables can

be achieved through multiplication by some other extranecus factor?

To devalop this line of thought Clark considers an equation
of the third nomographic ordsr put into a symmetric form with respect
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Figure

3.20

Facsimile of Clark's nomogram for

(1 + )% - 1(1 4 p)h - 1/3(1 - 1)(1 + 2p) =0

showing the construction lines.

The drawing is

the work of G.Fleuri, the translator of Clark's

paper into French.
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to the three variables (or thraee functions of thess variables).
The form is,

f1f2f3 + A(f1f2 + f2f3 + f3f1) + B(f1 + fz + f3) +C = 0 ,..3.4,16

For symmetry of three rows of a determinant in f,, f, and f; the

previous result suggssts an sxtraneous factor of -

S = (fq - P)(Fy - P3)(F5 = F)e

In determinant form, S is given by -

2
2

f2 72 1
2

fq fq 1

Equation 3.4.16 multiplied by S gives -
Sf1f2f3 + 5A(f1f2 + f2f3 + f3f1) + sa(f1 + f2 + f3) +SC =0 ..3.4.17

which has tha determinant form -

1 -A -C
1 f1 f12 f13
2 3 - U ooooo-aooo--oo3.d.18
1 f f f.,
2 22 23
1 fa f fay

Since 3,4.,18 is the determinant form of 3.4.17 it is ussful to
note that the determinant forms of Sf f.f., S(f1 +f, f.)s and

S(f1f2 + fofg + f3f1) are contained in 3.4.18 as the minors of the
elements of ths first row.

For example,

1 f £y
3

S(Fy + P, +f5) = |1 f2 T2
3

1 S

If the row operations row? - rowl, row3 - rowl and row4 —~ row1i

are performed on 3.4.18, the determinant becomes -

149.



1 -A B -C
0 Po+n f12~B f13+C
0 T S S R -0
2 28
2 3
0 S AT

2 3

f1+A f1 -8 f1 +C
2 3

f2+A fz “B f2 +C = U --coaoo-vococo.qo'3-4o19
2 3

73+A fs -B fa +C

This shows that the supports of f1, f2 and f3 are one and the same

CUrve,

The curve is given by ths parametric equations -

X ’.£1§:;ﬂ ’ Y '._13~:_§
f1 +C f1 + C
and is of the form -
y3 + XSC = yx + Ax2 3.4
3 3 3 ..D,CO...'..0-..0"0...... L ] .20
or y + xC= yx ~ 8x
b4

However, more important than the exact form of the equation is the
fact that the comman support of all three scalss is a curve of the

third degree, Consequently, the resulting nomograms are eazlled cubic,

As an example consider the multiplication formula I\D) "93
which Lalanne used to illustrate anamorphosis and which has been

used as an illustration of Clark's conical nomogram.

Ify in f,f, = ¢5 , ¢ 5 is replaced by 1/f5 tha relationship f4fof3 = 1
is obtained. It is also obtained from 3.4.16 by making A = B = 0

‘and C = -1, showing that the common curve is y 5 x3 = yx. Howsver,
the curve y + x = yx is also acceptable since the dsterminant
equation remains true if any column 1s multiplied by -1; thus in

this cass y has bsen replaced by ~y.
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As an exampls Clark has used the form y3 + X 3. axy.

Hare, in ths determinant form -

2 3
% f1 f1 f1 -1
! 2 3
: 2 3
; f3 f3 ‘f3 -1

he has chosen to multiply column 1 by a and column 2 by -a, He
expectad a lot from his readers for he gives nc explanation of how

he hzs moved from the previous determinant to -

; y =-a_*f
-1 P31

The curve x3 + y3 = xy is the folium of Dsscartas and has the general

appearance shown in figure 3.21.

Y

Fiqurs 3,21, The Folium of Descartes,

Marking the curve with the values of the variables is made
easiser by noting the linsar relationship -ﬁ = ~f,
The nomogram from Clark's paper is given as figure 3.22,

For a second example consider

71 + fz + f3 =0
The determinant form for this is best obtained by considering

3.4.17 and taking the appropriate minor from 3.4.18. It is easily

ssen to be
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Figure 3.22

-

Claxrk's cudbic nomogram for multiplication; f1f2== ¢3.
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3
1 F, f,
3 =
1 £y 7y 0
3
1 fs £

Claerk's mathod is to make the substitution in 3.4,19 of A= C = Q
and B = « which, if the sscond column is divided by B and multiplied
by -1 befors the substitution is made, does give the determinant

but it ssesms inelegant in view of the algsbraic form of 3.4.17.

3

The curve is given by x = f, y = #3or y = x~, which is a cubic

parabola as sketched in figure 3,23,

Y

Figurs 3.23. A cubic parabola,

For the relationship -}1+ -}2+ %; 0, note that it can be also

written as,

1

— (P, g + P, P + . F,) =0
£q 7, 3 2°3 13 1°2

The determinant form for 72 f3 + f1 f3 + f1 fz is the minor of A
in 3.4.17. 4i.e.

2 3
1 5y
2 3| .
1 S 0
2 3
1 R g

This will serve as the determinant since if it is multiplied by

1
P 7 F_ it bscaomes
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%1 Fi £,
-:;2 £ f,2 = 0
'11?3 SR

which reverts to
1 A
1 P = 0
1 Pl s

on dividing the elesments of sach row by thae corrssponding element

in the first row.

The curvs is given by x = fz s Y = f3 y 1e8s x3 = y2 s 1llustrated
in figure 3.23.

Figure 3.23, x3 = YZ

. R tan 0+ tan B
d + =
As a third example consider tan(a+8) oo tarl
If tan 0= fy , tan B= f, and tan (@ +8) = =-f3 the relationship

takes the form f4 f, f3 — (fq + fp + f3 ) =0
Comparing this with equation 3.4,16, A =0, 8 =-1, C =0 and

determinant 3.4.19 becomss

2 3
f £.° 41 £,

2 3 -
ty £, +1 r, ]
s 52 + 1 r33
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On adding the first column to ths third and dividing by the

corresponding elament of the second column the determinant bacomas

f1
1 f1 f12,+ 1
£
fz + 1
f
1 £r
f32 + 1
The curve is given by
f
x = f = - X
s Y ?2“;_—‘? or y Ty which
is of the type shouwn in figure 3,24,
g
45°
=~ o 1

\

~4_5¢’

% X
Figure 3,24, Y xZ + 1

To position the scales on the curve notes that x = f, a regular scale
on the x axis., It then only requires parallsls to the y axis to

be drawn through the points of this scale to intersect ths curvs,

to give the scale,

The example aof this given by Clark is reproduced as figurs 3.25,
As in the case of conical nomograms, the scsles on cubic
nomograms can be displaced relative to each other by the introduction

of two constant factors., For example, f4f f3 = 1 can be written as

f1(Xf2)(uf3) = Au  giving aslignment in which f, =Af, =uf..
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Pigure 3,25

tan < 4 tanB
1 - tanc(tanﬁ

Clark's cubic nomogram for tan(ec ¢ B)=
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The cubic nomograms are curves of the type knouwn as
cubic unicursal., A unicursal curvs is one with parametric
equations x = 0 (t), y = ¢ (t) in which © and ¢ are rational
functions of t. Such a curvas cannot consist of, for example,
an ellipsse and a sseparated branch. They are quite differsnt from
conics and it is not possible for a cubic nomogram to degenerate
into a conical one. The sams type of distinction can be made
between conical nomograms and ordinary alignment ones and it
follows that the thrse typss, ordinary, conic and cubic must

be resgarded as quite distinct types of alignment nomogram.

It is of interest to ask how many differsnt types of cubic
unicursal are possible; that is, how many types are there which
cannot be obtained by projective transformations of other typss?
To decide this question it is necessary to have some means of
classification of cubic unicursals. A classification system is
based on the double point that all cubic upicursals must possess.
The two tangents at this point may be real and distinct, or real
and coincident or imaginary and it is this distinction in the

nature of the tangents that is used to classify cubic unicursals,

The folium of Descartes given by x3 + y3 = xy has & double
point at the origin. The tangents at this point are resl and
distinct and are given by x = 0 and y = 0. This is known as the
crunodal form (figure 3.26). The form x:5 = y2 has coincident
tangents at the origin given by y = 0., This form is known as
the cuspidal form (figure 3.28)., Tha form y = _x _ has an

x2+1
isolated point, which is a double point, at the origin and therefore
has two imaginary tangents at that point. This is known as the
acnodal form (figure 3.29).

Y Y Y
‘ % 1 [/ , /\
\ . o{\x \/r o 8
Figure 3.26. . Figure 3.28. © Figqurs 3.29.
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These thres forms ars quits distirzt and cannct -s

transformed cne into anocther by projectizs. In this rez-zat they

differ from the conical nomograms in which any conic ca- -2

pro jected into any other conic.

The relationships which led to the thres cubic forms wz:a

(i) f4fof 3 = 1 for the crunodal form.

(11)  ¢q +¢2 *¢ 3 =0 (where ¢; = 1/f;} for the cuspi=) farm.
(iii) fqfof3 = (fq + £ + f3) = 0 for the acnodal fors,
In the context of ordinary alignment nomcgrams (i) is == type

with non-concurrent linear scales, (ii) ths type with zz~cyrrent

linear scales and (iii) is Clark's irreducible form.

This correspondence betusen ths cubic and ordirzry alignment

nomograms is based on their projsctive propsrties, one type cannot
be projected intoc another,

In a section headed "Conclusion of the theory cf simple
alignment charts, General Method", Clark brings toget-s= the
conclusions of his investigations., He addresses himsel® tg the
fundamental question which had been posed at the begini-g of his
work, namely, the possibility of representing a given =xation
F(a1, 012,&3) = 0 by a nomogram. It is pechaps kind to zzis over
without comment his remark that "The simplicity of thiz ;zeblem

can now be shown in its true light".

The essence of his method is to bring togethsr == functions
of ons variable, say 0L3, so that the expression is limezz in the

Punctions of that variable, say f3, ¢’3 and \Pa, giving -
P3Ryg * 03845 + ¥3Cygy = O-

Then, putting x = A2 y =B42, & linear equatlos i a3 is
obtained, xf, + y & b= 0.

If the expressions for x and y, when oy =d 9 are elixiated in
turn, yield equations 1insar in x and y, the problem is ;lved for,

) = s =
suppose that they give xf, + yd, * ¥, 0 and xf, + v +U, o,
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then the determinant fq ¢4 Vg holds,

Fao 92 Y2 =0
fz ¢33 V3

If linsar equations in x and y are not obtained Clark

says that the expression is irreducible. There is much to be

said on this problem latsr but at this stage twoc observations

need to be made. The Pirst is that in the form given abovs .

it is a very useful contribution. Thse second is that the concept

is not new. As d'Ocagne points out in his introduction he had
given the same idea in his 'Nomographie' of 1831 (30), but neither
d'Ocagne nor Clark acknowledge the true originator of the method,
Massau, who gavse the method in 1884 (20). Massau had alsc observed

that the method could produce an extraneous factor.

1t had originally been Clark's intentien to produce canonical
forms for aquafiona of the fifth and sixth nomographic orders but
he later deemed it unnscessary, cons;dering that the work already
done would embrace these types. He gives tuwo examples, Firstly

a symmetric equation of the sixth order,
2 2 2 2y
73(f1 + P04 f1f2) - d>3(f1 fo * fif, ) 1
in which he puts x = f12 + f22 + f4fo, and y = f12f2 + f1f22,

finally arriving at the system of equations,

3 3
xf1 -y = f1 f1 f13 1
3
xf2 -y = f2 which lsad to fz fz 1 = 0
xf3—y-1 ' f3 1 $3

Secondly a non-symmetric equatien of ths sixth order,

2
f3(f12 - f23) - 3f4f2(fq - T2 ) = fq = Ff2

which, treated in the same way, ylelds the determinant,

2 1
71 f1
3
= 0
f2 fz 1
f3 1 ¢3
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In the non-symmatric exampls ths expanded dsterminant form
gives precisely the equation from which it has been derived,

whereas in the symmstric exampls the detsrminant contains an

extraneous factor (1’1 - f’z).

Towards the end of his paper Clark draws soms conclusions
arrived at as a result of his development of ths matsrial for ths
paper, He considers the notion of nomographic order to be no more
than a useful preliminary critsrion of repressntation. The problem
of expressing a given squation F(04,0,03) = 0 as the eliminant
of three linear squations he considers to bs the true problem.

Then, considering the determinant he recognizes the foellowing
two typss,

(i) Non-symmetric:— exactly representing the given equation,
(i1) Symmetric:~ representing the given equation multiplied

by an extraneous factor.

In type (i) the supports of the scales are distinct. In type (ii)
some supports will be coincident. The extraneous factor esquated
to zero will indicate the supports which coincide. The extraneous
factor must contain either (a) two of the variables ®,,0,,04, when
the factor is of the form (f, - fj) (1,5 = 1,2,33 1 ¥ ) as in the
conical nomograms, or (b) the three variables 0, & ,, Og, when the
factor is of the form (f; - fz)(fz - f3)(f5 - f1).

An extraneous factor in the determinant always implies
symmetry and coincidence of scales while no extraneous factor implies
no coincidence of scales. To demonstrats this further he extends
an argument alrsady used. If the elimination process results in
the two equations being of the type,

xxq *yYq +1=0 and xx2+yy2+1-0

then subtraction gives X(X.‘ - Xz) + Y(Y1 - Yz) = 0.

1f oy andOL2 have values such that X4 = Xo then it may be
that yq = yp, in which case ths supports coincide and the functions
H
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determined by the values of x and Ys namely f, and f,, giva the
¥
extransous factor (f1 - f2)' 2

However, another possibility, given that Xy = X, is that either

X = ©gr y = 0, as can bs sesen if the expraession is written as

(x‘] - x2) "'E (Yz - Y1)

In this case the supports are distinct and no common facter can
be found. V

Clark is now able to rephrase the real problem as that of
finding in which cases the left hand side of F(a1,a2,a3) = 0 can
be represented as a determinant either as it is or after multiplic—~
ation by a factor,

He is of the opinion that the slimination method solves the
problem in all cases except whers the required factor contains all

thres variables, in which case, if a nomogram is possible, it must

be of the particular form associated with a cubic nemogram,

This claim of Clark's must be taken in the spirit in which
it is made. Firstly, he has only concerned himself with the algsbraic
problem of representation and recognizes that more powerful methods
than his own, or Saint-Robsrt's or Massau's, will be requirsed to
"settle the complete representation problem". Secondly, he has an
attitude of mind which is revealed in his introduction, whers,
referring to the elimination process, he states that the method
gives a nomogram or does not, according as that representation
is possible or not. This is the constructionist approach which was
put forward much later, in relation to nomograms, by the Russian
James~Levy. It seems that Clark's philosophy of mathematics was
ahsad of its time.

There is a final section to Clark's paper which applies his
method of conical charts te squations having four variables. The

general approach is not new for it involves the introduction of an

auxiliary variable.
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As an example, consider F(%4,0,,05,0,) = 0. This is rewritten

as -~

f1( d1,C!2’Ct) = 0
fz( 03,01’4,&) = 0

Then, effectively, two nomograms are constructed having ths
common scale & . Clark sxtends this method by making his scals
@ coincide with that of @, in f, and @ 5 in f, for exampls.
If the conic carrying the coincidesnt scales is a circle the
appearance of the chart can be greatly simplified., Houwsver, it
is the application which is new and not the method and it will

be sufficient here to note it.
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5. Further Theorsticsl Devselopments of Alignmsnt Nomograms

During the period betwesn the tims when Clark made
public his ideas at Cherbourg and the appearance of those ideas
in print, d'Ocagne published four papers which, in one way or

another, wers related to the unpublished work of Clark,

In 1906 he showed that Clark's conical nomograms had a
1ink with his own alignment nomograms with three rectilinsar
scales (73). This link is quite sasy to show, Using the
notation that d'Ocagne had used in expounding his theory {(equation

3.1.5 et seq.), the general eguation in the three variables
a4 0p @nd ozis written,

Af1f2f3 + 811’21’3 + BZfof + B3f1f2 + C1f1 + szz + Caf3 + D=0

'.....'.'00.0.03.5.1

If u and v are parallel coordinates and the substitutions,

u= Af1f2 * B1f2 + 821’1 + Cq

'YEREERN BN ] .'...'3.5'2

are made in 3.5.1, the result is uf; + v = 0, showing that the
variable Oy has for support ths straight line which is the axis
of ths origins.

If from 3.5.2, f, is sliminated the result is,

2
E,f, *+ (B3u - Ay - Fz)fz + Cqu - Byv + c, 0

If f2 is sliminsted instead, the result is,

Eqfy

Thess two results shouw that both a1 and az have conics for supports.

2 ‘ =
+ (82u - Av - F1)f2 + Cou = By + € i]

It remains now to show that thess conics coincide, To do this he

finds the support of O o which is -
2 =
(Bgu - Av - Fo)™ = 4E,(Cqu = By + C,) 0,

and he then investigates whether the index 2 is fundamental to this

expression. He reurites the expression as,
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(Bsu-—Au)z—Z(FB + 26,C.0u + 2(AF, + 2€.8 )v + A =
2°3 21 2 2727V 0.

It is clear that the first and last terms ars independent of the

index 2, The other two terms may be written as follouws,

F8; + 2E,C, = 53(F0 - 284C4 - 28282) + 2AaC,C,

and AF_+ 2E. B_ = -
2 By = Afg = 28,8,83

neither af which change their valuss if the indices 1 and 2 ars

interchanged, thus u1 and 02 have the same supports.

The impact of this result is somewhat diminished by the knowlsdge
that the idea was originally Clark's. However, the academic

interest of it is considsrabls.

Some nine months later d'Ocagne's paper on critical points
appeared (21). I have referred to this notion already, indicating
that Massau was the originator of the idea and that this fact is
nowhere mentioned by d'Ocegne. D'Ocagns developed the concept

beyaond ths point reachad by Massau and was able to graft it onto

his sarlisr theory.

His treatment again begins with the general third ordsr
squation 3,5.1 which for this purpose is rsuritten,
f1(Afzf3 + B,y + Bafy * c1) + B, fy * Cfy * Cify + D = ]
It can be seen that f, is indeterminate if,

32 1
and B4Fof3 + Cofp + C3f3 * D=0

200 2330030003800 800 .03.503

+ =
Af2f3+82f3+8f c u}

(Compare thess relationships with those of Massau, 2.3.12, 2.3.13,
2.3.14).

If f3 is eliminated from the equations 3.,5.3 a quadratic equation
in £, is obtained, namely -

z - - +Cc,C,-B0=0.
f, (8183- ACZ) + 1’2(81&'1 + B4Cq B,C, AD) 13 = B,
Using d'Ccagne's notation this can be written,

3.5.4
- + ‘D .‘..'...‘...'.......'..‘. L 2 L]
£f, = Fof2* 62
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A similar trsatment which sliminatas f2 produces ths quadratic,

63‘?3 - F3f3 * Gs =0 .‘a.."'@"'COOas“Ooultt.'a30515

It is important to note that the discriminant 2 of the sguation
2
Eifi - Fifi + Gi = 0, of which 3.5.4 and 3.5.5 ars

examples, is given by A = Fiz - 4E;G; which is the same as the
value given for 2 in d'Ocagne's original theory although the

squation in that cass was: Eisiz + Fisi + G = 0.

Returning te the theory of critical points it will be sesn
that in the equation of the third nomographic order,

Af TPy + B,f P + Bofsf, + Baf, fy + Cyfy + LoF, + Cgfg 4 D=20
f41 becomes indeterminate if £ and f3 satisfy -
2
Eifj = Fif;j +G; =0 (for i = 2,3)

The roots of these squations denoted by f,f, f," and f3', f3" are
given by,

264P3' - Fy = /B  and 2E4f4" ~ F§ = = /A (1 = 2,3)

Let the values of ths variables corresponding to fz', fz", f3' and

Pi" be a,'s a,"as' and a;"e Two further values 4%, 04" corresponding
to 71', f1“ cen be found by applying conditions which will make
f, or f3 indsterminate., Thess values of course depend on A being

greater than zero,.

In figure 3,30, ths triangle P1P2P3 is in the plane of tha

nomogram and is such that the variables 0y ars,

at P1: X E RN R R N1 (0.2', 0L3") 1.8. P1(OL2',0.3")
at p2= secsosone (aa.', C('1") 1'81» pz(a's’,a.'“)
and at P32 eeeeeess (0,7, @) f.e. Pg(a, 1,0m

The line P4P2 is part of the 1ine dj on which the values of
0, ars distributed. Similarly, P4Ps is part of the line dy

and PP 15 part of ths line dye The indeterminacy is readily

¥
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sesen geometrically. For
example, an alignment of
uz' and a1" lies along

d3 rendering @3 indeter-
minite or, for a diffarent
type of indeterminacy, an
alignment of uzﬂ and og"
passas through Py in an
infinity of directions
making a 1 indeterminats,
There is an alternative
arrangement, namsly,
P1(02"s23"),P20u 3" q")
and Pz(aq"ya,') which is
not homographically

reducibls tc the first F%ﬁxfgxf)
arrangement, Figurs 3,30,

The purpose behind d'Ocagnse's paper was to give an alternativs,
based on critical points, to the proof given in his 'Traits' fer
the conditiohé Qnder which 3.5.1 can be respresented by a nomogram
having three rectilinear supports and, when such representation
is possible, to find the scales. It will be rscalled that the
condition was that A >0,

In the case where A > 0 the scales ars non—-concurrent,
This is the casa arrived at above through a consideration of
critical points. To find the scales in this case it is necessary
to take three aligned points A4, Ay, Az on dq, dp, d3 respectively,
8o that they correspond to 04,0,,03, (figure 3,30). Each support
will then have three dimensiocned points, for example on d, there

is P3, A1 and P2. The scales can nouw bs constructed by the usual

method of projection.

If A = Q0 then a1' = a1" = azl = a2" = as' - ua", in which cass

P1,P2,P3 are all at thse same point P in agresment with the earlier
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theory in which three rectilinear coincidsnt scales ars indicated

by A =0,

If A < 0 the points P4sPsP3 are imaginary and there is no
rectilinsar representation.

In his papsr d'Ccagne begins with the assumption that a
three rectilinear representation is possible, i.s, that A > @

3

and does not explain how the scales for A = 0 are to be constructad.

It is thersefore not as complste an exposition as his earlier work.

Three months later d'Ocagne was able to show that, through a
consideration of critical points, equation 3.5.1 could be trans-
formed into Clark's irreducible form and therefore could be
represented by a nomogram having two scales on the same conic (74).
To demonstrate this, d'Ocagne starts from the equation -

Eifiz - F;fy +G; =0,
the roots of which arse the critical values of fi. As has alrsady
been noted, the roots occur in two groups, f;' and f3", and the
three critical values of the same group give to ¢ = ZEifi - Fi
the value +/A for f;' or - /A for f,".

Putting f, = ¢, + F, and f, = QQ +F, into
2E1 252

equation 3.5.1 produces eventually an squation of the form,

0qhz * (97 * 0,)C5 * D5 = 0

in which b4 and ¢2 are as defined above and As,Cz,D3"are linear
functions of f,. Furthermore, any point on the conic must represent
a pair of critical values, one value for each of the variables that
it carries, since this pair must render the third variable indeter—
minate, as an examination of figure 3.31 will show, In this sketch

' a
it is assumed thata, andu2 are on the conical support M and 3
on the straight line N. It follows that the values of o , and 0.,

corresponding to the same point of the conical support are linked by,

2E,f

afq - F1 - 2E2f2 - on
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If the support N cuts the support M in I and J (i.8. A\ > 0)
then the three valuss of the variablss at both I and J must

be critical. Ffor example, I may correspond to the critical
values f, ', f,' and f;', and J to f,", f," and f;". The effect
of this is that the support N of @ can be constructed from a
knowledge of the critical values of eithera, or ®,e One normal
alignment of 0450, aNnd O will give a third point en N and hence

the scale of o can be constructed.

Figure 3.31 .

In the case whers A = 0, I and J coincide and N is a tangent
to M, If A < 0 the critical values are imaginary and N does

not cut M in any real points.

There is little practical value in this aspsct of d'Ocagns's
work since it is only applied to third order equations and therefore
lacks the more general appeal of Clark's work. However, it does

provide the intellectual satisfaction gained from drawing togsthsr

two separately developed pisces of worke
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As an illustraticn consider,

f1?2 + f1f3 - f2f3 - 2fF, + 2f2 - f = 0

1 3
which in Clark's determinant form is,
2
f, 4 1
2
-f, fo 11 = 0O
f~2 f 1

A similar example was given in the section on Clark's work.
In that example it was seen that the scales of f4 and fzwsre
in opposite dirsctions .from the axis of the parabola y = x2,

(figurs 3.11). In terms of d'Ocagne's notation the following apply,
R=0,8 =-1, B) =By =1, Cy =-2, C; =2, C3-1, D=0

giving Fg = 3, €4 = =1, F4 = =1, Gy =2, & =9
E,= 1, Fp= =1, G

Eg= 1, F3= 5, G

=-2,A =9
=4, =9

2
3

The equations giving critical values ars,

2

fqy = f3-2=0 giving fq' =2, P70 =1
2 .

fFp +fy~2=20 giving Fol =1, " = -2
2

f3 - 5f3 +4 =0 giving fﬁl = 4, f3" = 1

and for any point on the parabola

28474 - F1 = 2E2f2 - Fz leads to

f, = -f, which is as expected.

1
It is also seen that the set of values for f', i.e. 2,1,4, satisfy
the original relationship and therefore correspond to the point

I (or J) and similarly for the valuss of f", i.,8. -1,~2,1.

R similar analysis can be carried out in the case in which A = 1,
By = B, = By and Cq = C; = C3, which is the case shown by Clark

to lead to cubic nomograms. In this case the equations leading to
the critical velues are the same for all functions, the critical

valuss coinciding at the double point, If A > 0 the curve is
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crunodal, if

A =0 it is cuspidal and if A < 0 it is acnedal.

Thess points can be illustratsd with reference to three axamples

given in the ssction on Clark's work .

(1)

f.f.fF

1Fof 5 1 = 0 which producsd the folium of Descartes,

of crunodal form, figure 3.21.

A=1, D=-1, B =0, Cy =0

giving F = 1, Ei'- 0, Fy = %, G

i 0

from which & = 1 and the squation for critical valuss is f; = 0.

(i1)

fq4fp + Fofz ¢ f4f3 = 0 which led to the curve x3 =y 2

of cuspidal form, figure 3.23.

A=0,B =1, C; =0, D=0

gi\ling FO = D, Ei = —1, Fi = D, Gi =0

from which A = 0 and the squation for critical values is fiz = 0,

(1i1) Fqfof3 = (Fq + £2 + f3) = 0 which led to the curve

y‘

of acnodal form, figure 3.24.

x  + 1

A=1, 8 =0, Cy = -1, D=0
giving Fg = 0, Ef = =1, Fy = 0, G = =1

from which A = -4 and the squation for critical values is fi2 = =1,

Also in 1907, d'Ocagne used his notion of critical points to

reproduce a result of Clark in which it is reguired to find the

condition under which f1F2A3 + f183 + f2C3 + 0y = 0 is repressntable

by a nomogram of genus 1 (75).

Hers,

R3,B3,C3 and D3 are given by,
Az = 353 * PP * Sl3

5 = 24T3 * D03 % Cq¥s

B

Dy = agfsg * b2¢3 + c2¢3
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Clark's result is,

a, a, ag a8, 2 3, 8, 8, &j a, 3, &
b1 b, bgix |bg b1 bl - bo b, bg|x b0 b1 bs| =0
C; €, Cgz c, 1 ©, C, €, €3 €, Cq ©3

D'0Ocagne gets the same result by firstly writing the squation in
the form,

+
fs(aof1f2 + a1f1 +a_f a3) + ¢3(b0f1f

+ +
2'2 b fy +bBf, +b3)

2
+ Uz(cyfqfp + cqfq + cpf5 + c3) =0

He then points out that the two rectilinear scales intsrsect when

the values of f, and f, corresponding to this point arse critical,

rendsering the value of the third variables indeterminate. Thus the

coefficients of f3, ¢ 3 and Y3 must all be zero. From this he quotes

a condition, based on a procedure given in his 'Traite', which

yields Clark's ressult.

Finally, one must note the use of the concept of critical

points to express an equation of the form,

FiFog * G 6,5 + HH 0,

1 23 1°2 23

of nomographic order 2 at the maost with rsspect to the variable a 19

in the form,

Fy, G, H
2 G =0
Fy Gy

This is due to Farid Boulad who has already been noted in connectien
with alignment nomograms used by Egyptian Railways to determine the
strengths of railway bridges (76). His method is complicated in

detail but in essence is similar to those given above.
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6. The Psriod of Consolidation,

With the exception of many attempts to solve the important

theoretical problem of nomography, the development of the sub ject

now adoptsd a much morse leisurely pace. 1In fact for somse forty

years until the lats 1950's tha publications on the sub ject wers

Just those that one associates with a devsloped

they mainly fall into the following categories;

discipline for

(1) Treatises and text books,

(ii) papers relating to the early history of the subject,

and (iii) papers on theorstical aspscts,

Amongst the treatises and textbooks must be noted the new
edition of d'Ocagne’s 'Traite' which appeared in 1921 (77); the
two volume work of Sorsau which was alse published in 1921 (78);
the publication of d'Ocagne's lectures on Pure and Applied Gesomatry
given at the Ecole Polytechnique (79), and, in English, the first
edition of *The Nomogram® by Allcock and Jones (54).

Those papers relating to the history of the subject tended
to be rather superficial. Thers were not many of them and, although
useful in parts, cannot be said to have contributed greatly to the
racord of the development of the subject. Many are biased towards
the author's own work and the major contributions of Massau and
Clark are lightly dealt with, Amongst these papers it is worth
noting those of d'Ocagne (71) and (3), and of Lallemand (26). Of
interest to future researchers in nomography is a note by d'Ocagne
describing the nomographic archives at the Ecols des Ponts st

Chausess (80).

The papers on theorstical aspects are the subject of the

next chaptsr,

Two short pepers by W. Margoulis which appeared in 1522 and
1923 are worthy of mention (81) and (82). The first would appear
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to be a2 1ink between Lallemand’'s Hexagonal Nomogram and the work

of the Russian G.5. Khovanski which appeared in 1959 (83). It

is on the construction of nomograms using oriented transparencies
and describes canonical forms of equations representabls by this
method. The second paper deals with the general theory of the
representation of equations using moveable elements. Both papers
show that some development of technique was still taking placs
during this period of consolidation but it is not nscessary for

the development of this thesis to discuss those techniques in dsteail,
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CHAPTER 4.

The Problems of Anamorphosis and of ths Construction of Alignment

Nomoqrams.

1. The Probism,

It has alrsady bsen sstablished that the theorstical problems
of anamorphosis and of the construction of alignment nomograms can

be stated as ths problem of expressing the relationship,

F(X’Y)Z) = D QO.eoon-to-.acto-‘oo.-o9401-1
in the form,

4(x) g4(x) 1

fz(y) Qz(y) 1 = O oaooaoc.opuooco.o'cdo1.2

f4(2) a5(2) 1

The attempt of Duporeq tc solve this problem has alrsady been
considered as have the works of Saint-Robert, Massau and Lecornu
which deal with a less gensral form of the problem. The present
chapter looks at latsr and more substantial attempts to solvs

this problem.

These later attempts began with one advantage for earlier
investigators had pointed out two possible lines of attack. Ths
first approach was that which had been Pollowed by Saint-Robert,
Massau and Lecornu and indicated by d'Ocagne in his 'Nomographie',
It was to observe that, as d'Ocagne said, "The common character
of all squations susceptible of reverting to the determinant form
is that they express themselves by partial differential aquations
gbtained as a result of the elimination of the arbitrary functions
which enter inte that form". The second approach had been suggested
by Duporcq and rested on ths fact that the form of the sxpanded

determinant must be,

PRy (ys2) + Py(x)R,(y,2) + Pg(x)R4(y,2)

at its most general, if expanded along the x row, with parallsl

expressions if expandsd along the y row or the z row.
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2, Gronwall's approach,

Gronwall approached the praoblem through partial differential

equations. His paper appeared in a French journsl although he

himself is described as being from Chicago (84). The forty three

pages of intricate mathsmatics, leaning heavily on the theory of
partial differential equations, servs te indicate the complexity
of the problem being investigatsd and it is only possible hers to

give a general view of the work, highlighting a few points that

seem relevant to this thesis. At somse peints the paper shows clearly

its relationship to the work of Saint-Robert and Massau.

The main result of the paper gives a nscessary and sufficient
condition for squation 4.1.1 to be reduced to the daterminant form

4.1.2. 1t is that the following two partial differential equations

should have a common sclution C.

md%c + 2 oC = (mc - 2@)@_@_+ 2c3c +9mc2 +( 9N - 9%n\c - 9 4.2.1

Ox2 axféy dx Ox Oy ax, Ox Ox Ox?

2m 0% + 9% = z(mzc: + MN —a_m_)ag +(mc+ N - 2_@_@)8; + 2mdm.c?
Axdy Oy’ dy /3x xfdy o

v 2(n + MmN - 2M\C + 2N = 2PN eeeeieneeannenecdi2a2
(ax 3 axay5 I xdy

(In the original papser the second equation contains two

typographical errors).

In these equations, M and N are given by,

ﬂ B B g "OOOO'OOOODCCG.-'oo-.c.o..o..402.3
Zz
ax

N = .a_m« +_1éﬂ ooo-ncouoo............‘...'.‘.d‘z.a

dx M ay

The quantity C is important te much of Gronwall's theory and
is the subject of his second result. This is that all eguations

4.1.2 which belong to the same value of C can be obtained, one from
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another, by a homographic projection and that inversely tuwe

homographic equaticns lsad to the same valus of C,

The complexity of equations 4.2.1 and 4,2.2 is ocbvious.
Howsver, in some cases it is not necessary to solve these equations
in order to find C, for the thsory devslops along lines which relate
particular types of nomograms to particular relationships betwsen
the derivatives of MyN,C and a quantity D, (defined below), which
enable € to bs found., The praocsss by which C is found ensurss that

it satisfies equations 4.2.1 and 4.2.2.

D is gi\len by D=MC + N X .I.Q..O...0.0..0.0‘..'.0.4.2.5

It will bs notsd that M bears a similarity to the quantity
R defined by Saint-Robert (see equation 2.2.3). In fact R = —1/M.
Saint-Robert was able to give a condition for F(x,y,z) = 0 to bs
raeducible to the form Z(z) = X(x) + Y(y). It was azglan = 0,
dxdy

the condition known as Saint-Robert's criterion.

Gronwall gives a necessary and sufficient condition for
aquation 4.1.1 to be represented by a nomogram having thres

ractilinear scales,

It ia agglnml = 0 '.Q....Q...‘...-......‘...'..4.2.6
dxdy

The parallel is obvious.

Two othsr results of Gronwall are that,

(i) The necessary and sufficient condition for the x scele to be
rectilinear is that a&; + ZB~D = 0 q--.ut.o;c-oacooooo0000-0402’7
dy  Ox

taken with 4.2.5 and the pair,
2
23d% +9 a-c(zﬁ_g +a_g) = D

axay axz ay ax
02 + 292 - n(a_g + 2@;1) = 0 ] seiseeccrncroneereisedd 2,8
dy? 3ty Ly o«
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(ii) The necessary and sufficient condition for the y scale
to be rectilinear is;, zég + 30 = 0 secvcscncscncescassssda2.9

Jdy Ix
taken with 4.2.5 and 4.2.8.

Combining the above rssults glves the necessary and
sufficient condition for the scalss of x and y both to ba

rectilinear. It is,

a__g = a___D__ = D .o...Ol.-.O.l-o.c‘...o--l...la.lobo.od'2.10

Jdy  9x

taken with 4.2.5.

When C is known, Gronwall has a procadure for finding the
functions fi, 9y » It is not a simple procedurs involving, as it
doss, the need to find a fundamental solution set of the following

system of partial differential squatiscns,
Caw+_1_(_2_£:2—’§_(_:_)m

3\3 dx
_%.2__w.=-10_3_y—1cé_u1+1(—1c0+§_§+§2>w
dxdy 3 dx 3 dy 3\3 dy Ox
u = 1 0w + 1 (202 -@)w
dy? 33y 3\3  Jy

The method may be of use as a last resort but I am doubtful of its

practical valus in the majority of casss.

However, soms of Gronwall's ideas work well, particularly in

simple cases, Consider F(x,y,z) = z - x2y2 = 0 which was used to

{1lustrate Massau's approach.

Gronwall first notes that the Jacobian,

O(z,0(x) +y (y)) =0
9 (x,y)

implies a relationship X(z) + d(x) + ¥V (y) = 0,
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which can be written as,

¢ (x) -1 1
p (y) 1 1| = 0
-3% (2) 0 1
The procedure is to obtain F from z = xzyz, i.e,
Jz
z 2
I x 2xy y

(Note that 95(1nM) = 0 )
Axdy

M is then expressad as M = oa(x) B (y) and two arbitrary functions

are obtained as follouws,

d .
b (x) = /=22 = -1nx. b (y) = - JsB(y)dy = -lny
o(x) d%
hence M = -~ x = = P'(y) = -3y , the last two terms giving
A ¢r(x dz
y (x) 22
the Jacobian above.
x(z) = lnx +1ny

In(xy) = 1n/z = %ln z

o e F(xy,y,2) =| -1n x -1 1
-ln y 1 1 = 0
~+1n z 0

In considering the case of two rectilinear scales with the
third scale some other curve, Gronwall is following in the footsteps

of Massau and Lscornu., The form examined by them was,

20(2) X (x) +2,(2) Y (y) = 1

which can be uritten, 1/X(x) 0 1
0 1/Y(y) 1= 0O
21(2) Zz(z) 1

showing clearly that the scales of x and y are rectilinsar while

that of z is a curve.
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In this case, Gronwall's analysis gives,

2 19..&)
M

az ax G...'...U.....QO.D..'W'.l..l4°2.11

9 1nM

D%y
The necessary and sufficient conditions for the scalss of x and y
to be rectilinear while that of z is a curve are that C should

satisfy the equatieons,

a.—-c— = 9__.(______—_qu + N] = U choQOOUQ...n.c-.-.ao..-cnt-4-2¢12
Jy dx

Gronwall states that condition 4,.2.12 had been obtained in a totally
different manner by Massau and this is so. I have compared both

developments and find that Massau's conditions 2.6.9
i.e. dA = 0, JL = 0
d x dy

and Gronwall's conditiocns

o(mc +N) = 0, dC = 0
o x dy

are identical.

At the end of his paper Gronwall turns his attention to
Clark's conical nomograms. He finds that, for F(x,y,z) = O to be
reduced to the form £1(x) f12(x) 1

Po0y)  P2%(y) 1| = 0 seiceese8.2.13
t3(z) 93 (z) 1
C must be given by ,
9(13N
M 9% cescsssssssscscsasnsesssssacesnscde2.14

%1
IxJy

which is the sams expression as 4,2.11.

The necessary and sufficient condition for 4.1.1 to be reducsd

to 4.2.13 is that C, given by 4,2.14, must satisfy,
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dc=d(mc +N) = 3o £ o
dy dx Ox

4.2.15
2 SS90 D ITHO 5B BE DY L ] 8
0% = cac

—_—

axay ay

It is worth obssrving that some rselatiocnships for which

conical charts can be constructed, such as z = xy, (egn. 3.4.14

with By =0, €, = —Faahy = 1), would maks the denominator of
4,2.14 zero.

In the introduction to his paper Gronwall states that in
a subsequent work he intends toc make sxplicit the commaon integral
of the partial differential equations 4,2.1 and 4.2.2, I have

not succeedad in finding out whether he sver did this.

180.



3. 0.D. Kellogg's Approach.

Although Kellogg's paper was published three years after
Gronwall's, it can be rsgarded as a response to Gronwall if one
takes nota of the following facts, Gronwall, from Chicago,
published his paper in france, in French, in 1912, Kellogg's
paper was published in Germany, in English, in 1915, but the papsr
is dated February 23rd. 1913 and was written in Columbia, Missouri,
(85). The delay in publication was no doubt aggravatasd by the
tension and subsequent war in Europs. It therefors sesms liksly
that Kellogg wrote his papsr within months of reading Gronwall's
paper to which he refers in his introduction. Also in his intro-
duction is this statement, "If I venture a contribution to the
subject, it is because ths criterie which I have found sesm to lesave
1ittle to be desired in point of simplicity of application, involving
as they do mersly differentiations and the detsrmination of the ranks

of matrices". In order that this statement should not mislead, one

must bear in mind the known difficulty of the problam.

Kellogg's approach is quite different from previous ones.
The underlying concept is that of linear dependence and in particular
the linear dependencs of functions of several variablss. The
relevencs of this concept can be seen if one considers what he calls
the irreducible case of the nomographic problem by which he means

the case in which F(x,y,z) can be expressed in the form,

P (X)R (y,z) * pQ(X)RZ(Y:Z) + p3(x)R3(Y,z)
but not in any reduced form such as P (x)R4(y,z) + Ps(x)RS(y,z)
This irreducible form requires that P (x), 2(x) and ps(x) should be
linearly independent and also that R (y,z), 2(y,z) and R3(y,z)
should be linearly independent. Uhils the condition for the linear
independence of the pts is well enough knoum, that for the R's is
not often encountered. Kellogg describes the jatter as "a result
of some interest which I have thus far failed to meet with in print”.

The condition relates the number of linear independent functiens to
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the rank of a matrix which has for its elemsnts the functions

and certain of their partial derivatives,
Starting with the irrsducible form,
Fx,¥52) = Po(x)R(ys2) + Po(x)Ry(y,2) + Pa(x)Ra(y,2) «en00.8.3.1

Kellogg notes that F must satisfy an ordinary homogsnegus third
arder differential equation in x having coefficients which depend
only on x. This fact can sasily be confirmed by differentiating
4,3.1 three times partially with respsct to x and stating the
condition for the consistencyof the resulting equations. This

gives, F P, P, P

1 P2 P

Fx Pq' PRt Pg = 0
Fux Pq" P P3"

Fxxx p1"| p2"f p3"'

This differsntial sesquation can be regarded as a homogeneous
linear relationship betwsen F, Fx’Fxx and Fxxx with coefficients
that do not contain y and z. To this linear relationship Kellogg
applises his condition for linear indespendence. His result is
that the necessary and sufficient condition for F(x,y,z) to be
expresssd in the irreducible form 4.3.1 is that a 4 by 10 matrix
N should be of rank lesss than four and that a matrix N' obtained
from N be deleting the last row and the last four columns, should

be of rank thres., N and N' are given in Appsndix 11,

Next it is nscessary to find the functiens in 4.3.1.
The Pi'a are obtained by forming the differsntial equation satisfied
by F and finding three independsnt sclutions to it. These independent
solutions are P1(x), P,(x) and P3(x). Once the P, 's hava been found
the Ri's can often be found by inspection. If they cannot be so
found, then it is necessary to differentiate 4.3.1 twice with
respect to x and solve the linear systsm formed py the tws resulting

equations and 4.3.1.

The method so far is illustrated in the following example.

x 2 _ sz3

3 2
F(X,Y’Z) a8y * %% - BZX 2

- xa7 + xe© + x“z7% y
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The matrices N and N' are both of rank three, although demonstrating
this is most tedious, By contrast, forming the differential squation

which is satisfied by F 1s quite simple. It is,

2 - x2 - =
(x% = 2x + 2)F = x*F,  + 2xF - 2F =0

In this cass thres independent solutions are easy to spot, they
ars ax, X and x2. Rearranging the equation, the Ri's immediately
reveal themselves. UWe havs, P1(x) = ex, R1(y,z) = y2 - 23

Pz(x) = x, Rz(y,z) -es” - &

Po(x) = x%, Ryly,2) = (&2 - &’y?)
Having established that the form 4.3.1 is possible it is nsxt
necessary to investigate whethsr a daterminant form is possibls,

i.e. is it possible to write,

f1(x) 91(X) h1(x)
Fx,v,2) = [ F,(¥)  a,(y)  h(y)| 7 ..eeeen.oi4.3.2

Since f1(x), g1(x), h1(x) must be sclutiens to the differential
equation which has P1(x), P,(x) and Pz(x) as independent solutions,
a homographic transformation can be found which will make the first

rou P1(x), Pz(x) and P3(x). Therafore, the form we have is,

P1(x) Pz(x) P3(x)

F(x’y’z) = fz(Y) gZ(Y) hz(Y) ..000000...04‘3-3
f3(2) 93(2) hs(z)
fe m =2 ho . hy, fy . f, 9,
M 97 hs .2 hy fo 3 fi 94
There exists a homogeneous linear relation betuwsen R1,R2 and R; with

cosfficients depending only on y, for example,
f2R1 + ngz + h2R3 = DI

A similar relationship exists having coefficients which depend

only on Z.
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Spmi

The necessary and sufficient conditions for these relationships

ars,
Ry, Ry Ry Ry Ry Ry
Riz Ry Ry, | =0 and Riy  Roy Ry, | = D ..4.3.4
R1zz RZZZ 322 R1yy R2yy R3yyi

Thus the coefficients are proportional to the minors of thsse
Wronskians. Suppose them to be found and to be Y45Yos Y and
Z,,Z, and Z respectively, Then,

YRy * YRy ¥ YRy = 0 }

Z1R1 + 22R2 t 2R, = 0
R1, R, and Ry can now be expressed as,
Yo Y3

Z, I

R, =90

1 ) R, =°

where 0 is independent of x.

In order that the determinant form 4.3.3 is possible it is necessary
for p to be a function of y times a function of z. That this must

be so is easily seen by assuming that 0 =0 (y)T (z). Then,
Ry =0 (y) 1(2) {¥,(y)25(2) = Y5(y)Zy(2) }
= g,(y)ha(z) = hylylgs(z)
Therefore, if p = 0 (y) T (z), it follouws that,

;gilg p = 0 tesescensovcsssccssessosesnssscasedoa3d
3y
Kellogg's conclusion is that, having satisfied the conditions for
the irrsducibls form 4.3.1, ths necessary and sufficient conditions
for F(x,y,z) to be expressed in the determinant form 4.3.3 are those

expressed by 4.3.4 and 4.3.5.

In the example given above, the Wronskians of 4.3.4 become, -

y2 _ 23 oZ — &Y ey13 _ ezyz
—312 ez 3229y - ezy2
-6z e? 6z’ - ezyz
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2

yo - 23 g° - o ay23 - ezy2
2y -aY eyz3 - zyez
2 -y 8’z” - 28 ¢

both of which vanish;

o is 68y (1 — y)zez(z - z), giving <921ng> = 0

Jydz

Kellogg is more concerned with the criteria for expressing a
function in the form 4.3.3 than with actually finding that form
and he doss not spell out how the components of R11R2 and R3 are
to be found. However, once it is known that the form is possible

these components can be found by inspection. In the example the

final form is ax X x2
e’ yz 1
z 23 1

Kellogg deals with the two simpler cases, F(x,y,z) = P,4(x)R,(y,z)
+ Ps(x)RS(y,z) and F(x,y,z) = Ps(x)Rﬁ(y,z), in a similar manner.

Finally, in order to remove the nesd to solve differential
equations, Kellogg expresses his criteria in terms of F(x,y,z) and
its derivatives., These alternative forms ares of little practical

value, in most cases, because of the complexity of the exprsssions.

The merit of Kellegq's approach is that it attacks the problem
in a new way. His criteria are rather complicated for any cass
where ths existence of the dsterminant form is in doubt, that is in
any case complex snough to require the criteria to bs tested. Howevsr,
if the form is known to exist, the method for finding the components

is a reasonable enough procedure as the earlier exampls illustrates.
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4, Warmus and Nomoaraphic Functions.

An exhaustive attack on the prablsm of anamorphosis cams
from Poland in 1959 (86). The author was M, Warmus who
acknowledged the earlier works of Duporcg, Gronwall and Kellogg,
making special refersnce to the latter's existence criteria,
considering them to be "unnecsessarily complicated" and leading

to "computations too long and troublesome for practical use”.

Warmus's approach is algebraic, Rathsr than seek for
conditions under which F(x,y,z) can be expressed in a nomegraphic
form, he attempts to classify those forms which are suitable and
gives an selaborate computation schems which sither leads to a

detsrminant form or indicates that such a form is not possible.

There are two important preliminary idess on which he srects
his work. Firstly, that of linear independsnce of functicns of
one variable, His theorem on this is of some interest sincs it
depends on the existence of numbers, within a given range, which
satisfy a certain condition. This concspt of the existencs of a
set of numbers satisfying certain conditions threads its way through
the whole of his work. The theorem states that the functiens
Ti(t)’ i = 1,2,40000.n, ars linearly independent if, and only if,

there exist numbers ti’ i=1,2,..0n, within the given range,
such that,

T4(ty) To(tg)eeaaT (t))
T(t) Ty (t,)eeelT (E) # 0

T (t) Iz(tn)....Tn(tn)

The second idea is that of the rank of a function. This is

initially defined in terms of a function of two variables as follows:

G(u,v) is of rank n (n >1) if, and only if, there exist Punctions
of u, UppUpyees.l , and functions of v, V,,V,,....V  such that
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S

Gu,v) = E1V1 * Up¥y * weees + UV thers being no functions
u1,_.a.:jun_1, ViseasssV 4 such that G(u,v) = Uy, + U0, +
S e 5000 Un—1 vn—1.

The notion of the rapk of a function is devsloped and a procsdure
svolved for finding the rank of a given function and the functions
U1,U2,,.q...Un and V1,V2,.....Vn into which it can be decomposed.

It is a feature of such a decomposition that tha functions U1ee...Un
must be linsarly independent as also must be the functions ulx....un.

The influence of Ksllogg's work can be detected at this stage,

- A result which has a geomstric parallel in a homegraphic

transformation is obtained. Stated for n = 3 it is,
If U1\I1 + UZVZ + U3V3 s U1U1 + U2V2 + U3U3 in which the U's

are linearly independent and the V's are linearly indepsndent, then

a matrix A must exist, whers, 2344 3o 843
A= [ %21 3
a a

831 32 33

such that Ui g.aﬁU1 + aizu2 + aiSUS . 23
—_— - = 22,
Vi = by4¥y + BV, * ByaVy

where bij = aij/a, (1 =1,2,3), a;j being the cofactor of a ;e

Warmus extends the notion of rank to functions of thres
variables since the nomographic problem is concerned with the
function F(x,y,z). The extension takes the form of grouping two
of the variables together, say (y,z), so that we have the definition,

F(x,y,2) is said to be of rank n with respect to x if, and
only if, when considered as a function of the two variables x and
(ysz) it is of rark n. Similar definitisns spply for rank with

respect to y and with raespect to z.

Warmus's notion of a nomographic function can now be
defined. F(x,y,z) is said to be nomographic if, and only if, the
following apply.
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(1) there exist functions Xi(x), Yi(y), Zi(z),
(L = 1,2,3; x,y,z lie within the appropriate rangss),

with numerical values such that,

X X X

1 2 3
F = Y1 Y2 Y3
Z, Z2 Zy

and

(ii) that F is of rank greater than 1 with respect to sach of

the variables x,y,z.

He calls the determinant form in (i) a Massau determinant. The

purpose of item (ii) is to exclude trivial cases,

Warmus is next led to considsr the equivalsncs of two

Massau forms of F(x,y,z) and gives the following definition.

The two Massau forms of f,

X, . X X

<1
|

1 2 3 1 2 X3
Yo Y, Yglad (Y Y, Y
Z, I, Z i, I, I

are squivalent if, and only if, there exists a matrix of numbers

811 812 913
21 82 ¥
31 832 813

with a = det A # 0, and if there also exist two numbers d, and d,

a

satisfying the condition ad1d2 = 1, such that
X4 Xy X3 X4 X5 X3
Yoo Yo Yz T {dTy dfp dYg )R
Z1 22 23 d221 d222 d223
i.e. 51 52 f} 1X,l 1X2 1X3 1
Yo Y2 Y3 7 gl W2 Gis| A
z Z b3 2 1z 1z
1 2 3 d21 d22 d23
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He is able to stats that the equivalence of Massau forms is a
true equivalencas rslation, i.e. if sach of two Massauy forms is
squivalent to a third then all three forms are equivalent to each
other, It may be that a function has two Massau forms which are
not equivalent, or indeed more than two such forms; and Warmus

gives the follouwing definiticns.

A uniguely nomographic function is a function which has all its

Massau forms equivalent in pairs.,

A doubly nomographic function is ene which has sxactly tuo

non-equivalent Massau forms,

A K-nomographic function (K > 2) is one which has exactly K

non-squivalent Massau forms,

From the dsefinitions for the squivalence of Massau forms
of F(x,y,z), it is clear that the corresponding nomograms for '
F(x,y,2) = O of two such forms can be obtained from sach other by
homaographic transformations., It is of interest to note that

equivalent forms of

X1 X2 X3
Yq Yo Y can be obtained by,
Z1 22 Z3
(a) Interchanging two columns and replacing signs of one row

by their opposites,

(b) Adding to one column a linear combination of the other
columns.

(c) Multiplying one row by a (#0) and one column by 1/a.

(d) Multiplying one row (or column) by a (#0) and another row
(or column) by 1/a.

Warmus is now abls to develop theorems which give for functions of
rank 2 or 3 the form of the Massau equivalent forms. These present
us with no surprises but they do lead to a classification of the
casss that can arisse. By making preliminary assumptions, which

cause little inconvenience and do not restrict the generality of
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the problem, Warmus is able to classify nomographic functions

into seven different categories which he calls the 'Principal

Cases?,

One of the preliminary assumptions made is that for a nomographic

function F there are only the following possible casss.

Teo | F o= X4644X,6, G, = Y',]Z1 G, = Yzzs
2. Gy = Yq24%Y,2,
»}: coese cesee Gy = YaZa#,Z,
4, | F = X1G1+X2G2+X3G3 G1 = Y1Z1 GZ = Y323 83 s YSZS
5. cevea G, = Y1Z1+Y222 soe -i.fk .
6. svses escoes G2 = Y323+Y4Z4 soe
7. ceses ceoes see Gy @ YoZo Y 2,

whers the following are linearly independent in the pairs shown:

(Y1Y2),(Y3Y4),(Y5Y6),(2122),(2324),(2526),(X1X2 in the first three cases),
and (G,‘,G2 in the first three cases). In the last four cases X1,X2,X3

are linearly independent as also are G1,GZ,G3.

The classification is done on the basis of the rank of
F(x,y,2) with respect to the variables x,y,z and the ranks of thse
constituent functions Gi(y,z). As an illustration, consider the
first principal case F 3 X464 + X,G, in which the function F is of

rank 2 with respect to sach of the variables x,y,z. The functions
G, and G, are both of rank 1.

For each principal case Warmus gives the associated principal

Massau forms., For the first principal case F 2 X,G, + X.G,, the

11 272
principal Massau forms ars,
X1 X2 0 X1 X2 0
0 Yo Y3 and 3 0 Yy
Zq 0 Z, 0 -z, -Z4
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Based on the precesding, Warmus proves twoc theorems
which he calls fundamental theorems, They are givan below,
(the m's, n's and r's in II are numbers which occur in ths list

of principal cases).

I. The function F is nomographic if, and only if, under the
threse preliminary assumptions one of the principal cases
occurs,

i1, If the function F is nomographic under the threse preliminary
agssumptions then,

(a) it is doubly nomographic whenever the first principal
case occurs, or the second principal case with
Mz4N3,% Mo N2y # 0, or the third principal case with
(r31— r42) + 4rg T, ¥ 0. In these casss every Massau
form of the function F is squivalent to one of the twa
corresponding principal Massau forms, the two forms
being non~egquivalent,

(b) it is uniquely nomographic in the remaining cases and
in the sacond principal cass with mz,n; .+ mi,nz, = 0
and the third principal case with (r31—'r42)2 + 4rq,Taq = 0.
In these casas svery Massau form of ths function F is

squivalent to the corresponding principal Massau form.

As has already been noted, Warmus's efforts are directed
to a classification scheme of nomographic functions bassd upon
the concepts of rank and linear dependence; this classification
incorporates the principal Massau forms assoclatsd with a nomogrephic
function. Such a classificatien can give rise to an effective
procedure which will determine a Massau form for a function uhen
this is possible or indicate that the function is not nomographic.
Warmus obtains such a procedurs which he calls his 'Scheme of

Computations'.

There are nine computation schemes in Warmus's paper but

they are not independent. They are used in ths following manner.
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Start with scheme I. This has ssveral exit points which eithsr
end the protlsm, shouwing that F is naot nomeographic, or pass to
scheme II, Scheme II, similarly, either terminates the problem
in the case of a non-nomographic function or passes the computation
to ons of schemss III, IV, V, VI, VII, VIII or IX. Each of thess
latter scherss either will give Massau forms or indicate that the
function is non—-nomographic. The whole computation scheme is
lengthy, occupying some twenty pasges. It cannot bs claimed that
Warmus has grovided a simple solution to the problem, for the
problem is not simple, yet he has done what earlisr investigators
did only incidentaly; he has provided a method which leads the

practical ncmographer to a determinant form, when this is possible,

and hence to a nomogram.

The illustrations given by Warmus show at the same time
both that his scheme works and that it is extremely tedious.

For example, the cass,
Flxysz) = -2 %% =y + 2 + x5% + &z = %2 — Pz + &¥/aly #2)

takss nine pages to arrive at the determinant form,

-1 >(2 9x
2
F(x,y,2) = 1~y 2ty 1
-z z 1

during the course of which four sets of values satisfying certain
criteria have been found and fourteen 2 x 2 determinants evaluated.
Thess determinants contain variables and are fairly complex with

plenty of scope for error.
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5. The Practical Approach of James~lLavy.

The final attempt we sxamina alsoc dates from 1959 (28).
It appeared in an issue of the Russian journal 'Computational
Mathematics' which was entirely devoted to Nomography. The
author, G.E. James-lLevy, approached the problem of anamorphasis
in @ manner reflecting the times; times in which the development
of computational aids was making approximation techniques more
readily acceptabls., In fact, James-Lsvy's approach is based on
a method of constructing nomograms which is an approximation
method. It will be necessary to describe this method, but first

some preliminary remarks.

In his paper James-Levy assumss that the given equation

is nomographible and that only the scalss have to be found, i.s.

the f;, g; of the determinant 74(x) g4(x) 1
Paly)  gyly) 1
f(z)  ggl2) 1

However, the arguments apply equally to non-nomographible equations,
the difference being that nomographible equations are accuratsly
portrayed while non-nomographible squations lead to approximate
nomograms. An interesting aside is his claim that the method can
be applied to problems on the feasibility of representing a given
equation in n variables in the form of a superposition of functions

of a smaller number of variables.

The approximation method referred to is dus to Gorodskii
and appears to date from 1939 (87). Applied to a relation of the

form z = F(x,y), the steps are as follous,

1 An arbitrary but convenient scale for z is chosen. It must

be monotonic and centinuous.
2, Two arbitrary points of the y scals, Y, and Y, s are salected,
3., A series of values of z are computed from z = F(x,y) using

the points y, and y, and a series of values for x,
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4, Next, the x's are plotted; x; is the intersection of the

line joining yq to F(xi5y1) with the line joining y, to

F(x35y,)s (figure 4.1).

Fiqure 4,.1.

5. When the scale of x has been constructed the scale of y
may bs constructed using the points xiand X, as pivots,.

6. The nomogram can now be improved, Through pairs of points
of twe scales a series of lines is draun to give ons and

' the sams value of 8 third variable, If the nomogram is

accurate, then all the lines will pass through one point;
more usually they will describe a region in which cass
the scale 1is reconstructed with the value assignsd to ths
centroid of the region, This latter process may be
accomplished numerically. The whole process is now repsated

for the other two scales,

The first five steps of the process are illustrated

in figure 4.2.
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Figure 4.2: Gorodskii's method spplied to z = xy,

Figure 4.2 is a partially constructed nomogram for z = xy which
illustrates Gorodskii's method, The z scale was chosen to be

rectilinear and logarithmic. The two y pivots, Yq and Yoy wers
chosen to be on 2 straight line parallel to the z scale; yq was

assigned the value y = 1 and y, the valus y = 4,
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The points 1,2,3,4,5 and 6 were located for the x scale by the

rays emanating from Y4 and Yor

To construct the y scals the pivots x4 and X, were sslected at

the points x =1 and x = 3, The points 2,3,5 and 6 of the y scale

were located by the broken rays emanating from X4 and Xg.

It will be noted that both the x and y scales are rectilinear;

they are also logarithmic as ons would sxpect them to be,

Returning to the main theme, we note that if the resulting
nomogram corresponds exactly to z = F(x,y) and yq and y, are
where thay should bs then the construction method is exact. The
reasoning may then be expressed in an analytical form. James-Levy's
approach stems from the proposition that if one scale of a nomogram
is known, then the determination of the other scales can be carried

out in an analytical manner.

Consider z = F(x,y) where 3F . 3F # O in the region G of

—

x 0dy
the xy plane under consideration, A nomogram is supposed constructed,
if that is possible, using fixed points as described abovs. The
y scale is to be curved in the senss that there is a part of it on
which no three points are in a straight line, It is this part
which is considersd. A péojective transformation changes four

points on the y scale into the following points,

y1(05> ), y, (= =,0), ys(0,0) and y4(1,1).
Suppose that after this projective transformation the squation of

the nomogram can be exprassed in the form,

f1(x) 91(X) 1
fz(y) QZGY) 1 - 0

in which the coordinates of the transformed system, u and v, are

s the new situation.
given by u =gy, V= Fso Figure 4.3 portray
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{0,00)
i X scale
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4,017
\
33 (0,9} ‘14
z scale

4,(~00.0)

Figurse 4.3.

In figurse 4.4, x is an arbitrary point on the x scals.
The lines drawn through x in the follouwing directions,

(a) parallel to the u axis,

(b) parallel to the v axis,

(c) through the origin,
and (d) through the point (1,1),
must intersect the z scale at the following points,

7z = F(x’yz)’ z = F(x,y1), z = F(x,yS) and z = F(x,ya) raspectively.

Sl (O’ 00)

4,(- 00.0)

Figure 4.4,
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It follous that, from the u and v coordinates of x we must have
91()() = QS(F(X’Y1)) #s0sc000000s08cncessssosnnscttedsl
and f1(x) = f\S(F(X’Yz)) "0‘-“"91‘QOODOGOOOQCOOQQOQISlz

By considering the slopes of the linss we have,

(i) j4151 = .§3§F£x,yall P B P

g9,(x) 95(F(x,y5))

for the line joining x to the origin, and

(ii) f_.‘gx! - 1 = _f_ F(x - 1 onc.ot.c--o.o-.ooc040504
91()() -1 93(F(X}Y4)) -1

for the line joining x to (1,1).

Jemes~Levy's proposition states that one scale is to be known and

we assume that this is the z scale.

Since y, and y, are known and x is arbitrary, 4.5.1 and 4.5.2 will

give the x scals, i.se. g1(x) and 71(X)~

To obtain the y scale fix two points on the x scale, x = x4, and

X = X,. Using the determinant form we can write,

2
fi(x;) g4(x;) 1
fo(y) 9,(y) 1 -0
Pa(F(x¥)) g5(Flxg,y)) 1

and
f1(x2) 91(x2) 1
f,(y) 9,(y) 1 = 0
F4(F(x,¥)) a4(F(x,y)) 1

from which, by suitable algebraic manipulation, expressions for
fz(y) and gz(y) can be obtained, Thus, the knowledge of one scals,
in this case that of 2z, and two points, namely Y4 and y,, are

sufficient to determine thes other two scalss.
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It will be noted that 4.5.3 and 4.5.4 wers not used in

the precesding argument. If they are used in conjunction with

4.5.1 and 4.5.2 one can obtain,

F5(Flxy,)) | F(FlGys)) | Ea(F(xays)) = 1 Pa(Flxay,)) = 1

93(F(x,y,))  g5(F(x,y4)) 94(Flx,y7)) = 1 g5(F(x,y,)) - 1
from which the functions g3(z) and fz(z) can be determined.

James-Levy remarks that the solution of functional equations,
such as those which arise abovs, has not bsen investigated to any
marked degree, He therefore proposes the substitution of differential

equations for functional equations.

To obtain the differential equations, his approach is as
follows. Givan z = F(X’Y) ...'..l"'l'l."....l.......'.405I5
he postulates the existence of a normal nomogram constructed from

fixed points, as already described, and having a determinant

repraesentation,
91()() f1(X) 1
QZ(Y) fz(Y) 1 = 0 .l.'oo.ooa.aal.an!dnscﬁ
g93(2) f1(z) 1

A nomogram is said to bse normal if it can bs constructed and used
as a computational instrument., y is considered as a function of

x and z and it is required that 3y obtained from 4.5.5 and from

Ix
4,5.6 should be equal., A corresponding result must also apply to
oy
2
X .

The resulting expressions contain F3(z) which, when eliminated,

produces the identity,

E___‘_é__,‘_x_“ 2A P{ Azx Q'.Qcucooooooootooct04ﬁst7
p A A A A
1 2 2 1
in which N(x,y) = - Bzz s p(x,y) = =3y
2
ox” ax

b= flilagmaq) — et (Ffy), A= Flolagmgy) - 9" p(F5fy)
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James-Levy states that the exprsssion,

.é._1.2(_ - 248
A A
1

25 contained in 4.5.7
2

is none other than Gronwall's C whilse 'Ligzl - 2j§$x} is

A
Gronwall's D, 2 1

1t is then a simple matter to show that equation 4.5.7 is
James-Levy's equivalent of Gronwall's D = MC + N, (eqn. 4.2.5).

Gronwall and James-lLevy are not the only two investigators
to have arrived at this point, for Jamss-Levy notes that I.A. Villner
(88), and 5.V. Smirnov (89), had also arrived there. However, their

subsequent treatments divergs,

The James-Lsvy approach is to convert 4.5.7 into a differential
equation in x by substituting for y some value Yo within the
permitted range., A second differsentisl equation is obtainsd by
differentiating 4.5.,7 with respect to y and making again the
substitution y = Yo+ This system of two differential squations
contains eight unknown constants, namely g,(y. ),9"5(y,)s9"5(y4)s
9"t (¥ )s Py g)s Pl oy )5 P (y,) and 7' (y ). Housver, if the
y scale, i.8, U = gz(y), v = fz(y), has non-zsro curvature at
Y = Yo s then a projective transformation can be found such that,
at the corresponding point on the transformed scaled denoted by

95(y4)s ?z(yo), the constants are given by,

EQ(YO) =0, ﬁ'z(yo) = Dsla"z(yo) =1, E"'Z(yo) =0,
Folyg) =0, Frolyy) = 1, Fryly,) =0, T (y) = 0.
A further simplification of the two differential equations is

possible if the x scale is assumed to be curvilinear such that u

and v can be expressed as u =.£1 and v = 2 ,
94 94
The resulting differential equations are then,
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u" ={u' —N + pu } P \l'p .o.ooaoi.anua-.»a-.sos.aomooaosaa
p

vt o= 4ut2 4 u'<3vp - 2u2p - 2pyu - ofN ) +yvrN o pu + 2p )
P p y

.0.-9.00-oonasbc.ava.alodusng

Provided that p(x,y,) # 0, squations 4.5.8 and 4,5.9 will

eventually give the x scalse, sincs, g1(x) = %‘ and f1(x) ='§5

0f course, ths solutions will contain four constants of integration,

Having found the x scale, the remaining scales present no
difficulty. Taking the equation 4.5.5, i.e. z = F(x,y), it is

rearranged to give x = y (y,2). seesecnssesesesdad.10
The relationship p(x,y) aiagzz - fzgzz ° _é_.] 9 ssnsssseldoS,11
P1(x) = P4(z) b,

where A 4 and A2 are as defined in 4.5.7, is obtained by

differentiating 4.5.6 partially with respect teo x.

By eliminating x bstwsen 4.5.10 and 4.5.11, an identity in y and z

is obtained. Putting y = y,  into this identity and rearranging it
we get,

f(z) = pg,f, , in which x = q,(yo,z).
Paq + 94f"y = 0%yT,

Similarly, by putting x = ¥(y,z) in 4.5.6 an identity is obtained
from which 93(2) may be determined.

We get 93(2) = f3(z) quﬁLiXD;EIl
f1(¢ (Yosz))

To obtain g,(y) and f,(y) we take two arbitrary values of 2z,

z, and z,, and find the corresponding values of fS(Z) and 93(2)'
From the determinant form 4.,5.6, after replacing x by V¥ (y,z) and
in turn z by z, and z by Zos two linear squations are obtained

from which gz(y) and Fz(y) may be found.

201,



It will be sesn from figure 4.5 that this is an application
of Gorodskii's methad.

W(lﬂ N ll)

Yi

Figurs 4.5,

It still remains to determine the constants of integration,
This can be done by choosing four sets of three values which
satisfy z = F(x,y) and substituting them into the determinant form
obtained by the method described above. This Qill provide four

equations in the four unknown constants.

Expanding the determinant 4.5.6 along the second row and

replacing x by ¥ (y,z) gives,

3500 (740 (9,2)) - £5(2)) = 150 (9908 (5,2)) - 65(2))

+ 9,0 ¥(y,2))P3(2) = 95(2)F (¥ (y,2)) = 0 +..4.5.12
z4 and 2z, satisfy squation 4.5,12 and hencs, rsgardin? it as an
squation in gz(y) and fz(y), we can obtain two mors 'such equations
by the successive substitutions z = 2z, and z = Z,. For consistency

the following identity must hold,
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’\ILJ(Y,ZT))“?:;,(ZQ 91(\U(}’,21))“93(21)
w(ys2))F5(2,) 8, (0y,2,))-a,(z,)
lll)(Y:z))—Fav(z) g1(¢}(y,2)) "93(2)

94(u(y52)) F5lz)=F 4 (0(y,2,)) 55(2,)]
91(w(Y:22))f3(22)—f1(¢(¥,22))93(22)%

=0
94 (uys2)) £4(z) =F,(¥ly,2)) 94(z) |

42 20006503 PSDHET GBS 1;
e2 00 Fade )

Nothing in the process described above is restricted by
the nomogrammibility of the equation z = F(x,y). The process may be

carried out whether the result will turn out to be an exact nomogram

or an approximate one. In the terms of Jamss-Levy's investigation

the problem with which this chapter is concerned is that of the

existenca of an exact alignment nomogram for z = F(x,y).

The existence of such a nomogram is determined in this case
by the reduction of 4.5.13 to an identity when the values found for

the constants of integration have bseen inserted.

Enough of James-levy's paper has been considered for the

purpose of this investigation into the theorstical problem. Houwever,

it seems appropriate to note briefly the substance of the rast of ths
paper.

The application of the method to the joint nomogram of two
equations, z = F(x,y) and Z = G(x,y) in which the x andy scales
coincide, yields particularly simple results. The method is also
applied in some detail to equations of the third nomographic order,
j.e. 2(z) = X(x) * Y(y), and to the fifth order in the form,
£(x) = fly) * fe(z) , in which the x scale is linesr, and also to a

g,(y) *93(2)

system of equations containing linear scales.

A result obtained for the third nomographic order in the

form of the eguation z = X + y is worth repeating.

From z = x + Yy ue have, regarding y as @ function of x and Z,

2
P o= -3 - 1, N = - ”a_% g.
3 x 9%
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l';or a linear scale of x we can take u = fs v=2
in eguati . a =

g ons 4.5.8 and 4,5.9 u f1/g1, v = 2/91; we take g = 1),
Equation 4.5.8, i,e, u" = u'(g + pu) -~ v'p, now becomes

fr, = £, 0

1 11
and therefaore X = 2j df1 + ¢
——— 2
+
F1 ::1

€, may be smaller than, equal to, or greater than zero and, according
to which, and with an appropriate transform of z = x + y into
az + b +c = (ax +b) + (ay + c), James-Levy shous that thers are

thres, and only three, projectively distinct scales for x. They are,

f1(x) =g
f1(x) = x
f1(x) = tan{ax)

and all other scales may be obtained from them by projective trans—

formations. Both Gronwall and Warmus obtained results in this vein.

As a result of obtaining a canonical form for squations of
the third nomographic order, James-lLevy is able to produce a result
which is a particular form of Saint-Robert's criterion. Equations
of the fourth order are not dealt with since these are the subject

of a separate paper (90).

His final contribution to the problem of anamorphosis is the
replacement of the necessity to solve diffsrential equations by the
requirement to solve a system of algsbraic equations. Returning to
the identity 4.5.7, we note that instead of regarding it as a
differential equation in f1(x) and 91(x) it may be regarded as an
ordinary equation in f1,f'1,f"1,g1,g’1 and g"1. By differentiating
both sides with respect to y we noted that a second differential
equation could be obtained which, with y = yg, gave & second equation.
This may now be repeated until we have six equations, i.e. by taking
up to the fifth derivative of both sides of 4.5.7. This means that
there will be a sevanth derivative from F(x,y). The system of

8
equations, now considered an algebraic system, will contain 16 constant
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which are,

t
85(¥5)s 8 p(yg)s eenee 8¥'50y,) and f.(y ), ¢ v
N\Yqls £ (y )J — !é(y )

These may be raduced to eight by the use of the prajsctive

transf i i
nsformation hinted at earlier, The remaining eight constants

are found by ensuring conformity between the system of equatlans and

the solutions. This is done by equating expressions for, in ons cass

g1(x) and in another f1(x). The two expressions for f,(x), for exampls
are obtained in the following ways; as a result of the selution of -tha ’
algebraic system and, by differentiation with raspect to x of equations
in the system and the elimination of the derivative of f,(x). An
example for the case f,(x) = £,(y) * f(z) will illustrats.

a,(y) + 95(2)
The algebraic system arrived at is, with y =y,

N.fll

—_— —-— - Pf-' .O.’.Qooca..lt-oto.a.cO"l'ca.'.c.l&.5¢14

t
p Yy

N 2
—= 2t -~ P, - £° .+ af, = 4
() 2 1 P 1 p( 1 a 1 b) e0s08080 000 800 c0s00ROsDS «5.15

N 2 3 2
(gl; pyyf1+ 2py(f g tafy - b) + p(2f7 + 3af 4 * f1(c - 3b) - d)
= 2f'1(2f1 + a) cvo-..oon.4-501ﬁl
in which
a=g",(y) b £ (y)s € ° gV, (yg), 9= P1Y.(yg)

The 3ystem gives,

a—2pb+p(ab—d)
f (x) ' ....‘..“'.-...‘4.5‘17

2
- - + b - + 3
2 (52 Pyy = %Py p(b - e * )

By differentiating 4.5. 15 with respect to X and eliminating f1"

between the result and 4.5.14, an squation in f1‘ is obtained.

Eliminating f1' bstwesn this new equation and 4.5.16, an equation in

f, is obtained. By eliminating 7, between this new equation and 4.5.17
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an identity results from which a,b,c and d may be found. Houwever,

if the equation is of the third ordsr, i.e. of ths form,
Pa(z) = £,0x) + £,0y),

the method fails.
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6, Conclusion.

Any comparison made between the four papers dascribsd in
this ssction would be rather artificial, One rsason for this is that
vy

in part, a psrson's position on any issus is determined by his

philosophical views. The philosophical positions of the authars ars

by no means the same., Gronwall has presentsd a paper which is in

the classical mathematical tradition, his main conclusion is based
upon the existence of ths common solution C of two partial differsntial
equations. But an object may exist without it being knoun to exist
and there are those who would object to an existence proof. Kellogg's
paper seems to me to present a more readily acceptable solution in that
his matrix N can be formed and its rank dstermined by well established
methods but the actual execution may be tedious and complicated,
Howsver, Kellogg's paper served one very useful purposse; it appears

to have given an idea to Warmus, Warmus has produced a computation
scheme bassd upon a classification system; it is thorough, contains
interssting mathematical ideas and in any given case will either
indicate that no nomogram is possible or will give the approprizte
determinant forms. It is the paper that should be consulted by anyons
wishing to construct a nomogram of some complexity. James-lLevy was
clearly influenced by Gronwall's paper and indeed he is at pains

to point out similaritiss between his results and ;ronwall's when these
occur. Howevsr, their papers reach a common point and then go in very
different directions. The philosophy behind James-lLevy's approach

is one which would find favour with the Intuitionist School for it is

a constructive proof; at a very basic level it seems to be saying

that a nomogram exists if it can be constructed, though I accept that
this is something of an oversimplification. I must declare my oun

leaning towards the James-Levy approache.
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EHAPTER 5,

Later Dsvslapments

1. Russian Advancss,

During the 1950's ths Russian interest in nomegraphy was

strong. The work of G.E. James-Lavy on anamorphosis dates from

that period, James—-Levy was just one of ths contributers to an
issue of 'Vychislitel'naya Matematika', (Computational Mathemstics)
which was devoted entirely to nomography. The other contribut

tions
are examined here, In gensral they represent a modern approach to

the subject which reflscts changing attitudes in mathematics. For

example, consideration of approximate nomograms seems to be a reflsciion

of the contemporanecus development in Numerical Analysis.

D.G. Lapteva considers a particular aspect of the projective

transformation of alignment nomograms in which the resulting scale

of the unknown variable is rectilinear (81). The particular aspect
which interests him concerns the errors present in results ohtained
from such nomograms., The manner in which the srror in the solution
is estimated will determine the form of the scale which carries the
solution, in particular, if the error estimate is measured in terms
of relative error then, for a given size of scals, the greatest
accuracy is given by a logarithmic scale, as shown in Appendix III.
Even for a nomogram having & uniform solution scale it may be that

the problem will be batter served if the scals is logarithmic.

The particular projective transformation considersd for this
purpose is a homology. A homology is a transformation which leaves
invariant every point on a given line w and every line through a given
point P, where P is not on the line w. Lapteva writes this trans-—

formation as,

bx
X1 = i -
y +b 501'1

0.0'll'..l'..l......’.t.OD...
Yq = §L + by

ytb
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vhers x and y are the old coordinates, x, and Yy the new

coordinates, L some fixed quantity and b the transformation parzmetsr,

If x4 = x, then y = 0, showing that the fixed lineis the x axis.
If x=0andy =L, then Xy = 0 and Yq = L showing that the point
(O,L) is a fixsd point.

If y = « for some arbitrary x value a, then x; =0 and y, =L *b
showing that straight lines parallsl to the y axis are transformsd

into straight lines intarsecting at the paint (O,L + b).

He salacts a system of coordinates whichmakas the solution
scale coincide with the y axis., L is tsken to be the length of the
solution scale; the transformation 5,1.1 will therefors leave it
unchanged, The transformed nomogram can now be constructed without

calculation, Consider the transformation of one of the scalss, & .,

Alo,L)

L
My o ol
Figure 5.1.

In figure 5.1, M is an arbitrary point on the scale a and Nx its

projection on the x axis., The straight line of which me forms part
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will be transformed by S.1.1 into the straight line k passing
through M and B, where 8 is the point with coordinates (0,L + b),
The point M is then transformed into a point M' on the line k.

M' will also lie on a straight line 1 passing through M and the
point A (0,L), since lines through A are unchanged by the
transformation. It is easy to construct the whole transformed
scale of o in this way. 1If the original scale of @ is rectilinear

and parallel to the y axis, the construction is greatly simplified.

The greatest problem in this transformation is the choics
of the parameter b. An analytical method by M.V. Pentkovsky exists
but this leads to long and complicated calculations and furthermore
examines only one scals and not the nomogram as a whole (92). In
practice it is less important to know the exact valus ef b than the
range of values for which the scale more or less approximates to
the given form. The interesting suggestion here is that ancother
nomogram should be constructed for the second squation of 5,.1.1
to show the influence of change in b on the transformed scale. James-
Levy is credited with such a nomogram which is of the intersection

form (93)." Howsver, Laptava prefers a different approach using an

alignment nomogram.

The equation y, = (L +b)y 1is written as
y +b
L'__:_l'] = _'_—__:‘__Y_ + b
log V1 log ; log T+ b

an equation of the third nomographic order.

A nomogram is constructed having the scales y and b on an sllipss
with a uniform scals for Y4 along the major axis, Teo construct this,
use has been made of a skelston nomogram classified as 321 by

Pentkovsky (94). This is reproduced as figure 5,2,

To find a suitable range of values of b which will transform
the y scale into an approximate logarithmic scale, the following
procedure is used. The nomogram of figure 5.2 is itself used as a

skeleton, Selected rounded values of the variable y are marked on
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Pentkovsky's skeleton nomograme.
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the y arc, due account having been taken of the range of values
appropriate to ths particular problsm. On Y4 the logarithmic
values of the same range of values are plotted. Alignment is made
between the rounded values on y with the correspanding point on
the logerithmic scale on Yqe The result is that a range of valuss
of b is determined on the third scals. If the caonditions of ths
problem require, for example, an elongation of a certain point

of the scale, then such consideration can lesad to a best valus

from within the rangs.

In an intsresting but rather short paper I.N. Denisyuk
considers the construction of empirical formulas for data which
are believed to approximate to a straight 1line on a logarithmic
or half-logarithmic basa (95). He is abls to givs formulae which

enable a relationship of the form y =a + b
x +c

to be obtained without any great difficulty. His method is basad
upon the fact that within certain limits, and with a certain choice
of three points on the x scale;, the transformation,
L
X = 1+ x
172
will lead to a scale little different from the logarithmic ons.
In fact it is ths scals deviating least in Chebyshev's sense., In

place of a logarithmic base he considers a base constructed from

two projective transformations

-1 ’ R

1 + X 1 + y

along the axes, Here (x1,y1) and (xz,yz) ars the coordinates of two
points on the supposed line, chosen so that they are at distances
from the ends of the sectien under consideraztion of approximately
ons fifth the width of the transformed section. Throughout it is
assumed that Xq < X e
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Denisyuk's results may be summarised as follous,

If X = ax, and y

as follows,

1 =B Y09 then two constants a and b are found

. YeB -1 b= -a)(1-8)
B - 2
Vo- VB 2 (V8 - VB)

Using these, the empirical formula is obtained from

a - b
y =y, /8B x +a

xz/a

He gives an example to illustrate. If Xq = 0.5, X, = 2, y, = 0.8

Y, =5, then a =0.25, B8 =0.16, a =-8, b =63
leading to, y =/126 =~ 16
8 - x

In the case in which the y axis is uniform and only the
x axis is to approximate to a logarithmic scale, the empirical

formula is given by,

_,ZZ_, 1- g/o + {1 +/g B -1)

1 -Ya 1+ x

X2 ;(!

yﬁ

The material in this paper is clearly based upon profound work only
hinted at in the paper. The author adds the comment that some of
the material had besn prasented at the seminar on nomography at
Moscow State Upiversity in April 1956 and that further material had
been presented at a seminar at the Computer Centre of A.N., USSR

on 23 May 1957,

V.A, Cherpasov and G.E. James-Lsevy present a method for
the calculation of approximate alignment nomograms using a computer (96).
The method is essentially one of finding an optimal group of parameters
by successive approximations. A logical diagram for the process is
given and slthough the form is unfamiliar it can be rewritten as a

Western-type flow chart with little difficulty,
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I.N. Deni i i
. syuk, in a second paper, describss a nomogram

for the construction of some polynomials (97). In particular he
is concerned with calculating generalisad Laguerre polynomials

tn(t, A ) which he approaches through the soluticn of a boundary

valus difference equation. From his references we can infer that

Denisyuk's work on Laguerrs polynomials dates from the early 1950's,
It is of some interest to note that during 1950 one of the last users
of the Manchester University Mark I computer befors it was dismantlsd
was Dr, D.0. Prinz of fFerranti Ltd. who computed Lagusrre functions
in connection with the control of guided weapons (98), UWhather

or not the Russian calculations aross from guided weapon technology
the different approaches to caleculation give rise to speculation
about Russian computer devslopment at this time and perhaps indicate

why Russian interest in nomography was so great.

The use of a transparency as part of a nomogram has a2 long
history. Lallemand's hexagonal nomogram incorporated ons (see
Chapter 2, section 5), and the concept was further developed by
Margoulis in the early 1920's (81 and 82). The method receives a
full treatment in a long and detailed papsr by G.S. Khovanskii (83).
A brief outline of his ideas follows. The relationship
fg= F(f12 * P 9 40° gd), whers fij = P(a j_,o.j), in the four
variables 04, 02,0 3 andXg can be represented by a nomagram with
an orientated transparency. The result has the advantags that

the families of curves in Q, and Q. which would normally form

a binomial field, can be separated.
Two auxiliary variables ars introduced,
m="f,* L and N=g4, %0y
giving the relationship f; = F(M,N).
Thess ars written,

? _0-1’12—0-!‘1—1’4

12

— 3 - =N_
9920 =942~ ° %4
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This strange form is used because it is intsnded that in the left
hand parts o, is an auxiliary variable while in the centrs parts
it is oy which is the auxiliary variable. The zsros indicate
positions which in this example are not filled but which may bs

filled in other casss.

The following tables show the elements of the nomogram
whan scale factors ux, gy, &x and dy have besn introduced,

(ao, a' , & etc. are constants suitably chosen).

Coordinates| o 4 lines ( oy aux.) a, lines ( o4 aux, )| MN field

X ay* ux(fqp+8xgq2) agtat ux(£15+6xg12) | agtct ux(M+xn)
y b+ uy(Syf, *a,,) | b tb+ uy(Syf, +g, ) | b +d+ uy(SyM+n)
BASE
Coordinates| Fixed point A1 Fixed point A2 4 Scale
X a'y a' +a a' tc+ ux(f4+6x94)
Y by b', +b bt *d+ uy(ﬁyf4+gd)
TRANSPARENCY

The base will contain three sets of curves, The construction of the
sets for o, and @, is obvious. The CK3 set is obﬁainad by plotting
on the MN field according to the relationship f; = F(M,N). Also on
the base it is necessary to have a sat of parallel straight lines

to facilitate the orientation of the transparency. The transparsncy
will have two fixed points, A, and R,, a scale for o, and an
orientating straight line. The form of the base and transparency are

illustrated in figure 5,3,
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B [T —_—

Transparsncy

Figure 5,3.

The uss of the nomogram is as follows, With thse correct

orientation, which is crucial, A1 is made to coincide with the

value of Oy and AZ with that of Qye Then the unknown value,

@3, is that valuse which corresponds to the given value of Gy
Khovanskii writes this as,

say

A1 |-la 19 Az =1 Gos 01-4 - Q=9
a notation very similar to that used by d'Gcagns in his 'Traite’.
The construction of such a nomogram is more difficult than it may

eeem from this brief description for considerabls care is required

over the choice of the scale factors if reasonable accuracy is to be
obtained,

Khovanskii treats in a similar manner the forms,

fa * F(2g59q95) +Fyp = 05 Ty 7842934 * Py =0

1
AR ¢ = f2*f3s ,
f2 9, 1 = 0, 1 P . .
g, * 934
P3s 934 2

Pafofas + (Fq *+ f2)aza * h3a = O f4f34 + F2034 * h3g = 0.
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A similar treatment is given for the gensral case

12 912 !
fza 934 1 = U ...l""".‘.t‘.‘..5‘102
fse 956 1

which is obtained by eliminating Y, B8, § from
Flg= B = Fap= ¥ = fgg= 8
and log g4, — 1log8 = 1log g, - logy = log 9gg — logd.,

The transparency carries the curve y = log X and the bass has
three binomial fields each of which is obtained by taking for the
X coordinate the appropriate elsmsnt of the first column and for
the y coordinate the logarithm of the corresponding elemsnt of the

second column,

A special casa of 5.1.2 is the equation

f, fs 1
£, Pe 1 = 0,
Fa fe 1

The nomogram is particularly simple as the binomial fields consist of
orthogonal straight lines. The families of parallel straight lines

O 45 Og and o are also used as orientating guids lines, (figure 5.4).

oy

o

Transparency
Base

Figure 5.4.

A wide range of other variants of 5.1.2 are alsc examined,
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A particularly interesting aspect of Khovanskii's work

concerns nomographic methoeds for the 2pproximate rapressentation

of a function of one variable. In this work the transparency is

allowed three degrees of freedom. These methods follow from a

consideration of one or other of the relationships,

¢ (v, f(u)oos o - g(u)sina + A, flu)sinag + g(u) cosa + 8) =0

.l.'OQD.i......o'!-'l‘05l1‘3

F(f(u,v)cosa + g(u,v)sina + Ay ~F(u,v)sina + g(u,v)cosd + B) = 0
‘....‘...‘..-Q“...‘...5.1.4

In the case of 5.1.3 the bass has the coordinate system xOy and
carries the family of v curves constructsd according to ¢ (v,x,y) = O.
The transparency with coordinate system x'0'y' carries the u scals

given by x' = f(u), y' = g(u).

A and B are the coordinates of the origin 0' with respect to xOy.
o is the angle betwsen Ox and O'x', This case is illustrated in
figure 5.5,

y
N

A : >4

O

Figure 5.5,

In the case of S5.1.4 the base carries the binomial system (U,V)

constructed from x = f(u,v), y = g(u,v).
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The transparency carries the unscaled curve | constructed from

F(x',y') = 0. 1In this case the toordinates of Q' in ths Xy system

are A', B8' and a is again the angle between Ox and 0'x', This

case is illustrated in fiqure 5.6. Ths relationship between A and B

and A' and B! is,

A = -A'cos0 - B'sipna s

B = A'sino - B'cosa ,

J
AN
v
X/
u
o"’[
1
L]
: © 1B
]
< A’ 2> ;\f Sy
O

Figure 5,6,

These two basic nomograms are used to tackle certain
problems. Firstly interpolation. In the case of 5.1.3, (figure 5.5),
the transparency is arranged so that the points representing the
values u4, u, and uy which lie on it are in contact with the
corresponding points V4s V, and v5 on the base, Then intsrmediate
corresponding values of u and v may be read. In the case of 5.1.4,
(figure 5,6), the method is similar except that the values of u and v
both 1is on the base, the unscaled curve L serving to join corresponding

values,

The second problem which may be solved assumes that sets

of corresponding values of u and v have been found experimentally
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and it is required to find the paramsters A, B ang a of 5,1.3
or 5.1.4. The technique is similar to that usad for interpolation
In 5.1.3, (figurs 5.5), the transparency is positionad by eye so

tht Uy, Upyeeees Uy COTTESPONG TESpACEIVLY 0 vy, vy, aevee v .

The position of the transparency then determines the parameters,
For 5,1.4, (figure 5.6), ths correspondence is between (u1,u1) and
L, (uy,v,) and L and so on up to (usv,) and L, giving A',8' and o .

A and B can then be found from the relationships given earlier.

The third problem concerns the study of the errors involved
when it is necessary to approximate the function ¢ (u) by a three

parameter family P(u,A,B,a ). This is dons in terms of 5.1.4.

For the absoluts error we havse A = ¢ (u) - P(u,n,8, )
and for the relative error § = ¢ (u) - P(u,A,B,0)
¢ (u)

and it is clearly desirable that the maximum values of' A [ or l $ l

should be a minimum.
Taking the case of absoluts arror as an examplse,

A = ¢{u) - P(uyA,B,0 ) can be written as
P(o(u) = A, uyAB,0) = 0

Replacing in 5.1.4 the variabls v by ¢(u) = A , a form which can

be nomographed is obtained, namely -

F(P(uy 6(u) = A)cos o + g(u, ¢ (u) ~ A )sina + A, —P(u,0 (u) = A)
sin o + g(u, $ (u) =B )ecos & + 8) = 0.

The binomial field on the base is givsen by,

x = f(u, ¢(u) -4)
y = a(u, ¢(u) -4)

The unscaled line L on the transparency is again given by F(x'y') = 0.

The form of the nomogram is illustrated in figure 5.7.
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Figure 5.7,

Any position of the transparency on the base will show graphically
the relationship between A and u. Displacing the transparsncy
esnables a graphical representation to bs obtained showing the

influence of A'y B' and o on A .

The argument in the case of relative arror is similar,

' The final problem concsrns the approximation of a given
function by a four parameter function, i.s. to find values of

A,B,C and O such that within given limits of u, the equation

¢ (u) = P(uyA,B,C)

becomes an identity in u.
Writing ths above equation in the form,
P(u, ¢(u),A,8,C0) =0,

and replacing, in S.1.4, f(u,v) by f(u, ¢(u),C) and g(u,v) by
g(u, ¢ (u),C), we obtain,

F(f(u, ¢ (u),C)cosa + g(u, ¢(u),C)sina *+ A, - £(u, ¢ (u),C)sinc
+ g(u, ¢ (u),C)cosa + B) = 0,

The base of the nomogram contains the field (u,C) given by

x = £(u, ¢ (u),C), y = a(u, ¢ (u),C)
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and the transparency will contain the usual upscalsd lins L,

as shown in fiqure 5.8,

N
7

Base Transparency
Figure 5.8:
If the sought for identity exists within certain limits then,
within those limits, it will be possible to arrange the trénsparency
sa that part of L coincides with the appropriate part of a lins C.
More likely, an approximate coincidence will bs the best that can
be obtained; when this is obtained C is knoun aﬁd A, 8 and O can

be determined.
This problem can also bs solved using 5,1.3
Khovanskii develops spécial casss in soms detail using the principles

already develaped.

Still on the subject of approximate nomograms, Khovanskii
considers the problem of constructing an approximate alignment

nomogram for the two equations,

f1f3 + f293 + h3 = 0 II.-QCQ':CIlo.&.'v.r.o'.lisc']ls

= ..’Dl'..'...l.!’.‘.Q.l'...5.1.6
F1f4 + F294 + h4 0

in which the scaies of a1 and Oy are to be combined.

If the relationship bstween f, and F1 and that betuween f2 and~F2

is linear so that,
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l.:acauAc.uccoco'u..nsn00511.7

F.] = A,] + 51F1
and Fz = Az + 82f2 lO..'l.".."‘ll...’l’Ol.SC1.B
then an accurate nomogram can be constructed, 1In this cass 5,1.6
becomes,

FiBafy + T804 + (Ryfy + Rygy +hy) = O
and a nomogram with combined scales in Qg and o, can be constructed

for this squation combined with 5.1.5.

The guestion arises of how to construct the nomogram with combined

scalss if 5.1.7 and 5.1.8 are only approximate,

When scale factors are introduced, ths alignment determinants

for 5.1.5 and 5.1.6 may be written,

~H m'(fq - a') 1
H n'(f2 - b') 1 = 0
H(gzm' - f.n' —m'n'(h3;+ a'f37+ b{g3l 1
gsm' + f3n' gsm' + fsn‘
and,
-H m"(F1 - a") 1
H n"(F, - b") 1l = 0
H(g,m™ — f .n" —m"n"(h4V+ amf, *+ b"g4) 1
"g4m" * fun” ggm' + fan!

Khovanskii replaces them by,

-H m'(f —a') +m"(F, - a") 1
T 2 | g
H n'sz - b') + n"(FZ - b") 1 = 0 5.1.9
H(gm' - fan') -m'n'(h, + a'f, + b'gs) 1
g3m' + f3n' g3m' + f3”'
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and,

~H m'(f, - a') +m"(F‘1 - am) 1
2
H n'(fo=b') + n'(F, - b") 1= 0 5.1.10
2
H§9 m" - f nn) -m"n“(hA + anfs-/L + b"QAl 1
-gam" + fdn" g4m" + f’4n"

which give approximates scales for ay and o 20

Consider ths o , scale. Thsre will be no error in the x dirsction
since thse scale is on a vertical straight line. To esxamine ths
error in the y direction let y,' = m'(f‘1 - a'), y" = m"(F1 - a")
andy =nm'(fy ~—a') + m"(F, - a")

2

then, Ay,' =y,' -y, =mi(f, ~a') - m(F, - a")

2
and A Y1" = Y1" - y1 = m"gF1 - an) - m'(f4r._" a'l
2
Hence  |ayq'| = | an"f  end Ayq' = =B yq"
If &, = Dy," then 264" = F, = Asfy = B
mll
whers A, = m' and B, = a" - m' a'
mﬂ mll

Since A1 and B, are arbitrary they can be chosen so that the maximum
value of |61" | is a minimum within given limits of G,.

* *
The appropriate values of A1 and B, , denoted by A1 and B,, may be

found nomographically.

A similar argument applied to the a, scale gives,

28, = F, = Ayfy = By

= bn - n'b'
where 52" = szf_'_ » A, =n', and ) ‘“‘;
n" n" n



If m', 2', n' and b' ars eliminated from 5,1.g and 5.1.10, by

using the expression

take the form,
=H
H

£K554ﬂ“:_£3421

Agam * Pa4n

where ¢ 4 =.ﬁiﬁ1 + 8

2

and f34, Qx4 and h34 have different values for the scalescx3 and X

as shown bslouw.

s for A,, 81, , and 82, the dsterminants

m( ¢4 - a) 1

n{ ¢, = b) 1= 0 5.1.11

_mn! 34—-2T + Bf‘ 34 + b9342' 1

934™ * F3q
* + F 2—~—~
M G, = Agf, + B) 2
2

4

Scale f34 834 h 24
s Ay Arih, - AlB
X3 273 193 Aoy = ABifs - AgBas
K 4 Fa 9 hy
*  *  * *
It is the parameters A1, 81, A2 and 82 which determine the quality of

the approximatian,

separate operation,

As has been indicated thess are found by a

When they have been found the nomogram may be

constructed in the normal way.

In equation 5.1.11, if m = n = H = 1,

1 b,
934 = T34 ~hay
934 * T34 934 * F34
or, $1f34 * 2934 * N3y

0

a=bb=0, then

I ZEEREE X RN

s@ 00000 0"5.1.12

Therefore the construction of a combined scale nomogram for 5.1.5

and 5.1.6 is based on the approximate substitution for these equations

of equation 5.1.12, appropfiatsly interpreted.

225,


http:equation.5.1.12

Finally, some magnitude for the srrors is required, Khovanskii

suggests that,

*
Ay, < 8Y¥error
*
and, A Y, < AYgrror
s . *
where Ay = 0.2nm and * is used as befors, i.e. A y; is

the maximum valus of lA Y4 l.

This gives m < AYerror
—=00L
64
and n < Zsyarror
*

The final section of Khovanskii's paper considers the use

of nomograms for the invsstigation of functional relations.

Such nomograms require different attributes from thoss
constructed for calculation. For example, the limits of the variables
must be complete in order to cover all possible casss, while preference
must be given to the type of nomogram which shous most completely
the interesting characteristics of the relationships being invesfigated.
Alignment nomograms lose their prime position in the latter respect.
Intersection nomograms and those with an oriented transparency ars

often more convenient,

Some types of investigations which can be carried out with

nomograms arae,

(1) To examine the influence of one parameter on thes others.
(i) To give a geometric illustration of some important, already
well known, property of a formula.

(iii) To find hithsrto unknown properties of a given relationship.

Khovanskii gives a lengthy illustration of this aspect of nomograms
drawn from the flow of fluid in channels of different cross-sections.

Hydraulic calculations are a particular interest of Khovanskii. An
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R
Bxtract wily illustrats the type of enlightenment that tan ba shed

For the cass of a round channel the transp

] arency has ths form
shown in figure 5.9,

- —

Figure 5.,9.

where n is a dimensionless parameter
V is the average velocity

and i is the gradient,

Although the base of the nomogram contains many lines
representing the different variables of the problem, it will suffice
to consider only the tuwo variables d and I, The diamster d is
represented by parallel straight lines which are alsc parallel to
the transparency scales of V and i. I is repraesented by a straight
line perpendicular ta V, the purpose of which is to indicate the
value of V. Some of the lines d will intersect the N curve in two
places, in particular one of the lines intersects it at 1 and 0.5,
The interpretation of this is that the velocity in a pipe of a
given diameter is the same at full loading as at half loading, a

result which may not be so readily seen by any other analysis,
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A most interesting article by T, Steyskalova takes some

results from W, Blaschka's book on the theory of nats (99)*, and
- b ",

demonstrates their application to nomography (100). The application
is slegant but to appreciate this elegance it is necessary to

understand somathing of Blaschke's theory,

We suppose in a region G of the Xy plane three families
of curves gy, 0, and o3 given by u,(x,y) = constant, i =1,2 or 3,
where ug is analytic in G. The system has tha following propserties,
- 2 2 .
(1) 3u\" +/ 3y, # 0 at esvery point of G,
3 x dy
(ii) through every point of G passes ons, and only one, curve
of sach family,
(1i1) the Jacobian 3 (u,u) #0 for j,k = 1,2,3 with j # k,

3 (x,y)
(iv) any two curves of different families havs not mors than one
common point,
(v) within G every curve is continuous.

Such a system is known as a triple system.

The simplest triple system is the regular net which is a
system consisting of threa familiss of parallel straight lines with
the lines of different families mseting at 600. Obviously such a
net forms regular hexagons whose sides and diagonals are straight
lines of thse regular net. Steyskalova calls hexagons of this type
diagrams B, after Brianchon. Diagrams B are not necessarily regular
hexagons. In fact, diagrams B are those figures which are constructed

in the following way.

* The German word GEWEBE has as its English counterpart the
1t
word webbing. The Russians use the word CETEY which is

translated as nets. I use the word net and hope that no

confusion will ariss.
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Given a triple system in a reqion G, Take a point P
inside G and draw a line through it for each femily, denoting
them by 1p, 2p and 3p, where 1, 2 and 3 refer to the family to
which the linme belongs. On line 1p select the point A and draw

the line 2a to intersect 3p at B. Then draw line 1b to intersect

2p at C. In a similar way obtain the points D(3c&1p), E(2d&3p),
F(1e&2p) and H(3f&1p), (figure 5.10).

Figqure 5,10: Brianchon Diagram.

The point H may coincide with A, thus closing the diagram, but this
is not necessary. Triple systems in which all diagrams B are closed

arse called hexagonic.

A curvilinear triangle ABC having sides which are curves
of the first, second and third families is called a coordinate
triangle. Points P, Q, R and S are chosen on the side AB, which
‘belongs to the first family. Through P and R lines of the second
family ars drawn and through Q and S lines of the third family are
drawn, giving points of intersection V and W, If V and W lie on
the same line of family 1, i.e. 1v = 1w, then the ares PQ and RS
are said to be equal. The property of equality is symmetric and
transitive, (figure 5.11).
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Figure 5.11: Coordinate Triangls.

If the curve 1v lies between the curves 1w and AB then PQ is said
to be smaller than RS.

In the cass of the regular net the coordinate triangle is
an equilateral triangle and the definition of equality coincides
with the ordinary concept of equality. Taking this coordinate
triangle and dividing its sides into integer n parts and then
drawing lines of all families tﬁrough the points of division, a
diagram of the type shown in figurs 5,12 is obtained. Steyskalova
calls this diagram Dn as he also does all topological forms of it,

A/

JAVAVA
(NINAN/N
%VAVAVAVA
ARG
\\/ \VAVAV/

Figurs 5,12: Diagram D_ with n = 8,
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He gives two lemmas,

(i) that diagrams O can be constructed from any hexagenic net,
(ii) that in hexagonic nets the definition of equality of

curvilinear segments possesses the propsrty of addition,

He then proves a basic theorsm for hexagonic nets, It is that,

'a given triple system can be monologically mapped into
a regular net when, and only when, all diagrams B are closed i.s.

when they ars hexagonic!',

In addition to diagram:. B, tws other diagrams are
considered, Thomson's, called diagram T, and Rademayster's, called
diagram R. The thres diagrams are illustrated in figure 5,13,

Straight lines are used for simpliecity.

m
(o

. . £ c
B e o AV
5 F
vap/

A [¢ f [¢]

Diagram B Diagram T Diagram R

Figure 5.13.

a

A second theorem is proved for diagrams T and R. It is,

‘for a triple system to be a hexagonic net it is necessary

and sufficient for every diagram T (or R) to be clesed'.

Features of the proof which are worth repeating here are that,

(1) diagram B is a particular case of diagram T in which
P, R and S coincide, and
(ii) diagram B is a particular case of diagram R in which POR

and S coincide.
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It is seen that all triple systems in which all diagrams T

(or R or B) are closed can be mapped topologically onto a regular

net. This is of significance to nomography. An intersection

nomogram having curves which intersect in very acuts angles can lead

to substantial errors in the results. Thsn it is desirable to
increass the size of these small angles. An angle of 60° is ideal

and fortunately this is the size of the angle contained in a regular
net. It is therefore necessary to be able to recognize those equations
which can be represented be a regular net. Such equatians are
equations of the third nomographic order, This leads to the third

theorem of the paper,

'for an equation F(x,y,z) = O to bs of the third nomographic
order it is necessary and sufficient that the following six equalities

are such that each is a consequence of the othsr five,

Flxgsyqs29) =0, Flxgy225) =0, Flxpy525) = 0}......5.1.13
F(x2:Y1,Z3) = 0, F(xz,yc,zz) =0, F(x1,y0,z1) =0

To see what this theorem is stating, assume an intersection nomogram

to be constructed for F(x,y,z) = 0, Take three of the z lines z4,

z, and 2, then each of the equations 5.1.13 of the form F(xi,yj,zk) =0
indicates that the lines x = x;,y = Yj and z = 7, intersect in one
point, or, that Thomson's diagram is closed, as illustrated in

figure 5.14.

1f all of the Thomson diagrams are closed, we know that the

nomogram forms a hexagonic net and can therefors be transformed

into a regular nst.
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A —m— = o F 3 E
2 2 i
__________ P 5 3 D
; q" \\\\
. 8 P&
‘ |
LN 3
% l B I CINZ4
| |
{ |
| [ ‘ z
| | l '
I | | ‘
o ;b %n ;i >X

Figure 5.14: Thomson's diagram on an intersection nomogram for an

aequation of the third nomoqraphic order,

It is of value to examine the proof of this theorem.
For sufficiency it is assumed-that F(x,¥,2) = 0 leads to a nomogram
on a hexagonic net and it is then necessary to show that F(x,y,z) =0
is of the third nomoéraphic order. In proving the basic theorsm
of hexagonic nets the result had been obtained that for each line
of the third family the relation X + Y = constant held, where X and
Y were the values of the 1linss of the other two families intersscting
on the line of the third family at a particular point., Letting that
constant be Z for the corresponding line of the third family, the

relation bescomes X + Y = Z which is of the third nomographic erder,

It is the necessary part of the proof which is so
illuminating for nomography. Suppose that an equation of the third
order is given. It is then necessary to shou that each of the

equalities 5,1.,13 is a consequence.of the other five,
Clark has shown that a third order equation can alsc be
represented by a nomogram having a conic section and straight

line (Chapter 3, ssction 4), The conical alignment nomogram is the
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dual of the.third order intsrssction nomogram,
illustrated in figure 5,15,

both of which ars

Z3
1t Z2
z, |
!
> —3x
Thomsoq's diagram on third Conical alignment nomogram
order intersection nomogram, corresponding to Thomson's

diagram,
Fiqure 5,15,

On the interssction nomogram F(xi,yj,zk) = 0 indicates that ths
lines x = Xi5 ¥ = yj and z = 2, pass through one point. On the
glignment nomogram thse ‘three points Xis Yj’ z, lie on a straight
line. Assuming that the first five equalities of 5.1.,13 hold, it
is necessary to prove the gixth. Suppose that the points x ,x,,x%,,
YosY19Y9Z95Z s and z4 satisfy the first five. It is necessary to
show that on the alignment chart the line Jjoining X45Yg also passes
through z,, i.8. that F(x1,yo,z1) = 0, But this is so by virtue

of Pascal's theorem of projective geomstry, the points z,,z, and z4

lying on Pascal's line. This completes the proof.

Since Thomson's diagram corresponds to Pascal's configuration

it is natural to enquire whether Brianchon's and Rademayster's do

also.

Diagram B corresponds to the particular case when Xq3Yq

and z, are on a straight line as shown in figure 5,16,
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Y

o}

W o — o —
0
-)(.__.__.
x..__.

N

N

e

Diagram 8. Alignment nomogram
corresponding to
diagram B.

Figure 5.16.

Steyskalova attributes to G.E. James-Levy the following

result for diagram R.

0n some curve K of the second degres cut by the straight line p
draw the guadrilateral Xgs Y2 Xy Yo 88 in figure 5.,17. Let the
line p intersect the sides of the quadrilateral at z,, Z,, Z3 and

z Then every quadrilateral C with sides passing through the

4 *
points 24, 25, 23, Z4 of p and vertices on K will close if just one

such quadrilateral Co will close.

The proof follous immediately from the closurs of diagram R since
each quadrilateral.C«x1,y1),(x1,y2),(x2,y2),(x2,y1)):and Cc((x1"y1')’
(x1',y2'),(xz',yz'),(xz',y1'» corresponds to the hexagonic net of

diagram R.
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23
X -~
Y- ,
| |
|
| |
l l
t
X 5 - - :
! |
! 1
N e |
1 NI {
! : ! ; .
9] Xy X/ X2 X2 X
Diagram R,

Alignment nomogram
corresponding to
diagram R.

Figure 5,17,
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2. Theoretical Considerations.,

Wilhelm Blaschke, whose thsory of nets had proved to be
of such interest to Steyskalova, published a very shaort paper on
nomography in 1956 (101). Blaschke addressed himself to some
fundamental problems and vieuwed them in the light of his theory
of nets. Given three families of curves uj(x,y) = constant,

J = 1,2,3, he considers their nomogram given by the relation
T(uq,up,uz) = 0. His first problem is to find the best nomogram,

by which he msans the net best suited for its reprssentation. The
sought for solution is, of course, a nst consisting of straight
lines. The second problem concerns uniqueness and asks the question
whether two rectilinear nsts representing the same equation are
necessarily equivalent, His final guestion is to ask uwhether a
nomogram is the optimum nomogram in the senss that some measurs of

the 'value' of the nomogram is optimal,

Blaschkse does not sclve thsse problems in the strictest
sensse but illuminates them. On the question of producing a
rectilinear net he uses the differential calculus to investigate
invariants, obtained from the curvature, of topologically squivalent
diagrams and reaches the conclusion that only at the ninth derivative
of T are we able to expect the conditions for the rectification of a
net, a rather sobering thought. For optimality, he looks to the
Calculus of Variations. His solutieon is to minimizse the integral,

2 2 2
J=ﬁx1 + Ky, +Kg') dR

in which dA is the element of the surface at a point (x,y) and K.,

K,y K are the curvatures of the curves of the net at the point (x,y).
There is no doubt that Blaschke's paper is important for the

theory of nomography. From the standpoint of this thesis it is

important in that once again the difficulty of the problem of anamor-

phosis is brought out.
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Evidence that some of the theoretical problems raisad
by nomoqraphy are still very much alive is contained in a paper
which appeared as recently as 1976 (102). In this paper R.C. Buck
discusses approximate complexity and functional representation,
The section of particular intsrest to nomography addresses itself
to the question of whether a given function F(x,y) can be expressed
in terms of three functions, each of ons variable, i.a, can ue

write,

Fx,y) = F {¢(x) + y(y) } 7 cesnsoacasasiassss5a2,1

If 5.2.1 is a valid expression then it follows that z = F(x,y) ean
be expressed as z' = f {¢(x) + P (y)} with obvicus nomographic

advantages,

Buck's treatment is rigorous and proceeds through analysis,
Some of his results ars exactly those given by the Russian, T.Steyskalova,
seventeen years earlier (100). Steyskalova's results were obtained
from Blaschke's theory of nets but Buck makes no mention of either
Steyskalova or Blaschke and it ssems probable that he was unawars

of thseir work.

What follows is a brief outline of Buck's results from a
nomographic viewpoint, It does not purport to do justice to the
analytical rigour of his paper sincs to do that would be a diversion
from the main theme of this thesis, but we can note that Buck's °
treatment once again highlights the difficult théoretical problems

associated with nomography.

The first result is obvious enough. Buck shows that if
F(x,y) has the form 5.2.1 then it must satisfy the differential

equation,

2 2
— -' = -.....Q'.5.2'2
(FxFy)(Fxeyy Fnyxy) + Exy(ry Fox Fy Fyy) 0

Much of Buck's analysis is concerned with two classes of

functions FD and Fw’ Both classes are of functions with the format
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iven b o
g y 5.2.1 but FO are thoss repressntable with continuous

£ . . .
s ® 5,0 while Fu refers to those in which ¢ and  are continuous

but f is unrestricted. He expresses the problem in the form of a

mapping diagram which is worth repeating for its simplicity. He asks

whaether there are functians h and f such that figure 5.18 commutes.

2 h N
RDS /R

Fiqure 5.18.

h belongs to the class of continuous functions of the form

h(x,y) = ¢ (x) + ¥ (y) and T is unrestricted.

Buck sets himself the task of looking for properties that
distinguish members of Fw from other functions. The mapping of
figurs 5.18 indicates that such properties must arise from the
form of h. If functions h(x,y) = ¢ (x) + ¢ (y) are defined on a
rectangle S and P1,P2,P3,P4 are successive vertices of a rectangle

in S, with edges vertical and horizontal, then he observes that,
h(p1) - h(pz) + h(p3) - h(p4) = D .l&.'.’l.0¢0¢000005c2.3

and also that the converse holds. The property can be extended
toc any chain of 2n points Pi which are vsrtices of a closed polygeon
in S with edges that are successively vertical and horizontal. The

case Por n = 4 is jllustrated in figure 5.19,
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FigUrB 5019-

The functions h defined on S form a proper closed

subspace Y, Buck gives the following theorem,

'If F e FM(S) then thin connected sublevel sets for

F in S must bs Y sets?,

This leads to an interesting result. Suppese that
h(x,y) = ¢(x) + ¢ (y) is constant on a vertical segment o in S,
Then ¢ (y) must be constant on the vertical segment and h will
then be constant on every segment paraliel to o. The above theorem
then suggests that if F is constant on a vertical segmant, then it
must be constant on every parallel segment. Now consider F(x,y) =
(x - C)2£|y whers c is constant. It is sasy to show that it satisfies
the condition 5.2.2., However, consider the value of F(x,y) at the
four points (0,0), (c;0), (c,1), (0,1) and at any point on the side
X = ¢ of the rectangle formed by these points. It is obvious that
F(x,y) = 0 on the side x = c but, on the side x = 0, F(x,y) varies
from 2 at y =0 to c2e at y = 1. Thus, F cannot belong to the
class'Fu(S) on any open rsctangle S that contains the line x = C.
This counter—example shows that, although it is necessary that
5.2.1 should satisfy the differential squation 5.2.2, the condition

is not sufficient.
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These, and other considerations, lead Buck to sesk a

local property for the Y sets. He produces what he calls 'the six

. — ..
point construction', This is based on an extension to six points

of the idea given by 5.2.3, i.e.

h(P,) = n(Py) + h(P3) - h(p,) + h(Pg) - h(pg) = o
located as in figure 5,20,

g R

Figure 5,20,

Now, if h(P1) = h(P4) and h(Ps) = h(PG) then it must be true that
h(Pz) = h(Ps). 1t therefore follows that, given two points, one on
sach of two lsvel lines, a gsometric construction will produce a pair

of points lying on a third laevel line.

Supposs ihét P1 and P, arse given points on two level lines,
(figure 5.21). If vertical and horizontal lines are drawn through
these points, as shown by the dotted lines, two further points
on the given level linses will be obtained (P4 and Pa) and two

points on a third level line, P, and PS.

2
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Figure 5,21,

This is the first of Buck's results which had previously
been obtained by Steyskalova. The diagram is nothing mors than
Thomson's diagram on an intsrsection nomogram for an equation of

the third nomographic order, (figure 5.14),

Buck does take the matter further, howsver, He proves
a thecrem which states that if h(x,y) = ¢ (x) + ¥ (y) on the
rectangle S, where ¢ and 1 are continuous and strictly increasing,

then the six point construction applies locally sveryuhsre in S.

A further theorem states that if FEF (S), uhere S = IxJ,
and F is separately univalent on S, (i.s. separately one to one
mappings), then for any a and ¢ in I and b and d in J, with |a—c]
and |b-d| sufficiently small, there must exist x and y near a and b

respectively, such that,

F(a,b) = F(C:Y)
F(C,d) = F(x’b) .."..'.'...'..............‘5.2‘4

F(a,d) = F(x,y)

This result is a statement of the same property expressad
by the third theorem of Steyskalova's paper (100). Although in a
different form, I bold that equations 5.2.4 are equivalent to
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equations 5.1.13 and I outline my reason for this in Appendix IV

Housever, once again Buck takes the matter furthep and illustrates

how the results may be applied.

He considers the function f(x,y) = x2 + Xy + y2 and shaus

that it is not locally nomagraphic anywhers in the first guadrant,

The method is to take a > 0, b >0 and ¢ and d such that

a <c, b < d. Equations 5.2.4 yield,
cz+cy+y2=az+ab+b2

x2+bx+b2=c2+cd+d2

x2+xy+yz==az+ad+r:12

PT0000000sOOGORCRGES R OR .502-5

and it is required to show that there exist infinitely many ¢ and d
such that the syste'm 5.2,5 is inconsistent., Clearly in the general

case this can be very tedious,
He is led to the following conjecturse,

'A polynomial F(x,y) will not belong to the class F
on any open set unlsss it satisfies the differential equation
5.2.2 and can be written as f( ¢ (x) + Y(y)) with f,¢ and ¥

polynomialst®,

Buck investigates whether a specific function G can be
approximated uniformly on compact sets by nomographic functions
of the set Fw. He arrives at a criterion for approximate represent-
ation which is expressed in his theorem 15. The theorem is given

in full.

'Let G be continuous on S = IxJ, where I = [a,b] and
J = [c,d]. Suppose also that G, > 0 andG >0 onS, O >0,
tet (u,v) be any point on S such that |2u - (a + b)| < 2/3 and
|2v - (c + d)| < 2L/3 where L is the length of the shorter sideof S.
If G 1ies in the uniform closurs of F (S) then for any sufficiently
small €(e < L 0/12 will do), one of the follouwing statements
must hold: |
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(i) there exist x and y in 3 such that
| 6(a,%) - Gu,e)| < e
| 6(a,y) = 6(b,e)| <
[G6(byx) = G(u,y)| <

m

m

(ii) thers exist x and y in I such that
|6(x,c) - G(a,v)| < €
|G(y,c) = 6(a,d)| <
‘G(x’d) - G(Y’V)l“ < E

m

Buck demonstrates ths éf‘f‘ectivaness of this theorsem by

reference to the function G(x,y) = x2 + xy + yz as follous,

Ita=1,b=2
J:c=0, d=1

figurs 5,22,

S is the unit square of figure 5.22 and (u,v) is the point (1.5,0.5).
The second statement of the theorem then says that the following
system should have a solution for all sufficiently small € :
x? - 1.75] < ¢
ly? - 3 < € 5.2.6
](x2 +x +1) = (y2 +0.5y +0.25)] < ¢

A suitable value for O in S is 0.5, L = 1 and, using the
suggestion in the theorem, € < 0.5/12, so ws can take € = 0.04,

Two convenient values in I would be X =y 41,75 and ¥ = /3,
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The first two eguations of 5.2.6 are satisfied, The
left hand side of the third equation becomes l4.073 - 4.116] = ,043
and therefore this equation does not hold. The equations 5,2.6
cannot have a simultanecus solution for small € and therefore
X+ xy + y2 cannot be approximated uniformly on S by functions in
the class Fm' By the uss of small rectangles this result can be

extsnded te cover the whole of the first quadrant.

Buck has performed an important service to theorstical
nomography. Taken in conjunction with the parallel ideas of
Steyskalova, Buck's paper suggests a way forward for further

theoretical development.
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3. Some Recent Nomograms.

With the availability of electronic computing aids
it may be thought that nomograms are no longer used., This,
however, is not the case. The following three examples will shouw
that there is still s place for nomograms. In addition, I have
learned that quite recently nomograms have been used in the patroleum

industry, to compute viscosity, and also by the meteorological office.

My first example comes from the Dirsctorate of Oversezs
Surveys, This directorate has prepared a booklet devoted to nomograms
for survey computations (103). Fourteen nomograms of the alignment
type are given, all for calculations frequently encountered by land
surveyors; for example, the first three give the mstsorological
correction for the Tellurometer, Geodimster and the Wild DI 10
Distomat respectively. An interssting feature is that the booklst
is supplied with a nomcgram reader, an ingenious device necassary
to read one of the nomograms. The nomogram readsr was developed by
Mr. Bowring of the computing section of the directorate. The prsface

contains the following paragraph,

'"Nomograms arse simple devices which, in the right
circumstances, aid rapid computation with little loss of accuracy.
Provided their accuracy limits are recognised, they can be used

to solve many survey problems’',

The sscond example is a set of nomograms for morphomstric
gravel analysis which appeared in 1977 (104). These are the work
of J.L. Van Gendersn. The author points out that most methods of
quantitative morphometric gravel analysis are very time consuming
and as an illustration of this takes the computations necessary for
the index of roundness when carried out in the fisld. He states
that for one sample of 100 rock fragments it can teke between one
and one and a half hours. Even, he states, if done in the office
using an electronic calculator it takes from one half to one hour

to arrive at the required histogram. Howsver, he claims, using one
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of his nomograms the raw data can be converted into thes final
histecgram in less than ten minutes. The nomograms themselves
are quite simple as can be seen from the formulae which they
represent. They ars for the index of roundness I.= 2r/L; the
index of flatness I; = (L + 1)/2€; and the indsx of dissymmetry
I, = AC/L; in which r, L, E and AC are all distances.

Before leaving Van Genderen's nomograms it is worth noting
his comment on the advantage of a nomogram over other methods,
He states that 'the need is normally for a rapid method which can
be employed on the spot, so that any anomalies or significant results
can immediately be sxamined in the field', Although the situations
are different, this view is very similar teo that expressed by
Capt, C.E.P. Sankey in 1911 on the advantages of nomograms on

military service, ((50) and Chapter 3, section 3).

The last exampls concerns the calculation of interest
rates, a process which is often more complex than is gensrally
recognised. The particular problem is the relationship betwsen flat,

nominal and effective rates of interest for which ths formulae are,

n
8 = (1 + i/ﬂ) - 1 .'to.-.O’0..0.-0..-00.&-.--5-3.1

f = 1 + (iy - 1)(1 + i/n)ny .ucono-noe.tao-aao000-5.3.2
y((1 + 1/)™ - 1)

whers f is the flat rate, i the nominal rate, e the effective rate,

y the number of years and n the number of instalments per annum.

The problem lies in the fact that, although equation 5.3.1
can be reuritten to give i in terms of e, equation 5.3.2 cannot be
similarly rearranged so that i is given explicitly in terms of f.
Given f, i (or 8) can only be determined iteratively. Such an
iterative procedure had been given in the Bulletin of ths Institute
of Mathematics in 1979 and this appears to have prompted J. Rickard,
of the University of Melbourne, to produce a nomogram for the

same problem, His nomogram appearsed in the October 1980 issue of
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the same bulletin (105). It is elegant since it contains only
straight lines, or very good approximations tg straight lines,

and is read along lines uwhich are parallel to the axes. The

accuracy requirements in such problems make nomograms quite suitable
as a method of calculaticn. This last example illustrates that thera
are still areas of computation in which a nomojram is still the

best choice,
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CHAPTER 6.

Conclusions,

The question which springs %o mind at the end of this
thesis is 'Has nomography a future?'. In the uwidest senss I
think it has not, It is true that in special cases, such as
the three mentioned at the end of the last chapter, nomograms
may still be the most suitable method of calculation, but as
a general method of calculation their fate has been sealed by
the advent of the pocket slectronic calculator., This is not to
say that whenever a calculator is used it will produce a result
which in soms way is better than that which would have been
producsed by a nomogram, but rather that the former has some kind
of psychological advantage over the latter. An answer is displayed
in lights and therefors has some veracity although the calculation
which led to it may not have been at all appropriate, There is
another reason for the demise of thse nomogram; it is the difficulties
associated with anamorphasis, Although the approximation techniques
of James-Levy and other Russian workers might have improved the
outlook had they appeared earlier, the truth is that they were too
late and when they camse the alectx.;onic computer and calculator wers

more attractive alternatives,

What of the application of modern technology to nomography?
‘Tuo ideas seem to be worth some investigation. The first idea
concerns the use of the graphical display techniques of medern
microprocessors. Although I have suggested that computers heralded
the end of nomography, I was then thinking of the large machines
of the 1960's and 1970's, Using the high resolution display of
the modern microprocessor, the construction of electronic nomograms
would seem to be a possibility in those cases where very high accuracy
is not required. Advantages of such nomograms would includs
programmable transformation and magnification, something that

earlier workers never dreamed of. The second idea is more fanciful.
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It is to simulate npumerically within a computer some of the
techniques of nomograchy. I see this as a way of getting
reasonablse approximatiens which would then be subject to refinement
by one of the many techniques which exist for doing this. The
advantage of such a method, if there is an advantage in it, would

depend entirely upon how good the approximation was and how fast it

could be arrived at.

As for work on the history of the subject, several avenues
have been opened up by this thesis. A detailed study of geometric
computation before 1840 would be a worthwhile undertaking. Then,
there is the question of the use made of nomograms in the various
disciplines. This has only been touched on here because it was
peripheral to the main theme. Also thers are the characters themselves.
A study of them would widen the field beyond nomography but it would
be interesting to know something of the 1ife and mathematical
activities of Dr. J. Clark, a man of obvious mathematical skills.
The same could be said of Gronwall, 0.0. Kellogg, Warmus and
James-Levy., Finally, of course, there is still Hilbert's thirteenth

problem,
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APPENDIX 1.

Massau's conditions for F(x,y,z)=0 to be expressed

in the form 21(2)X(x) + Zz(z)Y(y) = 1.

Z1X + 22Y = 1 A.I.1
Differentiate A.I.71 partially with respesct to x

Z1X' + (XZ1' + ZZ'Y)p = 0 A.I.2
Differentiate A.I.1 partially with respect to y

ZZY' + (XZ1' + ZZ'Y)q = 0 A.I.3

Eliminate XZ1' + 22'Y from A.I.2 and A.I1.3

Z1 pY!'
- = — A.1.4
Z2 qX!
this shows that z is a function of pY' ; from which it
gX?
follows that the Jacobian of z and pY' is zero,
gX'
i.s, p _a___ EY'
ax \gX*
= 0
3 A
. 1
dy \aqX!
On expansion this givss,
n 11
Y X! P q
" "
or, Y q X" ap RIS
Y! X'
Let X" yr
- = U1) - = Uz’
X! Y?
A.1.5 becomses pU2 + qU1 = R A.I.6
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Differentiate A,I.6 with respect to x

3R
T U2 +s U, +q U1' = = A1.7

1 x
Differentiate A.I.6 with respect to y

sU2+pU2'+tU1=§ﬂ A.I.8

<

Differentiate A.I.7 with respect to y

2
ar 3 9 9 °R
Sy, Uy s Sy e = A.I.9
3y dy 3y Ixdy
Equations A.I1.6, A.I.7, A.I.8 and A.I.9 will givs U1, Uos U1', Uz'.
”
U1 - X hence §-'“11 =0
Xt dy
yn oy
U2 == hence —2 =g
y* 9 x

With these conditions satisfied, X and Y can be found. Z, and Z,
are then found from A.I.4 and A.I.1.

Lecornu's conditions for F(x,y,2)=0 to be represented

in the form 21(2)X(x) + Zz(z)Y(y) =1,

The first part of Lecornu's reasoning is the same as Massau's;

from Z1X + 22Y =1 A.I.1

he obtains A.I.4 but in ths form

q z, v
- . 2 A.1.10
P z, X'
from which q 22
In(—(= 1n |7 | +1n Y' = 1n X'
p Z,
Z
The substitutions T = 1n[_2), f = - 1n X', g = 1ln Y' are mads,
Z
1
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giving,

1 k T+g +f
n — =
P g

Differentiate partielly with respsct to x

3 q
—{An—|| = T'p + X'X¥
90X p

Differsntiate partially with respect to y

2 q
__EL_ (lﬂ("» = T"pq + Ttg
Ox o p

2
R , {9
te8e S g (ln(‘“)) =Tn e T 2
pg 9xdy p Pq
2
Let v=8 , u = 1 0 1n _q_
Pq . PQ 9xdy P

then u = T" + yT?,

Differentiate A.I.12 partially with respect to x

du = 3(T" + vT')p.+ Ty
9 x dz I x

Differentiate A.1.12 partially with respect to y

B...l.’. ”BgT" +vT')q+T'a__\_l_
dy dz ay

From A.I.13 and A.I.14

" 3
A0+ 1) p(.QE - T'§!) = q( du _ 1Y)

Pq
9z dy 3y 3 x 3x
giving g ou - pou
T - ChS dy
qdv - py
d x dy
Put w=T"'
then Jdw = T"p and 3u = T"q.
X : oy
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Substituting in A.I.12

(o8]
€

10w = 1 = u - vu

I

he)
Q
X
(o8]

Y

which are Lecornu's conditions.,
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APPENDIX I1.

Elements from Kelloaa's work on anamorphosis.

If F(x,y,2) = P0x)R(y,2) + P,(x)R,(y,2) + P3(x)Rs(y,2),

then F(x,y,z) satisfies the ordinary homogeneocus linsar differential

equation
F
p1
FX P1
Fxx p1
Fxxx p1

The necessary and sufficient conditions for the existence of this

P2
' p2i
n p2u
e pzltl

p

1L

[ @1 I % B 1

Tet
P3

equation are (i), that the matrix N, given by

F F

y F2 Fyy yz
ny Fxz nyy nyz
Fxxy Fxxz Fxxyy  Fxxyz

F F
XXXy XXX2Z

XXXYY

F
XXXy Z

must be of rank less than 4,

F22 F&YY FYYZ Fyzz
Fxzz nyyy nyyz nyzé
Fxxzz Fxxyyy Fxxyyz Fxxyzz
Fxxxzz Fxxxyyy Fxxxyyz Fxxxyzz

and (ii), that the matrix N', given by

F
F y
' =
N Fx ny
Fux XXy

must be of rank 3.

Fz Fyy Fyz
sz nyy nyz
XXZ Fxxyy Fxxyz
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APPENDIX IT1I.

To show that the best functional scale is the loqarithmic

scale, assuming that the error is measured by relative srror,

For a regular scale the scale factor L is constant and is given by

L= x4 4) - ‘f(xn)

X - X
n + 1 n

If the scale is not regular the scale factor will vary with x,
At some point X4 the scals factor will be given by
f(x) - F(x1)
L = 1im = f"(x1)

X1 Xrxy x - %

Two conditions are required of this scale,

(1) that r = 8y 1s constant, r is the relative error
X & o the error in x.
and (ii) that m = L.e, is constant,
L e
It follows that -'::3 = -—5;;25 * X is constant,
X
i.e. x Lx = €, where C is some constant

e.o X f‘(X) = C
fr(x) = C
X

f (x) = 131 In x

i.e, the best scale is a logarithmic scals.
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APPENDIX 1V,

A demonstration of the sguivalence of a result of

* Steyskalova and a result of Buck.

Steyskalova's theorem states that, for an equation F(x,y,z)=0
to bs of the third nomographic order it is necessary and sufficisnt
that the following six equations are such that each is a consequence
of the other five.

Flxgs¥q529) = 05 FlxgsYosZy) = 0, F(x ,y,,23) =0 ATV .1
F(X55Y1523) = 0, Fx,¥gsZ5) = 0, Flxy5yq,24) = 0
Since F(x,y,2z) = 0 is of the third order it can be rewritten as
z = G(x,y).
Taking particular pairs of the equations of A.IV.1, say F(xD,y1,z1) =0
and F(x1,y0,z1) = U,‘thay can be expressed in the forms

21 = G(XU}Y1) = G(x1’YU)

Steyskalova's result can now bs stated in the following form,

if G(xgsY4) = 6(x,4,y4)

and G(Xo,Yz) = G(x2}YO)

then,

if  z5 = G(xz,y1) it follows that z, = G(x,l,yz),

or G(XZ,Y1) = G(x1’Y2)
Buck's result deals with the expression,
z = F(x,y) = f(¢ () + ¥(y))s

again an expression of the third nomographic order.

His result states that for any a and c in the range of x and any b and d
in the range of y, with [a—c| and |b-d| sufficiently small, there must

exist x and y near‘a'aqd b respectively such that,
F(a,b) = F(C:Y)
F(c,d) = F(x,b)
F(a,d) F(x,y)

n
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The sufficiently small criterion apart, this is the essence of
Steyskalova's result with, for example, a corresponding to Xqs
c to Xqs % to Xos Y to Ygs b to Yqs d to Yoo
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