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An introduction to nomography:
Garrigues’ nomogram
for the computation of Easter

Denis Roegel

Abstract

This article analyzes a calendrical nomogram for the
determination of the date of (Julian or Gregorian)
Easter, and shows how it can be reproduced with
METAPOST.

1 Introduction

The field of nomography is ancient, and is related
to slide rules. The object of nomography is to study
the graphical representation of equations with n un-
knowns, in order to construct graphical tables repre-
senting mathematical laws of which these equations
are the analytical expression. These tables are called
“nomograms” and can be used to obtain one of the n
values given the values of the n−1 other unknowns.

The art of nomography was developed exten-
sively by Maurice d’Ocagne (1862–1938), from 1884
onwards. In his 1921 treatise on the subject, he men-
tioned a nomogram for the calendar, as well as the
unpublished work of André Crépin on one for find-
ing Easter (d’Ocagne, 1921, p. 468–470). Then, in
1939, Damien Garrigues published an article with
a nomogram for finding the date of Easter in the
Julian and Gregorian calendars (Garrigues, 1939).
Garrigues did not refer to Crépin, and may have
constructed his nomogram independently.

Our article explores this particular example and
shows how this nomogram can be reproduced using
METAPOST.1 We will first analyze the structure of
Garrigues’ nomogram, and we will need to review
some basic information on the calendar. Once we
have a good grasp of the principles underlying Gar-
rigues’ nomogram, we will examine how to tackle its
graphical challenges with METAPOST.

2 Easter in the Christian calendar

Easter is a Christian feast commemorating the res-
urrection of Christ and has been celebrated since
the first centuries of our era. As time went by, it
was decided to set the date of Easter on the Sunday
immediately following the first full moon of Spring.
For practical reasons, Spring is considered to be-
gin on March 21st, and the full moons are based on
simplified tables, not on astronomical observations.
This rule applies both to the Julian calendar (be-
fore the Gregorian reform which took place in 1582)

1 The complete METAPOST code is available on CTAN
under the name garrigues.mp.

and to the Gregorian calendar. However, the tables
for the paschal lunar phases were made more accu-
rate in 1582, and the average year was made slightly
shorter, so that this actually made the computation
of Easter more complex.

We will not enter into the details of the his-
tory of the Christian calendar, nor of the many al-
gorithms for the computation of Easter, but we will
summarize—without proof— the basic procedure
for the computation of Easter. More detailed in-
formation on calendrical calculations can be found
in the standard (Dershowitz and Reingold, 2008),
but information on Easter algorithms is scattered
in multiple other sources. Besides (Gauss, 1973),
one can consult (Knuth, 1997) for a simple (but ex-
act) algorithm, and (Bien, 2004) for a comparison
between a few Easter algorithms.

2.1 Julian calendar

In the Julian calendar, the date of Easter repeats
itself after exactly 532 years. The computation is
based on a lunar cycle of 19 years (the phase of the
moon was supposed to be again the same after 19
years) and on a (solar) calendar cycle of 28 years
(the years repeat after 28 years, since every fourth
year is a leap year, since common years would repeat
after seven years, and 28 = 4× 7). We then merely
have an Easter cycle of 532 = 19× 28 years.

In this calendar, the position of a year in the 19
year lunar cycle is given by its Golden Number G:

Y ← year (1)
G← (Y mod 19) + 1 (2)

Using the Golden Number, the (Julian) epact
EJ of the year can be computed: the epact (in its
modern sense) is the age of the moon on January 1st,
minus one (Roegel, 2004). Since the moon phases
shift by about 11 days every year, the epact conse-
quently increases by about 11 units every year. It
can be obtained from the Golden Number as follows:

EJ ← (11G− 3) mod 30 (3)
And the value of the epact then determines the

date of paschal full moon.
Sundays are determined by what is called the

“dominical letter”. All the days of a common year
can be labeled by a letter from A to G, starting with
A on January 1st, B on January 2nd, etc., G on
January 7th, A again on January 8th, etc., reaching
C on February 28, and D on March 1st (February 29
is considered to be without a letter). The “dominical
letter” is then merely the letter associated to the
Sundays of a year. When the year is a leap year,
there are of course two dominical letters, one for
January and February, and one for the other ten
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months, because the layout of the letters is defined
for common years.

The date of Easter is obtained by combining the
epact and the dominical letter.

2.2 Gregorian calendar

In the Gregorian calendar, the phases of the moon
do no longer follow a 19 year cycle. The new cycle
is more complex, as a consequence of a more accu-
rate modeling of the mean motion of the moon, and
because of the shorter mean solar year. The com-
putation can still be based on the Golden Number
and the (Julian) epact, but the epact is corrected
as follows. We first define the secular part S of the
year, then a correction M :

S ←
⌊

Y

100

⌋
(4)

M ←
(

15 + S −
⌊

S

4

⌋
−
⌊

8S + 13
25

⌋)
mod 30 (5)

It was Gauss who introduced M in this form in
1816 (Gauss, 1800; Gauss, 1816).

What we call the “mean Gregorian epact” EG

is defined as follows:

EG ← (EJ − (M − 15)) mod 30 (6)

The previous correction to EJ can also be used
for the Julian calendar, by taking M = 15. In that
case, EG = EJ .

The real (or corrected) Gregorian epact EG, in-
stead, is given by:

EG ←

EG + 1
if (EG = 25 and G > 11)
or (EG = 24)

EG otherwise
(7)

This value of the epact can be used to obtain a
full moon in March. N1 is the day in March for a
full moon, but it may be another full moon than the
paschal full moon (full moon on which the definition
of Easter is based):

N1 ← 44− EG (8)

The real paschal full moon in March is:

N2 ←

{
N1 + 30 if N1 < 21
N1 otherwise

(9)

Garrigues’ nomogram computes the paschal full
moon without the corrections for EG, and obtains a
date of Easter. Ignoring the corrections on the epact
produces certain wrong epacts, but only some of
these wrong epacts cause an incorrect date of Easter.
The dates are incorrect in only rare circumstances,
which are listed in the nomogram (1954, 2049, 2106,
etc.) and which will be analyzed later in this article.

3 The structure of Garrigues’ nomogram

3.1 An example

Garrigues’ article shows the use of the nomogram for
the year 1939, the year the article was published.
Using the nomogram is straightforward. The year
is first divided in its century number (called “partie
séculaire”, or secular part in French) and the last
two digits of the year (merely called “Année”, that
is, year in French). Each of these parts is looked
up in columns i and iii (figure 1) and the centers
of the two circles containing the values sought are
connected by a dashed line. This line falls on a point
in column ii, and this point is in turn connected to
the first point at the top of column iv. This is the
Golden Number associated to 1939.

The secular part is reused in column vi, and
joining it with the Golden Number just found, a
new point is obtained in column v. This point is
connected to the point labeled 10 in column vii, and
this is the value of the (mean) Gregorian epact.

Now, using again the secular part in the right
part of column viii and the last two digits of the
year in column x, we obtain a point labeled “A” in
column ix. This point is connected to point “A”
in column xi. Finally, the intersection of the lines
connecting point 10 of column vii and point B on
one hand, and point “A” of column xi and point C
on the other hand, falls in the slot corresponding to
April 9, which is the date of Easter in 1939.

Before attempting to reproduce the nomogram,
we will first try to analyze its construction. This
will provide us with enough insight and will lead
seamlessly to the METAPOST code.

As we have just seen, Garrigues’ nomogram is
made of several parts, which are all fairly regular.
The areas were numbered by Garrigues in Roman
numerals i, ii, iii, ..., xvi, but in this article we will
only consider the first eleven areas, the only ones
which are concerned with the calculation of Easter.
We will analyze each of these areas in sequence.

It is important to understand the geometry of
the nomogram, because the geometry represents the
relationship between the variables.

3.2 Basic features of the nomogram

The basic features of Garrigues’ nomogram are the
following:
• some lines or sequences of points are annotated

using various functions: a set of points 1, 2, . . . ,
i are distributed linearly and annotated with
f(i); examples are given in figure 2;
• additions are obtained by drawing a line: the

addition is on the index values, that is, on po-
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Figure 1: Garrigues’ original nomogram (excerpt from (Garrigues, 1939)).

sitions; this scheme is used here three times; in
each case, from two values among n values, we
obtain 2n− 1 combined values.

– for columns i–iii, n = 19;
– for columns iv–vi, n = 30;
– for columns viii–x, n = 7.

We first consider the scheme represented on
the left of figure 2. For i = 0, 1, . . ., let c(pi) =
(0, i), c(qi) = (2, i) and c(ri) = (1, i/2) be the
coordinates of points pi, qi and ri, and let v(pi),
v(qj) and v(rk) be the values associated to pi,
qj and rk. We have of course v(pi) = i, v(qj) =
j and v(rk) = k. Let v′(p) be the value as-
sociated to the point at coordinates p, then
v′((0, i)) = i, v′((2, i)) = i, and v′((1, i/2)) =
i. Finally, v′(c(pi)) = i, v′(c(qj)) = j, and
v′
(

c(pi)+c(qj)
2

)
= v′((1, (i + j)/2)) = i + j. The

example shows how we obtain 5 by adding 2
and 3.
On the right of figure 2, instead, we do not

add 2 and 3, but we obtain the position 5 from
positions 2 and 3. 2, 3 and 5 are index val-

ues, not the values sought themselves. So, the
scheme on the right can be used to compute
zi+j from xi and yj , but the value of zi+j need
not be the sum of xi and yj . The first case is of
course a special case of the second one, where
xi = i, yj = j and zk = k.
This scheme is used three times in Garrigues’

nomogram, with x0, y0 and z0 at the bottom in
the three cases. In columns i–iii (see figure 3),
xi is the sequence of Golden Numbers 4, 12, 1,
9, 17, we can take yi = xi (or any other shifted
sequence xi+s), and zi is the sequence 18, 7, 15,
4, 12, 1, 9, etc.
In columns iv–vi (figure 5), xi = EJ(i) (Ju-

lian epact), yi = 15 − M(i) and zi = EG(i)
(mean Gregorian epact).
In columns viii–x (figure 7), xi, yi and zi are

values associated to dominical letters.
• some values are rearranged: data can be trans-

ferred from one line to another, using a map-
ping; f(i) = g(h(i)) where f(i) is the function
on the first line, g(j) is the function on the sec-
ond line, and j = h(i) is the mapping from one
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Figure 2: Basic addition on a nomogram: direct addition (left), and addition on
indices (right). This scheme is used three times by Garrigues. The left part is a
special case of the right one with xi = i, yi = i, and zi = i.

line to the other; see for example figure 4.
• certain values are obtained as intersections in a

2-dimensional grid: from two lines indexed by i
and j, a grid can be constructed from the values
of f(i, j). See for instance figure 10.

3.3 Description of the components of
Garrigues’ nomogram

The columns of the nomogram will be described in
the following order, not strictly from left to right.
Columns I–III (figure 3) The purpose of the first

three columns is to obtain the Golden Number
G corresponding to a given year. The year is
identified by its secular part S and by its last
two digits A. The arrangement of columns i
and iii is a consequence of the arrangement of
column ii. We therefore first need to under-
stand column ii and then we can proceed with
columns i and iii.
Column II: The points in this column repre-

sent values of the Golden Number G, from
top to bottom: 2, 13, 5, 16, 8, 19, 11, 3,
14, 6, 17, 9, 1, 12, 4, 15, 7, 18, 10, and
then again 2, 13, . . . , until 18 (the val-
ues are shown in column iv). This is the
order of the Golden Numbers if they are
rearranged by the corresponding values of
the Julian epacts EJ which are 19, 20,
(21), 22, 23, (24), 25, 26, (27), 28, (29),
0, 1, (2), 3, 4, (5), 6, (7), 8, 9, (10), 11,
12, (13), 14, 15, (16), 17, (18). (Values
between parentheses do not occur as Ju-

lian epacts, hence the gaps in column iv.)
So, G = 2 corresponds to Julian epact 19,
G = 13 corresponds to Julian epact 20,
and so on. Let c2[i] be the i-th Golden
Number value (from the bottom) in col-
umn ii: we have c2[1] = 18, c2[2] = 7,
etc. It is easy to see that c2[i] = 1 + ((9 +
8i) mod 19). We can also write c2[20−i] =
(5+11(i−1)) mod 19 = (13+11i) mod 19,
which shows that the Golden Numbers in-
crease by 11 (mod 19) from top to bottom.

Column I: The first column is related to the
secular parts S of the years, that is, the
digits left when removing the last two dig-
its of the year. 2008, for instance, has 20
for its secular part S. The secular parts
are arranged by their remainder by 19 and
there are therefore 19 circles with values
inside. However, the circles are not or-
dered in the usual order, that is, remain-
der 1 does not follow remainder 0, remain-
der 2 does not follow remainder 1, etc.
Instead, the secular parts are ordered ac-
cording to their contribution to the Golden
Number in column ii. So, S = 9 follows
S = 3 because 900 = 47 × 19 + 7, and
300 = 15 × 19 + 15, and 7 follows 15 in
column ii, and so on.
We refer to these circles by the smallest

values found inside, namely 3, 9, 15, 2, 8,
. . . , 16. Two consecutive values differ by
6 (mod 19), because adding 6 to a secu-
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Figure 3: Finding the Golden Number in column ii,
using the components of the year. The Golden
Numbers G are given in the order of the Julian epacts
EJ , but without gaps. We have added the values of
(100S) mod 19 (left of column i) and A mod 19 (right
of column iii).

lar part is equivalent to adding 11 to the
Golden Number (6× 100 ≡ 11 (mod 19)),
and we have seen that the Golden Num-
bers in column ii increase by 11 (mod 19)
from one point to the next point below.
Moreover, values such as 3, 22, 41, etc.,

are located in the same circles since they
are equal modulo 19. If we call c1[i] the
index value on the i-th point in column i
(with point 1 at the bottom), we can see
that c1[i] = (22 − 6i) mod 19. For in-
stance, c1[17] = (22−6×17) mod 19 = 15.

When the secular part is S, it goes on the
point pointS(S) = 1 + ((3S + 9) mod 19).
For instance, if S = 19, 1 + ((3 × 19 +
9) mod 19) = 10, so 19 is located on the
10th point. We can check that ∀S < 19 :
c1[pointS(S)] = S.

Column III: The last two digits of the year
are also positioned in relation with the sec-
ond column, for the same reason as for col-
umn i; we can notice that the years ap-
pear in the order (from top to bottom)
5, 16, 8, 19, 11, etc., exactly like the or-
der of the values in column ii; that is,
c3[i] = (5 − 11i) mod 19, where c3[i] is
the smallest value in a circle in column iii.
For instance, on the first point, c3[1] =
(5 − 11) mod 19 = 13. On the second
point c3[2] = 2, etc. The point corre-
sponding to the last two digits A of the
year is pointA(A) = 1 + ((15 + 12A) mod
19) and one can check that ∀A < 19 :
c3[pointA(A)] = A.

Linking columns I and III: If the centers of
the circles in the first column are at coor-
dinates (0, i−1) where i is the point num-
ber (in the enumeration given above), and
if the centers of the circles in the third col-
umn are at coordinates (2, j) with j = 0 to
18 (j = 0 at the bottom), then the points
in the second column are located at coordi-
nates (1, k/2) where k = 0, 1, . . . , 36. This
is the scheme shown in figure 2.
We can now check that linking the sec-

ular part and the last digits of the year in-
deed gives the Golden Number. Figure 3
shows columns i to iii, and, for every value
of S and A, we have added the value of
(100S) mod 19 (left of column i) and of
A mod 19 (right of column iii). We have
also added the values of the Golden Num-
ber G in column ii. We are in the condi-
tions of figure 2, where xi = (4 + 8i) mod
19, yi = (13 + 8i) mod 19, and zi = (18 +
8i) mod 19. The case i = j = 0 corre-
sponds (for instance) to the year 1613, for
which G = (1613 mod 19)+1 = 18. There-
fore, the triplet (x0, y0, z0) is indeed a cor-
rect one. What we need to prove is that
any three aligned points make a correct
triplet. A correct triplet is of the form
(xi, yj , zi+j) (figure 2). This can be proved
by induction. If we assume that the triplet
(xi, yi, zi+j) is a correct triplet, then, since
(xi+1−xi) mod 19 = (yi+1−yi) mod 19 =
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Figure 4: Rearranging the Golden Numbers
(column ii) according to the Julian epacts (column iv),
but with gaps for the missing epacts.

(zi+1 − zi) mod 19 = 8, it follows that
(xi+1, yi, zi+j+1) and (xi, yi+1, zi+j+1) are
also correct ones, because zk increased by
exactly as much as either the secular part
or the last digits of the year contributed
to the Golden Number, and therefore zk

must still be the Golden Number.
Garrigues could have designed the col-

umns i–iii more naturally, by putting the
Golden Numbers in their natural order,
but he chose to put them in the order of
the Julian epacts without showing the val-
ues of those.

Columns IV–VI: (figure 5) The purpose of these
three columns is to compute the mean Grego-
rian epact EG from the Julian epact EJ .
Column V: This column is found halfway be-

tween columns iv and vi. Column iv rep-
resents the Julian epact EJ and column vi
corresponds to the correction 15−M , with
M = (15 + S −

⌊
S
4

⌋
−
⌊

8S+13
25

⌋
) mod 30,

where b...c is the integer part. M is Gauss’
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Figure 5: Finding the mean Gregorian epact
(column v) using the Julian epact (column iv)
and the value of M (column vi). If we add EJ to
15 −M , we obtain the mean Gregorian epact EG.
For i = 0, EJ = 17, M = 9, 15 − M = 6 and
EG = EJ − (M − 15) = 23. When M increases, EG

decreases. When EJ decreases, EG decreases too. The
left column shows xi = (17 − i) mod 30, the right
column shows yi = (6 − i) mod 30 and the middle
column shows zi = (23− i) mod 30.

correction (Gauss, 1816). The mean Gre-
gorian epact EG is given by EG = (EJ −
(S − bS/4c − b(8S + 13)/25c)) mod 30 =
(EJ + (15−M)) mod 30. We call EG the
“mean Gregorian epact”, because it is the
epact considered without the corrections
for epacts 24 and 25.
The real Gregorian epact EG sometimes

differs from the value of the mean Grego-
rian epact EG which is obtained from the
nomogram. EG = EG +1 if (EG = 25 and
G > 11) or (EG = 24). This shifts the
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paschal full moon one day earlier. We will
come back to these exceptions when exam-
ining the Easter area between columns vii
and xi.
Column v can therefore be seen as the

sum of columns iv and vi, and will be the
mean Gregorian epact EG. This column
has 58 points, that is, as many as there are
combinations between columns iv and vi.
The values of the epact are shown in col-
umn vii. Epact 0 or 30 is usually written
‘?’.

Column IV: This column only serves for an
addition with the value represented in col-
umn vi. There are 30 points in column iv
if one includes the gaps. As mentioned
above, the point numbers correspond to
the Julian epacts on a 1–30 scale (hence
the gaps). Each point corresponds to a
value of the Julian epact, but the points
are labeled with the Golden Number, since
there is an exact correspondence between
them. When the Golden Number is G, the
Julian epact EJ is (11G − 3) mod 30 and
EJ is on point 1 + ((17 + 29EJ) mod 30)
hence on point 1 + ((20 + 19G) mod 30).
G = 1 corresponds to point 10, G = 2 to
point 29, G = 3 to point 18, G = 4 to
point 7, etc. The first point on the top
of column iv corresponds to EJ = 19 (for
G = 2). The empty slot above it would
correspond to Julian epact 18, but such a
value does not exist in the Julian calendar.
The second point from the top corresponds
to EJ = 20 (for G = 13), the second empty
slot to EJ = 21 (which does not exist), the
next point is EJ = 22 (for G = 5), and so
on, until Julian epact 17 (for G = 10) at
the bottom.
So, column iv shows the Golden Num-

ber, but at positions corresponding to the
Julian epacts.

Column VI: The secular parts S of the year,
between 15 and 84, are positioned accord-
ing to the values of M = (15+S−bS/4c−
b(8S + 13)/25c) mod 30; 30 points are in
this column. The first point at the top
corresponds to M = 8, the second point
to M = 7, etc., until M = 9 at the bot-
tom (for S = 54, 55, and 56). If S cor-
responds to a value M , it is put on the
(1 + (M + 21) mod 30)-th point from the
bottom. 30 different circles are put along
that column, left and right of it, to save
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Figure 6: Rearranging the mean Gregorian epacts
uniquely in column vii.

space. It was certainly this column which
led Garrigues to stop the secular parts at
84, because S = 85 would have had to
be added to the circle with S = 15 and
S = 16, breaking the evenness of the dis-
tribution of S. Nevertheless, the nomo-
gram could easily be extended if necessary.
This column is used together with the

Golden Number G (column iv) to obtain
the epact (column v). The Julian calendar
corresponds to M = 15 which goes with
S = 67 and 69 in the Gregorian calendar.

Column VII: This column is like column v, but it
will be used for the right-hand side of the draw-
ing. The values do not start at the bottom, but
this doesn’t matter, as we have some freedom
in the positioning of the points.

Columns VIII–X: (figure 7) The purpose of these
three columns is to obtain the dominical letter
of the year, using the secular part S and the
last two digits A of the year.
Column IX: This column gives the series of

dominical letters DL from bottom to top,
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Figure 7: Finding the dominical letter (column ix)
of a year, using its components S and A. The 1st of
March 1900 was a Thursday (d.l. = G). Consequently,
the 1st of March 2000 was a Wednesday (and d.l. =
A). The 1st of March 2100 will be a Monday, and so
on. If the vertical scale in column viii is such that
the days of the week go up from top to bottom, the
centuries will be arranged as on the figure and the
dominical letters must go in the opposite direction. In
the Julian calendar, there is always a gap of 1 between
two centuries. This figure shows the second dominical
letters of the years 100S over the points of column viii,
with the convention A → 0, ..., G → 6. The first line
corresponds to 2008 (for instance) and z0 = x0 + y0.

starting with E. Each letter is associated
with a number: A→ 0, ..., G→ 6.

Column VIII: For a year Y = 100S + A, col-
umn viii corresponds to the day of the
week for the 1st of March of year 100S, and
hence also to the second dominical letter of
year 100S (the first dominical letter is for
January and February). The case where
March 1st is a Wednesday is put at the
bottom and corresponds to the dominical
letter A (because the letter associated with
March 1st is D, and the previous Sunday is
on the letter A). This is the case for 1600
and 2000, for instance. In the Julian calen-
dar, since 100 years make up 36525 days
(≡ 6 mod 7), advancing 100 years means
going one day backwards in the week and
one letter forward in the dominical letters.
This is shown in column viii on the left
when we go up when the century increases.

In the Gregorian calendar, there are ei-
ther 36525 days or 36524 days in a century.
Hence, we go up by two days, except when
going from S = 19 to 20, from S = 23 to
24, etc.

Column X: The values on the right of col-
umn x show the second dominical letters
in the 21st century, with the same conven-
tions as in column ix. 2000, for instance,
had dominical letter A, and the last digits
0 of 2000 fall at position 0 (figure 7), 0 be-
ing associated with the dominical letter A.
Since the value associated at the bottom

of column viii is 0, and since the first value
in column ix is 4, the years such as 2008
(with DL equal to E) are also put at the
bottom of column x.
We can see how the other values are laid

out: 365 days are a multiple of 7 plus 1.
So every time we have a new year, we add
one to the day of the week, except when
we pass from a year like 4n− 1 to 4n (for
instance from 2007 to 2008). The year A
goes on point 1 + (3 − A − bA/4c) mod 7
(counted from 1 at the bottom).

Linking columns VIII and X: Column viii
corresponds to the day of the week of the
first March of the first year with secular
number S, and column x corresponds to
the shift introduced by the year within the
21st century. Adding the two gives the day
of the week for the 1st of March of the year
considered, because 2000 is at the bottom
of column viii, and hence gives the second
dominical letter of the year. The values of
column ix follow.

Column XI: This column reproduces the values of
column ix, but avoiding the duplication.

Easter area: This is a table giving Easter using
the mean Gregorian epact EG and the domini-
cal letter DL. Points B and C are used to draw
lines towards the epact and dominical letter val-
ues, and the intersections fall in a slot. There
are 35 possible days for Easter and therefore 35
slots in this area. Basically, the epact gives us
the day of the pascal full moon, and the domini-
cal letter gives us the day of the week of that
full moon. The two together give the date of
Easter. There are five Easter dates correspond-
ing to each dominical letter.
This table must take the epact exceptions

into account. As we have seen earlier, the value

An introduction to nomography: Garrigues’ nomogram for the computation of Easter
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Figure 8: Rearranging the dominical letters for use in
the Easter area (column xi).

of the mean Gregorian epact is subject to a cor-
rection in certain cases. If there are no correc-
tions, a (mean) epact value of 24 corresponds to
a paschal full moon on April 19, and a (mean)
epact value of 25 corresponds to a paschal full
moon on April 18. The corrections have as an
effect to always shift the epact 24 full moon to
April 18, and to move the epact 25 full moon
to April 17 only when the Golden Number is
greater than 11. This means that the cases
EG = 24 and (EG = 25)∧ (G ≤ 11) correspond
to the same paschal full moon (April 18), and
this is what is shown in figure 10. The only
exception in the Easter area table is therefore
the case (EG = 25) ∧ (G > 11). In this case,
the new paschal full moon is April 17, and this
will only cause the date of Easter to move if
April 18 happened to be a Sunday, hence if the
dominical letter was C.
So, the table would give the date of Easter

April 25 when the mean Gregorian epact is 25,
the dominical letter is C, and the Golden Num-
ber is greater than 11. Between 1583 and 10000,
this occurs only in 1954, 2049, 2106, 3165, 3260,
3317, 3852, 3909, 4004, 6399, 6551, 7086, 7143,
7238, 8202, 8297, 8354, 8449, and 9041. In these
cases, the date of Easter should therefore be
April 18 and not April 25 and this is what Gar-
rigues indicated in a footnote.

4 Reproducing the nomogram with
METAPOST

Reproducing Garrigues’ nomogram in METAPOST

is easy, once we have a good understanding of its
structure. The complete reconstructed nomogram
is shown in figure 9. We will in turn consider the
positions of the points, the connections, the labels,
and the Easter grid (between columns vii and xi).

4.1 METAPOST

METAPOST is the graphical programming language
accompanying TEX. Graphics are expressed as pro-
grams where various points, lines and labels are de-
fined. We will not describe the language here, and
we refer the reader to the main references (Goossens,
Mittelbach, Rahtz, Roegel, and Voss, 2008; Hobby,
2008). However, in the sequel, we will explain some
of the interesting or particular constructions used in
our code.

4.2 LATEX labels with the latexmp package

TEX labels are usually included in METAPOST us-
ing the btex ... etex construction, but this is a
very inefficient solution, especially when labels are
parameterized. A much better solution is to use the
latexmp package which provides a macro textext
taking a string representing some LATEX code. This
is what we have been using throughout our code.

4.3 Auxiliary functions

The following macros are used in several places of
the nomogram code and are described first.

The first macro DL (defined with def and taking
i as a parameter) transforms an integer i from 1 to 7
into a character from A to G and is used to display
the dominical letter:
def DL(expr i)=char(64+i) enddef;

The macro gn_epact returns a pair made of the
Golden Number and the Julian epact associated to
the i-th point in column ii (see figure 4), 1 being
at the bottom. For i = 2, for instance, this macro
returns (7, 14). The macro is defined with vardef,
which is a variant of def making it possible for the
G and JE variables to have only a local scope after
their save declaration.
vardef gn_epact(expr i)=

save G,JE;
G=1+((9-11i) mod 19);
JE=(11G-3) mod 30;
(G,JE) % value returned

enddef;

The macro gn_epactl returns the value of the
Golden Number and the point in column iv associ-
ated to the i-th point in column ii, 1 being at the
bottom (see figure 4). For i = 2, for instance, this
macro returns (7, 4), because it is the 4th point of
column iv which is associated to G = 7 (the second
point being empty).
vardef gn_epactl(expr i)=

save G,JE,JEL;
G=1+((9-11i) mod 19);
JE=(11G-3) mod 30;
JEL=30-((JE+12) mod 30);
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Figure 9: The complete METAPOST version of the nomogram.

(G,JEL) % value returned
enddef;

whatever is a very useful METAPOST instruc-
tion which represents a yet undefined and unnamed
scalar value. It is then possible to solve linear equa-
tions very easily, for instance finding point P such

that
−−→
OP =

−→
OA + x~u =

−−→
OB + y~v, x and y being the

unknowns, with

OP=OA+whatever*u=OB+whatever*v;

OP, OA, OB, u, and v being points (or complex values).
Interestingly, the two values of whatever (cor-

responding to the unknowns x and y) are usually not
equal, which is why whatever should not be viewed
as the name of a variable. In the previous exam-
ple, we were more interested in the position of P
than in the values of x and y, and P is merely the
intersection of two lines.

In our code, we use the macro whateverpair
which is the equivalent of whatever for pairs. It
defines a “fresh” pair of numerical values (which need
not be equal, despite the way they are defined, for
the reason given above).

def whateverpair=
(whatever,whatever)

enddef;

The next three macros are defined for format-
ting purposes. The first macro ep_st formats the
epact value so that it fits on two characters, and
the value 0 is displayed as ‘?’. textext is the main
macro provided by the latexmp package.

def ep_st(expr i)=
if i=0:

textext("\phantom{0}$\star$")
elseif i<10:

textext("\phantom{0}"&decimal(i))
else:

textext(decimal(i))
fi

enddef;

The second macro gstring is somewhat simi-
lar, but only formats a one or two-digit value with a
two-digit width, forcing the value to have the same
vertical size as an opening parenthesis, for alignment
purposes.

def gstring(expr i)=
if i<10:

textext("\vphantom{(}\phantom{0}"
&decimal(i))

else:
textext("\vphantom{(}"&decimal(i))

fi
enddef;

An introduction to nomography: Garrigues’ nomogram for the computation of Easter
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The third macro tddec (two-digits decimal) for-
mats a one or two-digit value as two digits, by pos-
sibly adding a 0 in front of it.
def tddec expr i=

if i<10: "0" & decimal(i)
else:

decimal(i)
fi

enddef;

4.4 Defining the points

In this section, we define the various points used in
the construction of the nomogram.

4.4.1 Variables

For the points in the different columns, we mainly
use two arrays of pairs:
pair col[][],col[]a[];

The points in column i will be stored in the
variables col[1][1], col[1][2], col[1][3], etc.
The points in column ii will be stored in col[2][1],
col[2][2], col[2][3], etc. In METAPOST, we can
write col1[1] instead of col[1][1], and this will
simplify a little bit our code.

The second array (col[]a[]) is only used for
the centers of the circles which are along column vi.

4.4.2 First points

The points in columns i to vii are set easily. The first
and third columns have 19 points each, the second
and fourth columns have 37 points each, column v
has 58 points and columns vi and vii both have
30 points. All these points are linearly set and the
points in columns ii and v are obtained by bisecting
segments linking points from adjacent columns.

The first three columns are straightforward to
set, using a height constant defined elsewhere (and
not described in this article):

for i:=1 upto 19:
col1[i]=(0,(i-1)*height/18);

endfor;
for i:=1 upto 19:

col3[i]=(40u,(i-1)*height/18);
endfor;
for i:=1 upto 37:

col2[i]=
((xpart(col1[1])+xpart(col3[1]))/2,
.5*(i-1)*height/18);

endfor;

Column iv is a bit more tricky, and for each of
the 37 points in column ii, the macro gn_epactl re-
turns a pair made of the Golden Number associated
to this point, and of the corresponding point in col-
umn iv. The Golden Number is not used here. The
value of col4 is then set:

for i:=1 upto 37:
E:=ypart(gn_epactl(i));
col4[E]=(60u,(E-1)*height/29);

endfor;

Columns v to vii are also easily set. In the case
of column vi, additional points col6a are defined for
the positions of the circles offset in that column. The
points in column vii are shifted upwards by a certain
amount (here 20u, u being here equal to 1mm).

for i:=1 upto 30:
col6[i]=(110u,(i-1)*height/29);

endfor;
for i:=1 upto 58:

col5[i]=
((xpart(col4[1])+xpart(col6[1]))/2,
.5*(i-1)*height/29);

endfor;
for i:=1 upto 30:

if i mod 2=0:
col6a[i]=col6[i]-(8u,0);

else:
col6a[i]=col6[i]+(8u,0);

fi;
endfor;
for i:=1 upto 30:

col7[i]=(130u,
20u+(i-1)*(height-20u)/29);

endfor;

4.4.3 Easter table

The whole Easter table is obtained by setting points
B and C, as well as four corners of the table. B and
C can be positioned freely.
vardef define_easter_table=

save corner,p;pair corner[];
C=(xpart(col7[1])+10u,-10u);
B=(xpart(C)+150u,ypart(col7[5]));

We define two additional points in column vii,
one above the 30th (col7[31]), and one below the
first (col7[0]):

col7[1]-col7[0]=col7[31]-col7[30]
=col7[2]-col7[1];

The shape of area xi is defined by its four corners:
corner1=whatever[col7[0],B]

=C+whatever*up;
corner3=.3[B,col7[31]];
corner2=(C--corner3) intersectionpoint

(B--corner1);
corner4=whatever[B,col7[31]]

=C+whatever*up;

Then, the whole area determined by the points
corner1, corner2, corner3, and corner4 is divided
into eight slices, only seven of which will be drawn
(figure 10). The first slice contains the Easter dates
March 28, April 4, 11, 18 and 25. The second slice
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contains the Easter dates March 27, April 3, 10, 17,
and 24, and so on. The eighth slice is not drawn,
but defined for practical reasons. These eight slices
are limited by nine boundary lines. The first seven
slices correspond to the dominical letters C, B, A,
G, F , E, and D shown in column xi:

The slices are represented using two two-dimen-
sional arrays, s[]l[] and s[]r[]. The Easter area
is divided into slots, and each slot is a quadrilateral.
Two of the vertices of each quadrilateral are located
on one slice boundary, and the two others are located
on another boundary. If we now consider a bound-
ary between slices, which is a (more or less) vertical
segment, this boundary contains points from which
some segments go to the left, and other go to the
right (more or less). In the former case, the points
are given by the array s[]l[] (‘l’ for left), and in
the latter case by the array s[]r[] (‘r’ for right).
All the boundaries contain 10 points. The points of
the second boundary, for instance, are s2l0, s2l1,
s2l2, s2l3, s2l4, s2l5, s2r0, s2r1, s2r2, s2r3,
s2r4, s2r5. s2l0 is equal to s2r0, and s2l5 to
s2r5.

The first part of the code defines the beginnings
and ends of each boundary line:

for i=1 upto 9:
s[i]l0=s[i]r0

=(((i-1)/8))[corner4,corner3];
s[i]l5=s[i]r5

=whatever[corner1,corner2]
=whatever[s[i]l0,C];

endfor;

We then divide each of the eight boundaries
four times. i is the boundary number and goes
from left to right. Eight vertical lines enclose the
35 Easter slots. j varies over the horizontal inner
divisions. A division is made so that the line going
through B and the division falls exactly between two
epact values in column vii:

for i=1 upto 8:
for j=1 upto 4:

p:=30-i-(j-1)*7;
if i<8:

% division leaving to the right
% of vertical line i
s[i]r[j]=(s[i]l0--s[i]l5)

intersectionpoint
(B--.5[col7[p],col7[p-1]]);

fi;
if i>1:

% division leaving to the left
% of vertical line i
s[i]l[j]=(s[i]l0--s[i]l5)

intersectionpoint
(B--.5[col7[p+1],col7[p]]);

fi;
endfor;

endfor;
enddef;

Finally, the points in column xi are obtained
from the upper boundary of the Easter area. They
are put on a line parallel to (corner3, corner4) and
in the middle of the slices (as seen from C).
vardef define_dominical_letters=

save shift;pair shift;
shift=(3u,3u);
for i=1 upto 8:

col11[i]
=whatever[C,.5[s[i]r0,s[i+1]l0]]
=whatever[s1r0+shift,s8l0+shift];

endfor;
enddef;

4.4.4 Last points

The points in columns viii to x are determined as
follows:

for i=1 upto 7:
col8[i]=s8l0

+(15u,10u+(i-1)*ypart(s1l0-s8l0)/7);
col10[i]=col8[i]+(50u,0);

endfor;
for i=1 upto 13:

col9[i]=(xpart(col8[1]+col10[1])/2,
ypart(col8[1])

+(i-1)*(ypart(col8[7]
-col8[1]))/12);

endfor;

4.5 Drawing the connections

Connections between columns ii and iv are drawn
by the following code:

for i:=1 upto 37:
draw col2[i]

--col4[ypart(gn_epactl(i))];
endfor;

Connections between columns v and vii are
drawn by the following code:

for i:=1 upto 58:
draw col5[i]--col7[1+((i-1) mod 30)];

endfor;

Connections between columns ix and xi are ob-
tained by the following code:

for i=1 upto 13:
draw col9[i]--col11[1+(13-i) mod 7];

endfor;

4.6 Drawing the circles

Double circles are drawn using a straightforward
macro not described here. For column i, the circles
are drawn with:

for i:=1 upto 19:
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Figure 10: The Easter area, for the determination of Easter using the dominical
letter and the mean Gregorian epact. This table shows one exception (note (a)),
corresponding to the case EG = 25, G > 11 and DL = C. The cases EG = 24 and
(EG = 25) ∧ (G > 11) are gathered in the table. The figure shows that DL = A and
EG = 10 puts Easter on April 9.

draw_dbl_circle(.9diam1,diam1,col1[i]);
endfor;

The circles in the other columns are obtained
similarly.

4.7 Labeling the points

For the labels of columns i, iii and vi, we first build
special strings which will be used later to typeset
the labels. These strings are stored in the following
variables:
string col[][]st;

4.7.1 Preparing the labels

Labels in the first column are defined as follows.
We go through every secular part from 0 to 84 and

find the position to which it belongs, using the for-
mulæ found earlier. There are two cases, either the
string was not yet defined (in which case unknown
col1[p]st is true and we assign its first value, or
it was already defined, and we append a new value
with a comma in between. The comma will be useful
later, when the string is analyzed.

vardef define_col_one_labels=
save p;
for i=0 upto 84:

p:=1+(9+3i) mod 19;
if unknown col1[p]st:

col1[p]st=decimal(i);
else:

col1[p]st
:=col1[p]st & "," & decimal(i);
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fi;
endfor;

enddef;

Labels in the third and sixth columns are de-
fined similarly:
vardef define_col_three_labels=

save p;
for i=0 upto 99:

p:=1+(15+12i) mod 19;
if unknown col3[p]st:

col3[p]st=decimal(i);
else:

col3[p]st
:=col3[p]st & "," & decimal(i);

fi;
endfor;

enddef;

In the sixth column, we use the value of the
Gauss constant M and the computation is only done
for values of the secular part between 15 and 84,
since earlier centuries lead to a constant value of M .
vardef define_col_six_labels=

save p,M;
for i=15 upto 84:

M:=(15+i-floor(i/4)
-floor((8i+13)/25)) mod 30;

p:=1+(M+21) mod 30;
if unknown col6[p]st:

col6[p]st=decimal(i);
else:

col6[p]st
:=col6[p]st & "," & decimal(i);

fi;
endfor;

enddef;

4.7.2 Column I

Once the strings for the labels have been defined,
these strings can be processed and the labels can be
drawn. The macro processing the labels in columns i
and iii is col_one_three_f. This macro, as well as
col_six_f, first counts the number of elements in
the list parameter and stores it in n. It does so
by analyzing the comma-separated string list with
scantokens, which evaluates a string as if it were
normal METAPOST code.
vardef col_one_three_f(expr list,l,c)=

save n,i;n=0;
for $=scantokens(list):

n:=n+1;
endfor;
i=0;
for $=scantokens(list):

i:=i+1;
label(textext(if c=3: (tddec $)

else: decimal $ fi)

scaled .6,
col[c][l]

+((if c=3: 2.5u
else: 2u
fi,0)
rotated

(180-(i-1)*360/n)));
endfor;

enddef;

Now, the labels are drawn with:
for i=1 upto 19:

col_one_three_f(col1[i]st,i,1);
endfor;
label(textext("I"),col1[1]-(0,10u));
label(textext("$S$") scaled 1.5,

col1[19]+(col1[19]-col1[18]));

4.7.3 Column III

The labels of column iii are drawn using the same
macro as for column i:

for i=1 upto 19:
col_one_three_f(col3[i]st,i,3);

endfor;
label(textext("III"),col3[1]-(0,10u));
label(textext("$A$") scaled 1.5,

col3[19]+(col3[19]-col3[18]));

4.7.4 Column IV

The labels in column iv are drawn using the macro
gn_epactl seen above.

It should be noted that some of the values here
are written twice, but this causes no harm.

pair GNE;
for i:=1 upto 37:

GNE:=whateverpair;
GNE=gn_epactl(i);
label.rt(gstring(xpart(GNE)),

col4[ypart(GNE)]);
endfor;

4.7.5 Column VI

The labels in the circles of column vi are drawn
by processing the strings col6[]st which were pre-
pared above. The postprocessing is done using the
macro col_six_f:
vardef col_six_f(expr list,l)=

save n,i;n=0;
for $=scantokens(list):

n:=n+1;
endfor;
i=0;
for $=scantokens(list):

i:=i+1;
if n>1:

If there is more than one value, the extreme
values are put at 2u below and above the center,
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and the other values (if any) are spread evenly in-
between:

label(textext(decimal $) scaled .7,
col6a[l]
+(0,-2u+(i-1)*(4u/(n-1))));

else:

If there is only one value, it is centered; there
is only one such case:

label(textext(decimal $) scaled .7,
col6a[l]);

fi;
endfor;

enddef;

The labels are then drawn with:
for i=1 upto 30:

col_six_f(col6[i]st,i);
endfor;
label(textext("VI"),col6[1]-(0,10u));
label(textext("$S$") scaled 1.5,

col6[30]+2(col6[30]-col6[29]));

4.7.6 Column VII

In this column, we merely output the value of the
epact.

for i:=1 upto 30:
label.rt(ep_st((24-i) mod 30),col7[i]);

endfor;
label(textext("VII"),col7[1]-(0,20u));
label.rt(textext("Epact:") rotated 90,

col7[1]-(0,10u));

4.7.7 Column VIII

In this column, there are labels for the Julian calen-
dar on the left, and labels for the Gregorian calendar
on the right. In the first case, there are always three
values of S in each circle, and the labels can be pro-
duced by a simple loop.

for i=1 upto 7:
for j=1 upto 3:

v:=((4+i) mod 7)+(j-1)*7;
label(textext(decimal(v)) scaled .5,

col8[i]-(col_shift_eight_a,0)
+((0,1.4u)

rotated ((j-1)*120)));
endfor;

endfor;

For the Gregorian calendar, there are some ir-
regularities, and we have decided to explicit each
line of the labels. The following lines could be pa-
rameterized, but it’s not worth it.

secular_year(1,1)(16,20,24);
secular_year(1,2)(28,32,36,40);
secular_year(1,3)(44,48,52,56);
secular_year(1,4)(60,64,68,72);
secular_year(1,5)(76,80,84);

secular_year(2,1)(17,21);
secular_year(2,2)(25,29,33,37);
secular_year(2,3)(41,45,49,53);
secular_year(2,4)(57,61,65,69);
secular_year(2,5)(73,77,81);
...

The macro secular_year is defined as follows.
It distributes all lines evenly, since there are always
five of them:
vardef secular_year(expr i,j)(text sec)=

save vd;
% vertical shift of the first line
vd=4u;
label(textext(sval(sec)(decimal))

scaled .5,
col8[2i-1]+(10u,vd-(j-1)*.5vd));

enddef;

The sval macro builds a string with space-
separated values:
vardef sval(text sec)(text f)=

save s;string s;
for $=sec:

if unknown s:
s=f $;

else:
s:=s & " " & f $;

fi;
endfor;
s

enddef;

4.7.8 Column IX

In this column, we show all dominical letters result-
ing from the combination of the two parts of the
year.

for i=1 upto 13:
label.rt(textext(DL(1+(3+i) mod 7)),

col9[i]);
endfor;
label(textext("IX"),col9[1]-(0,10u));
label.rt(textext("Dom. L.") rotated 90,

col9[1]-(0,10u));

4.7.9 Column X

The labels in column x fit in rounded rectangles.
In order to produce these “rectangles”, we use the
rboxes package and draw a rectangular box with
rounded corners. There are seven boxes, rb1 to rb7:

rbr=rbox_radius;
rbox_radius:=15pt;
for i=1 upto 7:

rboxit.rb[i]("");
rb[i].c=col10[i];
rb[i].dx=9u;rb[i].dy=3.3u;
unfill bpath(rb[i]);
drawboxes(rb[i]);
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endfor;
rbox_radius:=rbr;

Once the boxes are drawn, their contents can
be added. Each box has three lines, the upper and
lower ones extend on the whole width, and the mid-
dle one is split in two parts, one left of the center,
and the other one right of the center.

The upper and lower lines are produced with
the yn (year number) macro, whose first parameter
is the point number, and whose second parameter is
the line number within the label, the first line being
here at the top. The middle line is produced with
yn_left and yn_right.

yn(1,1)(3,8,14,25,31);
yn_left(1)(36,42);
yn_right(1)(53,59);
yn(1,3)(64,70,81,87,92,98);
...

Then, we have the three macros for setting a
year.

yn puts the labels at symmetric positions in the
two cases in which it is called.

vardef yn(expr i,j)(text y)=
save vd;
% vertical shift of the first line
vd=2u;
label(textext(sval(y)(tddec)) scaled .5,

col10[i]+(0,vd-(j-1)*vd));
enddef;

yn_left and yn_right just put the label at
symmetric positions on the left and right of the cen-
tral point selected by i:

def yn_left(expr i)(text y)=
label.rt(textext(sval(y)(tddec)) scaled .5,

col10[i]+(-10u,0));
enddef;

def yn_right(expr i)(text y)=
label.lft(

textext(sval(y)(tddec)) scaled .5,
col10[i]+(10u,0));

enddef;

4.7.10 Column XI

In this column, we output the seven dominical let-
ters.

for i=1 upto 7:
label.ulft(textext(DL(1+(10-i) mod 7)),

col11[i]);
endfor;
label(textext("XI")

rotated (angle(s1r0-s8l0)-90),
.6[col11[8],col11[7]]);

4.8 Drawing the Easter grid

Once the various slices of the Easter grid have been
defined, the grid can be drawn easily. We first draw
the slots, then the labels.

4.8.1 The slots

The Easter slots are drawn with the following macro:
vardef draw_easter_table_slices=

save oldpen;
oldpen=savepen;
% divisions between slices:
for i=1 upto 8:

draw s[i]l0--s[i]l5;
endfor;
% external boundary:
draw s8l5--s8l0--s1l0--s1l5--cycle;
% internal divisions:
for i=1 upto 7:

for j=1 upto 4:
draw s[i]r[j]--s[i+1]l[j];

endfor;
endfor;
% March/April divisions:
pickup pencircle scaled 2pt;
draw s8l3--s7r3--s7l3--s6r3--s6l3--

s5r3--s5l4--s4r4--s4l4--s3r4--
s3l4--s2r4--s2l4--s1r4;

pickup oldpen;
enddef;

4.8.2 Easter grid labels

For the labels inside the Easter grid, we first define
an auxiliary macro. This macro takes a slice number
x and a position y within the slice, and puts the label
lab in the middle of the corresponding slot:
def label_easter_slot(expr x,y,lab)=

label(lab,.5[s[x]r[y],s[x+1]l[y+1]]);
enddef;

Now, the main macro filling the Easter grid
slots is the following. We first fill every slot with
the appropriate number, and add a special case for
April 25th (EG = 25, G > 11 and DL = C):
vardef draw_easter_table_labels=

save laban,march,april,note,sl,j;
string march,april,note;
% 35 dates from March 22 till April 25
for i=1 upto 35:

sl:=1+(7-(i mod 7)) mod 7;
j:=4-floor((i-1)/7);
label_easter_slot(sl,j,

textext(if i=35:"25 (a)"
else:

decimal(if i>10:
i-10

else:
i+21
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fi)
fi)

if i<8:
scaled .7

fi);
endfor;

Then, we need to add two braces, as well as the
footnote. This is done as follows:

laban=angle(s8l0-s8l5);
march="$\underbrace{\kern" &

decimal(arclength(s8l3--s8l5)-5) &
"bp}_{\hbox{MARCH}}$";

april="$\underbrace{\kern" &
decimal(arclength(s8l0--s8l3)-5) &

"bp}_{\hbox{APRIL}}$";
note="\footnotesize "&

"\parbox{4cm}{\raggedright "&
"Note (a)...}";

label(textext(march) rotated laban,
.5[s8l3,s8l5]
+3u*unitvector((s8l0-s8l5)

rotated -90));
label(textext(april) rotated laban,

.5[s8l0,s8l3]
+3u*unitvector((s8l0-s8l5)

rotated -90));
label(textext(note),C+35u*right);

enddef;

5 Conclusion

We have eventually completed the analysis and re-
construction of Garrigues’s nomogram. To some ex-
tent, the reconstruction was straightforward, and
could have been achieved without a deep under-
standing of the nomogram, only by a mere observa-
tion. However, a good reconstruction almost always
benefits from an initial analysis, and is useful if the
structure has to be explained. Such conclusions had
already been made in a previous work on a complex
drawing in descriptive geometry (Roegel, 2007).
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