Onboard -Plasmatron Hydrogen Production

Daniel R. Cohn
Massachusetts Institute of Technology

Heavy Vehicle Systems Review
Argonne National Laboratory
April 19, 2006
Team

• **MIT PLASMA SCIENCE AND FUSION CENTER**
 - L. Bromberg
 - D.R. Cohn
 - A. Rabinovich
 - K Hadidi
 - N. Alexeev
 - A. Samokhin

• **MIT SLOAN AUTOMOTIVE LABORATORY**
 - J. Heywood
 - J. Topinka
 - J. Goldwitz
 - G. Ziga
 - N. Margarit

• **ARVINMERITOR**
 - Tier 1 US automotive and heavy truck components manufacturer
 - Commercializing plasmatron technology licensed from MIT
 - S. Crane, N. Khadiya, R. Smaling et. al
Plasmatron Reformer Technology

• Compact technology for production of hydrogen-rich gas
 – Special low power plasma promotes partial oxidation conversion of gasoline, diesel, bio oils, and other fuels to hydrogen-rich gas

• Advantages:
 – Fast startup and rapid response to transient conditions
 – Relaxation or elimination of reformer catalyst requirements
 – Compact
 – Efficient
 – Robust capability for onboard multi-fuel reforming (can process difficult to reform fuels, e.g. diesel, bio-oils, ethanol)
Potential Applications

- Enhanced diesel engine exhaust aftertreatment using hydrogen rich gas
 - NOx emissions reduction (regen of NOx traps, hydrogen SCR)
 - Particulate emissions reduction (regen of diesel particulate filters)
- Alternative fuel conversion to hydrogen-rich gas (bio-oils, ethanol)
- HCCI engines using diesel and other fuels
- Hydrogen enhanced spark ignition engines
 - ultra-lean operation
 - Improved efficiency
 - Further reduction of emissions
Accomplishments

• Plasmatron technology transferred to industry (ArvinMeritor) for commercialization

• DOE investment in plasmatron technology has been leveraged into a much greater development effort by industry

• Plasmatron technology was recipient of the 1999 Discover Award for Technological Innovation in Transportation (in competition with Toyota Prius hybrid vehicle)
Hydrogen-Rich Gas Production Using Partial Oxidation Reforming

• Add sufficient oxygen from air to bind all carbon in fuel as CO; for iso-octane (representative of gasoline)

\[C_{8}H_{18} + 4 (O_{2} + 3.8 N_{2}) \rightarrow 8 \text{CO} + 9 \text{H}_2 + 15.2 \text{N}_2 \]

• Reaction is mildly exothermic
 - Slow reaction
 - Approx 15% of energy released in the reformation process
 - Difficult to startup and maintain under transient conditions
Plasmatron Fuel Reformer

Hydrogen Generation Process
Plasma initiates and maintains the chemical reaction which liberates hydrogen from diesel fuel.

Diesel fuel
Air
Plasma
Reaction Chamber
Optional catalyst for increased hydrogen yield
Hydrogen
• Plasma created in the gas flow
• Gas flow stretches the plasma
• Plasma extinguishes and re-establishes (1 kHz)
• Discharge over a large volume

END VIEW
Low current gasoline plasmatron operating parameters

- **Power**: W 250
- **Plasma current**: A 0.1 - 0.4
- **H2 flow rate**: slpm 10-200
- **Length**: cm 40
- **Volume**: liter 2
- **Weight**: kg 3
Diesel Fuel Reforming

• Heavy fuels reformed into hydrogen and light hydrocarbons
 – Low oxygen content
 – Low or no soot
 – Fast turn-on

• Reformate can be further processed by catalyst
 – Absence of free oxygen minimizes hot spots
 – High hydrogen yield
Diesel reforming without catalyst

<table>
<thead>
<tr>
<th>Electric power</th>
<th>W</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>O/C</td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>Diesel flow rate</td>
<td>g/s</td>
<td>0.8</td>
</tr>
<tr>
<td>Corresponding chemical power</td>
<td>kW</td>
<td>35</td>
</tr>
</tbody>
</table>

Concentration (vol %)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>8.2</td>
</tr>
<tr>
<td>O2</td>
<td>1.4</td>
</tr>
<tr>
<td>N2</td>
<td>68.7</td>
</tr>
<tr>
<td>CH4</td>
<td>2.6</td>
</tr>
<tr>
<td>CO</td>
<td>14.3</td>
</tr>
<tr>
<td>CO2</td>
<td>4.7</td>
</tr>
<tr>
<td>C2H4</td>
<td>2.4</td>
</tr>
<tr>
<td>C2H2</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- Energy efficiency to hydrogen, CO and light HC: 70%
- Soot (opacity meter): 0
Plasma enhanced partial oxidation reforming

• Homogeneous (non-catalytic)
 • Conversion of liquid fuels into gaseous fuels (including hydrogen, CO, methane, ethylene)

• Plasma catalytic reforming
 • Reduced requirement catalyst can be used to further increase the hydrogen yield from homogeneous reforming
Summary of plasmatron reformer development at MIT

• Effective reformation of a wide variety of fuels: gasoline, diesel, bio-oils, natural gas

• Fast time response/start up time
 • Virtually instantaneous with reduced yield

• Compact device
 • 2 liters for 100 kW of reformate (hydrogen rich gas)

• Electrical Energy consumption:
 • 1 - 3% of the combustion power of the reformate

• Wide range of operation (factor of 20 hydrogen rich gas output)
Regeneration of NOx trap

Normal Operation
- Exhaust from diesel engine
 - NOx
 - Absorber Catalyst
 - Reduced NOx

Regeneration
- Small side stream of diesel fuel
 - Plasmatron Reformer
 - Hydrogen rich gas
 - Absorber Catalyst

Advantages of regeneration with H₂-rich gas:
- Greater effective operating range (lower temperature)
- Reduced fuel penalty
- Reduced adverse effects of sulfur
H$_2$-Assisted NOx Traps: Test Cell Results
Vehicle Installations

Sam Crane
August 28, 2003
Gen H Fuel Reformer

• After-treatment Suitable
 • Reforms Diesel: 22% H₂
 • Low soot

• Enclosed housing
 • EMI reduced
 • Safety improvement

• New Power Supply
 • Under 250W consumption
 • Minimal heat rejected
 • Compact transformer

• High-temperature flange seals
 • Reduced leakage
QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
H2-Assisted NOx Trap: Test Set-up

- Engine
- Switching Valve
- Fuel Reformer
- NOx Trap A
- NOx Trap B
- Brake Valve
- Power
- Air
- Fuel
- Reformate
- To Tailpipe
Test Cell Installation: H2-Assisted NOx Trap

Cummins 8.3L MY2000

Switching Valve

NOx Traps 14L/leg
Bus H2-Assisted NOx Trap Installation

- Access Door
- Fuel Reformer Box
- NOx Trap: 21L/leg
Summary of Results: H2-Assisted NOx Trap

- Regeneration Fuel Penalty Reduction of roughly 50% at moderate exhaust temperatures
- Idle regenerations achieved
- Hydrocarbon slip dramatically reduced
- Dual Leg System installed and operating on a Transit Bus: 80 – 90% NOx Reduction
- Single Leg Bypass System installed and operating on an F250 Truck: 70% NOx Reduction
QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.
High Efficiency, Low Emission Vehicle Concept

- Fuel Tank
- Onboard Plasmatron Fuel Converter
- Gasoline engine

- Gasoline
- Hydrogen-rich gas (H₂+CO)

- Reduced pollutants (NOₓ, Hydrocarbons)
- Increased efficiency
Gasoline engine testing at MIT

- Hydrogen enhanced combustion stability allows very lean burn (high air to fuel ratio) without misfire
- Naturally aspirated (no turbocharging) with conventional compression ratio
- Ultralean operation increases efficiency 15% and decreases NOx by a factor of 100

SAE-2003-01-0630

Lean burn characteristics of a gasoline engine enriched with hydrogen rich gas from a plasmatron fuel reformer

E. Tully and J.B. Heywood

MIT Dept. of Mechanical Engineering and Sloan Automobile Laboratory
Octane Enhancement from Hydrogen Addition

(From experiments at MIT Sloan Automotive Laboratory, 2003)
High Compression Ratio, Highly Turbocharged Operation through Improved Knock Resistance

- MIT experiments show that knock resistance is substantially improved by moderate addition of hydrogen rich gas to gasoline (15 octane number increase)
- The combination of enhanced knock resistance and enhanced combustion stability could increase net efficiency by up to a factor of 1.3
Future Directions

- Reformer enhanced regeneration of diesel particulate filters
- Hydrogen SCR for NOx aftertreatment
- Control of HCCI engine operation
- Use with fuel cell for auxiliary power in diesel trucks
- Emission reduction and higher efficiency in spark ignition engines