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Towards a Mathematical Formulation of the Rodin Coil Torus 

  

Russell P. Blake 

  

Introduction 

  

The following is an attempt to formalize the mathematics of the Rodin Torus.  The goal is 

to attain a higher level of understanding of the Rodin Torus than can be obtained merely 

by observing the numerical sequences generating the Torus. 

  

Key to the development is the use of decimal parity.  Decimal parity is an operation that 

sums the digits in a number repeatedly to yield a single digit, the decimal parity digit for 

the original number. 

  

For example the digits in the number 2,048 sum to 2+0+4+8 = 14, and the digits in 14 

sum to 1+4 = 5.  The decimal parity digit of 2048 is therefore 5. 

  

It is interesting that all of the same results can be derived if the modulo operator is used 

in place of the decimal parity operator.  The modulo operator is the remainder operator: x 

mod y is the remainder of x divided by y.  The difference in the resulting patterns of 

digits is that everywhere there is a 9 decimal parity, there would be a 0 modulus.  Since 

there is a one-to-one correspondence between the two approaches, the difference is 

apparently merely symbolic.  Nonetheless, we shall use the decimal parity operator in this 

development, and leave the modulo development as an exercise for the bored reader with 

too much time on his or her hands.   

  

In the development we discuss various series of numbers.  Each such series has an index, 

which we start at 1 and number sequentially, one element at a time.  (The series index 

could start at 0, but we are going to end up in matrices, which have an index starting at 1, 

so we’ll start at 1 with our series.)  The modulo operator is used for index arithmetic, 

since this is a more conventional approach.  However, a purely decimal parity 

development is possible merely by substituting “decimal parity = 9” anywhere “modulus 

= 0” is used. 

The Multiplicative Series 

  

Let mi denote the infinite series with each element the decimal parity of the 

multiplication series for digit i,  

i = 1, …, 9.  E.G. for i = 2,  

  

 m2 = { 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 1, 3, 5, …}   [1] 

  

Observation O1: 

  

 The series mi repeat with period 9.     [O1] 

  

Denote the j
th 

element of the series as aij, with j starting at 1.  Observation 1 means 

  

 aij = aik    iff   j mod 9 = k mod 9     [2] 
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Now consider the pair of series m1 and m8.  

  

 m1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, … }    [3] 

  

 m8 = { 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 7, … }    [4] 

   

Notice that 

  

 a19 = a89 = 9 

  

 a11 = a88 

  

 a12 = a87 

  

 a13 = a86 

  

 …and so on. We can state this more tersely (with the modulo operator taking 

precedence over the subtraction operator):  

  

  a1j mod 9 = a8(9-j mod 9) when j mod 9 ! 0,    [5] 

  

and 

  a1j = a8j = 9 when j mod 9 = 0 

  

  

Similarly, 

  

  a8j mod 9 = a1(9-j mod 9) where j mod 9 ! 0    [6] 

  

  

The same observations of the series m4 and m5 lead to a similar conclusion: 

  

 m4 = { 4, 8, 3, 7, 2, 6, 1, 5, 9, 4, 8, … }    [7] 

  

 m5 = { 5, 1, 6, 2, 7, 3, 8, 4, 9, 5, 1, … }    [8] 

   

  a4j mod 9 = a5(9-j mod 9) when j mod 9 ! 0    [9] 

  

  a4j = a5j = 9 when j mod 9 = 0 

  

  

And 

  

  a5j mod 9 = a4(9-j mod 9) where j mod 9 ! 0    [10] 
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And finally the same observations of the series m2 and m7 lead to a similar conclusion: 

  

 m2 = { 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, … }    [11] 

  

 m7 = { 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, … }    [12] 

   

  a2j mod 9 = a7(9-j mod 9) when j mod 9 ! 0    [13] 

  

  a2j = a7j = 9 when j mod 9 = 0 

  

  

And 

  

  a7j mod 9 = a2(9-j mod 9) where j mod 9 ! 0    [14] 

  

Next consider a different pattern in multiplication series, the m3 and m6 series. 

  

 m3 = { 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, …}    [15] 

  

 m6 = { 6, 3, 9, 6, 3, 9, 6, 3, 9, 6, 3, 9, …}    [16] 

  

This leads to the conclusions that, first, the series repeat, 

  

 a3j = a3(j mod 3)        [17] 

  

 a6j = a6(j mod 3)        [18] 

  

and, second, that the series are related as follows: 

  

 a6j = a3(3 - j mod 3) iff  j mod 3 ! 0     [19] 

  

 a6j = a3j  iff  j mod 3 = 0     [20] 

  

From these two series we can construct a new, artificial series, e, fabricated as follows: 

  

 e = {a61, a32, a33, a34, a65, a66, a67, a38, a39, a310, …}  [21] 

  

Or, numerically,  

  

 e = {6, 6, 9, 3, 3, 9, 6, 6, 9, 3, 3, 9, 6, 6, 9, 3, 3, 9, … }  [22] 

  

This series, which we call the equivalence series, has the representative term of 

  

 e = { …, aXj, … }         [23] 

where  X = 3 if  int((j+2)/3) odd 

and   X = 6 if even   
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Now consider the doubling series: 

  

{ 2, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024, … }   [24] 

  

which has decimal parity of  

  

 d = { 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, … }     [25] 

    

Observation: 

  

 This is a repeating series with period 6. 

  

Or in other words, denoting the j
th

 element of this series by dj,   

  

 dj = dk   iff  j mod 6 = k mod 6.     [26] 

  

  

  

Let the reversed doubling series be denoted by b: 

  

 b = { 1, 5, 7, 8, 4, 2, 1, 5, 7, 8, 4, … }     [27] 

  

This also repeats with period 6.  With the j
th

 element of b denoted by bj, 

  

 bj  = d(7 – j mod 6)  if j mod 6 ! 0     [28] 

and 

 bj = d1 = 2   if j mod 6 = 0     [29] 

  

The Torus 

  

The torus is constructed from the above series.   

  

Each element of the torus is an element of multiple series.   

  

We will begin by considering the 2-dimensional surface of the torus.  In two dimensions, 

each element of the torus is also an element of either the doubling circuit, the reverse 

doubling circuit, or the series e.  Each element is also a member of two multiplicative 

series that are not pairs (in the sense that m1 and m8 are pairs.) 

  

Let’s first examine the 8154 torus.  The surface of this torus contains the series m8, m1, 

m5, and m4.   
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Here is a fragment, with rows and columns numbered: 

  

  1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

1 6 6 9 3 3 9 6 6 9 3 3 9 6 6 9 3 3 9 6 

2 5 1 2 4 8 7 5 1 2 4 8 7 5 1 2 4 8 7 5 

3 2 1 5 7 8 4 2 1 5 7 8 4 2 1 5 7 8 4 2 

4 9 6 6 9 3 3 9 6 6 9 3 3 9 6 6 9 3 3 9 

5 7 5 1 2 4 8 7 5 1 2 4 8 7 5 1 2 4 8 7 

6 4 2 1 5 7 8 4 2 1 5 7 8 4 2 1 5 7 8 4 

7 3 9 6 6 9 3 3 9 6 6 9 3 3 9 6 6 9 3 3 

8 8 7 5 1 2 4 8 7 5 1 2 4 8 7 5 1 2 4 8 

9 8 4 2 1 5 7 8 4 2 1 5 7 8 4 2 1 5 7 8 

1

0 

3 3 9 6 6 9 3 3 9 6 6 9 3 3 9 6 6 9 3 

1

1 

4 8 7 5 1 2 4 8 7 5 1 2 4 8 7 5 1 2 4 

1

2 

7 8 4 2 1 5 7 8 4 2 1 5 7 8 4 2 1 5 7 

1

3 

9 3 3 9 6 6 9 3 3 9 6 6 9 3 3 9 6 6 9 

1

4 

2 4 8 7 5 1 2 4 8 7 5 1 2 4 8 7 5 1 2 

1

5 

5 7 8 4 2 1 5 7 8 4 2 1 5 7 8 4 2 1 5 

1

6 

6 9 3 3 9 6 6 9 3 3 9 6 6 9 3 3 9 6 6 

1

7 

1 2 4 8 7 5 1 2 4 8 7 5 1 2 4 8 7 5 1 

1

8 

1 5 7 8 4 2 1 5 7 8 4 2 1 5 7 8 4 2 1 

1

9 

6 6 9 3 3 9 6 6 9 3 3 9 6 6 9 3 3 9 6 

  

  

Imagine the surface of the torus as a matrix, starting at the element t1 1, which is in the 

upper left corner: a 6.  The first subscript is the row, and the second is the column.   

  

For the 8154 torus, the following conditions hold: 

  

 t1 x = e         [30]  

  

where t1 x refers to the first row of the matrix.   

  

(Taking e1 as the first element of the matrix is arbitrary.  We could have taken any 

element in e, d, or b as the first element, and still have been able to construct the 

following formulae.  You can see this is so because e1, d1, and b1 all appear in the first 

column in some row (look at rows 14 and 18 for d and b.)  In fact there is no reason to 

start with the first element of either of these three series, since there is a row starting with  
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each element of each of the series, and any row could be the first row.  If a different 

origin were chosen, certain constants in the following development would be different, 

but the results would otherwise be the same.  These are some of the constants which are 

added to indices to make them match the matrix pattern.  Therefore do not focus overly 

on constants used as addends in index arithmetic.  Many of the multiplicative constants, 

on the other hand, are structural and would not change.) 

  

Also,  

 t2 1 = d5         [31] 

  

and in general,  

  

 t2 j = dj+4         [32] 

  

Similarly:  

  

t3 j = bj+5         [33] 

  

Further examination of the 8154 torus shows that 

  

 t4 j = ej+5          [34] 

  

Notice that the next element of the 4
th

 row t4 2 = e1, and t5 2 = d5, and t6 2 = b6. In other 

word t4 2 = t1 1, t5 2 = t2 1, and t6 2 = t3 1.  The second set of three rows is the same as the 

first set, shifted one column to the right.  This shift is the reason why the matrix we are 

examining lies on the surface of a torus.  Continuing, 

  

t5 j = dj+3  

  

t6 j = bj+4 

  

t7 j = ej+4 

  

 t8 j = dj+2 

  

 t9 j = bj+3 

  

 t10 j = ej+3 

  

 t11 j = dj+1 

  

 t12 j = bj+2 

  

 t13 j = ej+2 

  

 t14 j = dj 

  

 t15 j = bj+1 

  

 t16 j = ej+1 
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 t17 j = dj+5 

  

 t18 j = bj 

  

After row 18, the rows repeat:  t19 x = t1 x, t20 x = t2 x, so that in general 

  

 tj x = t(j mod 18) x        [35] 

  

Also, after 18 columns, the columns repeat: 

  

 tx k = tx (k mod 18)        [36] 

  

so that 

  

 tj k = t(j mod 18) (k mod 18)       [37] 

  

We now take the rather unconventional step (from the viewpoint of matrix algebra) of 

reading across the rows and columns diagonally.  For this to work we need to establish an 

equivalent to a left-to-right direction.  We arbitrarily designate up-and-right as left-to-

right, and up-and-left as left-to-right.  This tells us which direction in which to number 

our series as they increase.  (This convention can be reversed without loss of results, but 

the m8 series would become the m1 series, and vice-versa, and the m5 series would 

become the m4 series, and vice-versa.  This follows from the fact that they are the reverse 

of each other, so reversing the direction convention would exchange the series.) 

  

Using this convention, we note the following: 

  

 m81 = t9 1         [38] 

  

 m82 = t8 2 

  

 m83 = t73 

  

and in general 

  

 m8j = t(10-j) j  while j < 10       [39] 

  

Furthermore, this diagonal series repeats with period 6: 

  

 m81 = t9 7, m82 = t8 8       [40] 

  

Even more interesting is that the m8 series lies in every other diagonal row. For example,  

  

 t9 1 = m81         [41] 

  

 t9 3 = m87 

  

 t9 5 = m84 

  

and so on.   
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On the next row, 

  

 t10 2 = m86         [42] 

  

 t10 4 = m83 

  

 t10 6 = m89 

  

and on row 11: 

  

 t11 1 = m85         [43] 

  

 t11 3 = m82 

  

 t11 5 = m88 

  

These triples then repeat.  (The m8 indices in these series are called the family number 
groups by Marko Rodin.) 

  

A similar pattern exists for m1, where t17 1 = m11, and so forth.  Therefore each element 

of each row is also an element of either m1 or m8.  If the first element of the row is a 

member of m1, the next element is a member of m8, and vice-versa. 

  

Denote by “dep(n)” the function of taking the decimal parity of the number n, as defined 

in the Introduction.  Notice the general form for a row x starting with element m8h 

followed by element m1i 

  

 tx k  = m8dep(h+3(k-1))  for k odd     [44] 

  

 tx k  = m1dep(i+3(k-2))  for k even     [45] 

  

Similarly, if a row x starts with m1h followed by m8i, then 

  

 tx k  = m1dep(h+3(k-1))   for k odd     [46] 

  

 tx k  = m8dep(i+3(k-2))  for k even     [47] 

  

  

Observe next the first element of the 8154 torus.  This must be an element of m8 because 

t2 1 and t1 2 are the m15 and m16 elements of m1, so t1 1 must be in a diagonal containing 

the series m8.  Therefore, since t1 1 is a 6,  

  

t1 1 = m83  t1 2 = m16      [48] 

  

We also observe the following pattern along the rows of the torus: 

  

t2 1 = m15  t2 2 = m88      [49] 

  

t3 1 = m87  t3 2 = m11 
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t4 1 = m19  t4 2 = m83 

  

t5 1 = m82  t5 2 = m15 

  

t6 1 = m14  t6 2 = m87 

  

t7 1 = m86  t7 2 = m19 

  

t8 1 = m18  t8 2 = m82 

  

t9 1 = m81  t9 2 = m14 

  

t10 1 = m13  

  

t11 1 = m85 

  

t12 1 = m17 

  

t13 1 = m89 

  

t14 1 = m12 

  

t15 1 = m84 

  

t16 1 = m16 

  

t17 1 = m88 

  

t18 1 = m11 

  

In general we see that 

  

 tj 1 = m8dep(2j+1)   and   tj 2 = m1dep(2(j+2))   when j is odd  [50] 

  

  

 tj 1 = m1dep(2j+1)   and   tj 2 = m1dep(2(j+2))   when j is even  [51] 

  

From [44-47] and [50-51] we can see the general term of the 8154 torus for any element tj 

k is 

  

 tj k  = m8dep(dep(2j+1)+3(k-1))  for j odd and k odd   [52] 

  

 tj k  = m1dep(dep(2(j+2))+3(k-2))  for j odd and k even  [53] 

  

 tj k  = m1dep(dep(2j+1)+3(k-1))   for j even and k odd  [54] 

  

 tj k  = m8dep(dep(2(j+2))+3(k-2))  for j even and for k even  [55] 

  

 

 



 46 

 

 

 

 

At this point we see that any element tj k is determined both by [30-34] and also by [52-

55].  Next we will show that the same element is also determined by m4 and m5 in 

similar fashion. 

  

It is not difficult to see that the diagonal to the upper left is m5, with 

  

 t1 1 = m53 

  

  

Let’s look at the m5 series lying in every other row element. For example,  

  

 t9 1 = m57         [58] 

  

 t9 3 = m54 

  

 t9 5 = m51 

  

which then repeats as the row continues.  Likewise on the next row, 

  

 t10 2 = m56         [59] 

  

 t10 4 = m53 

  

 t10 6 = m59 

  

and on row 11: 

  

 t11 1 = m58         [60] 

  

 t11 3 = m55 

  

 t11 5 = m52 

  

Once again we see the family number groups in the indices here.   

  

If a row x starts with m5h and is followed by m4i, the general expression for the k
th 

element is 

  

 tx k  = m5dep(h+3(k-1))  for k odd     [58] 

  

 tx k  = m4dep(i+3(k-2))  for k even     [59] 

  

Similarly, if a row x starts with m4h followed by m5i, then 

  

 tx k  = m4dep(h+3(k-1))   for k odd     [60] 

  

 tx k  = m5dep(i+3(k-2))  for k even     [61] 
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These are identical in form to equations [44-47].   

  

Now let’s continue as before, taking a look at how h and i are determined for a row 

starting with m5h followed by m4i, or vice-versa. 

  

t1 1 = m53  t1 2 = m46      [62] 

  

We also observe the following pattern along the rows of the torus: 

  

t2 1 = m48  t2 2 = m52      [63] 

  

t3 1 = m54  t3 2 = m47 

  

t4 1 = m49  t4 2 = m53 

  

t5 1 = m55  t5 2 = m48 

  

t6 1 = m41  t6 2 = m54 

  

t7 1 = m56  t7 2 = m49 

  

t8 1 = m42  t8 2 = m55 

  

t9 1 = m57  t9 2 = m41 

  

t10 1 = m43   … 

  

t11 1 = m58 

  

t12 1 = m44 

  

t13 1 = m59 

  

t14 1 = m45 

  

t15 1 = m51 

  

t16 1 = m46 

  

t17 1 = m52 

  

t18 1 = m47 

  

In general we see that 

  

 tj 1 = m5dep(3+(j-1)/2)  and  tj 2 = m4dep(6+(j-1)/2)   when j is odd  [64] 

  

 tj 1 = m4dep(8+(j-2)/2)  and  tj 2 = m5dep(2+(j-2)/2)   when j is even  [65] 
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Equations [64-65] are in a form where it is pretty easy to see where they came from, by 

looking at the patterns in [63], but they are long-winded, and can be simplified to the 

equivalent 

  

 tj 1 = m5dep((j+5)/2)  and  tj 2 = m4dep((j+11)/2)   when j is odd  [66] 

  

 tj 1 = m4dep((j+14)/2)  and  tj 2 = m5dep((j+2)/2)   when j is even  [67] 

  

  

  

From [58-61] and [64-65] we can see the general term of the 8154 torus for any element tj 

k is 

  

 tj k  = m5dep(dep((j+5)/2)+3(k-1))  for j odd and k odd   [68] 

  

 tj k  = m4dep(dep((j+11)/2)+3(k-2)) for j odd and k even  [69] 

  

 tj k  = m4dep(dep((j+14)/2)+3(k-1))  for j even and k odd  [70] 

  

 tj k  = m5dep(dep((j+2)/2)+3(k-2))  for j even and k even  [71] 

  

We see now that [52-55] and [68-71] describe the same elements of the torus, the first set 

of equations using m8 and m1, the second set using m5 and m4.  This is in addition to the 

same elements being described by the doubling, reverse doubling, and equivalence series 

as shown in [30-37].  Each element is therefore triply determined. 

  

  

Enumeration of the Rodin Tori 

  

We have discussed the 8154 Rodin Torus.  Is it the only torus surface which can be 

created so that each point is multiply determined?  Simply put the answer is, “No.” 

  

Consider the torus constructed as follows: 

  

 e2          [72] 

  

 d6 

  

 b1 

  

The first few elements of this torus look like: 

  

e2 6 9 

d6 1 2 

b1 1 5 

e1 6 6 
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In this picture we show the first two elements of e2, d6, and b1, followed by e1 which 

forms the next row.  (Our primitive tools do not permit us to use subscripting for indexes 

in the pictures: sorry.  Please use your imagination.)  Refer to Appendix A for the d, b, 

and e series.  This is the 1845 torus, since m1 passes diagonally to the upper right through 

the e2’s 6, and m4 passes diagonally to the upper left: 

  

  

e2 6 9 

d6 1 2 

 

 

 

b1 

1 5 

e1 6 6 

  

Note that it is redundant to call this 1845, since if m1 is passing diagonally up and right 

through t1 1 then m8 must be parallel through t2 2.  Similarly if m4 is passing diagonally 

up and left through t1 1, then m5 must  be passing parallel through t2 1.  Since m8 is 

implied by the existence of m1, and m5 is implied by the existence of m4, we can call 

this the 14 torus and say just as much as if we called it the 1845 torus.   

  

The observant reader will have noticed that the above torus is in fact only rows 16 

through 19 of the 8154 discussed in the previous section torus (aka 85 torus by in our 

new, abbreviated nomenclature.)  The only difference is in the choice of origin.  In fact 

we do not really think of these as being separate tori at all, since they differ only in point 

of origin, and after all we did choose to start with e1 arbitrarily.  So the 14 torus is 

equivalent—if not identical—to the 85 torus. 

  

Thus far we really have only one torus.  Are there others that are truly different?  The 

simple answer is “Yes.” 

  

Let’s start by referring to Appendix A, which shows the doubling, backwards, and 

equivalence series for reference.   If a torus were to have any two rows one after the other 

with both starting with d1,  it would look like 

  

2 4 

2 4 

  

By referring to Appendix B, you can easily verify that there is no m-series with the 

sequence …4,2,….  Therefore this does not define a Rodin torus .   

  

The same can be said for the rows starting with d1 followed by d2, and so on.  This leads 

to the conclusion that the d row must not be followed by a d row for a Rodin torus to 

emerge.  

  

A similar set of observations leads to the conclusion that a b row must not be followed by 

another b row.   
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Even if a d row is followed by a b row, a Rodin torus is not always created.  For example 

if a d1 row is followed by a b1 row, the result is not a Rodin torus: 

  

2 4 

1 5 

  

There is no m-series with 1 followed by 4, or with 5 followed by 2 (see Appendix B 

again. 

  

In Appendix C we have listed exhaustively the rows starting with dj, 0<j<7, and then 

following with each possible row bk with 0<k<7.  These entries look like: 

  

      2       

    e6 9 6     

  1   4 8     

      1 5     

    e5 3 9 28   

              

  

The red (if you have a color copy) outer numbers in bold indicate the indices for d (on the 

top) and b (to the left.)  In this case we have d2 and b1.  The intersection of the column for 

the d index and the row for the b index is the origin of the matrix in each case.  (We 

abandon at this point the notion that the origin must be e1.  Since it is arbitrary we can set 

it where we like.)  This d1 element is below the e6 line in this example, and contains a 4 

as d2.  The next cell to the right is d3 = 8.  Below are the first two elements of b1: 1, 5 (see 

Appendix A.)   

  

These 4 cells define the torus: reading from b1 up and to the right we see the m-series 1,8, 

which is m7.  Since this diagonal is one diagonal below the origin, we know the diagonal 

up and right through the origin must m2.  Up and left through the origin is the series 5,4, 

which is m8.  This is therefore the 28 Rodin torus.   

  

Knowing this is the 28 torus permits us to deduce the e rows above and below the d-b 

row pair.  For example we know the up-right diagonal through the 5 cell must be an m2, 

and 5 is preceded by 3 in m2, so below the 1 we can wrote a 5.  Similarly we can fill in 

the other e series slots, and deduce that e5 is following b1, while e6 is preceding d2.  The 

e-series are a result of this being a 28 torus; it is not hard to see that nothing else will 

work. 

  

Appendix C therefore contains an exhaustive list of Rodin tori which can be constructed 

from rows in which a d row is followed by a b row.   

  

Similarly Appendix D contains an exhaustive list of Rodin tori which can be constructed 

from rows in which a b row is followed by a d row.  

  

Now the m-series that map onto the Rodin torus are the m1 & m8, m4 & m5, and m2 & 

m7 pairs.   It is not hard to show that the two m-series passing through the origin in a 

Rodin torus cannot be pairs.  In other words an 88 or an 81 torus is not possible.   
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You have only to try it to see it:  here is an 88 torus: 

  

7   7 

  8   

6   6 

  

If the 8 is in the origin, you see that we would have to have a d or b row with 7, x, 7, 

where x is any d or b series number.  But no such sequence exists.  (Similarly 6, x, 6 is 

not an e series.)  So an 88 torus cannot be built.  Similar trials show that a torus must 

have components from two separate number pairs.   

  

Therefore, although there are 6 m-series, there are not 36 possible Rodin tori.  Here is a 

table, with blank entries for those we know cannot be built. 

  

  1 2 4 5 7 8 

1   12 14 15 17   

2 21   24 25   28 

4 41 42     47 48 

5 51 52     57 58 

7 71   74 75   78 

8   82 84 85 87   

  

So ther are 24 possible Rodin tori, at least from this point of view.  But we have shown 

that restrictions on the placement of rows, such as adjacent d and b rows, prevents the 

formation of all possibilities.  In fact only 6 Rodin tori can actually be constructed, as 

shown in Appendices C and D.   

  

It may appear to you that there are actually 12 tori in the Appendices.  Remember that 

because of pairing of series, some tori which look different at the origin are actually 

identical:  85 torus = 14 torus, for example.  Here is the above table, with the possible tori 

only in large font, and the impossible ones smaller: 

  

  1 2 4 5 7 8 

1   12 14 15 17   

2 21   24 25   28 

4 41 42     47 48 

5 51 52     57 58 

7 71   74 75   78 

8   82 84 85 87   
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Here are the possible equivalent Rodin tori: 

  

14 85 

17 82 

25 74 

28 71 

41 58 

47 52 

  

We will use either of these pair members to denote them both interchangeably. 

The 3D Rodin Torus 

  

Now that we know how many different 2D tori can be constructed, it is tempting to try to 

construct a 3D torus.  

  

Consider the 85 torus we discussed first.  We can represent this as a vector of series going 

down the page.  Above we showed this as extending off to the right: 

  

 e1  e2 e3 …       [73] 

 d5  d6 d1 … 

 b6 … 

 e6 … 

 d4 … 

 b5 … 

 e5 … 

 … 

  

Suppose instead we look at this series from the left edge: 

  

  

 e1  e2 e3 …       [74] 

 d5  d6 d1 … 

 b6 … 

 e6 … 

 d4 … 

 b5 … 

 e5 … 

 … 
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We see the starting element of each row, but the other elements extend down into the 

paper and are hidden from view.  This is no disadvantage, however, since we know from 

the starting element all the elements that must follow in the series: 

  

 e1          [75] 

 d5 

 b6  

 e6  

 d4  

 b5  

 … 

  

Now lets try to build the same series off to the right, remembering that we see only the 

first element of each row: each row will extend down into the paper: 

  

 e1 d5 b6 e6 d4 b5 e5 …   [76] 

  

d5 

  

 b6  

  

 e6  

  

 d4  

  

 b5  

  

We now have two intersecting tori; they intersect at the e1 series in the corner.  To really 

have a 3D torus, we need to fill in the blanks. 

  

According to Appendix C, d5 can be followed by either of e1, e3, or e5.  Let’s plunge in 

and choose e1 arbitrarily.  (We will see in a moment that this choice is not crucial.)   

  

  

 e1 d5 b6 e6 d4 b5 e5 … 14  [77] 

  

d5 e1 ? 

  

 b6  

  

 e6  

  

 d4  

  

 b5  

  

 … 

  

 14 
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The number in bold is the torus number, found using the first complete d-b or b-d pair in 

the row or column, then looking it up in Appendix C or D, respectively. 

  

Now notice the ?: b6 must be followed by a d in its column.  But notice also that the e1 we 

just added must be followed by a b in its row, since it is preceded by a d.  So in the spot 

marked with a ?, there is no row that can work.   

  

Hence we cannot build a 3D torus if both original intersecting tori are in the d, b, e 
sequence. 

  

We speculate that the same will hold true if both are in the b, d, e sequence. 

  

Let’s therefore try to build one by adding a b, d, e sequence to the right instead.  We’ll 

choose the sequence to the right as a 25 (aka 74) torus.    

  

It is useful to notice from Appendices C and D that d, b, e sequence indices always 

decrease while the b, d, e indices always increase.  In a d, b, e sequence, if we have di ,  

bj, ek, then next we’ll see di-1, bj-1, ek-1 (unless i, j, or k =1, in which case we’ll see a 6 

next.  Similarly if we have bi,  dj, ek we’ll see next bi+1, dj+1, and ek+1, (unless i, j, or k = 6, 

in which case we’ll see a 1 next.)   These observations help us construct the tori as we 

proceed. 

  

Choose again e1 for the first blank position: 

  

 e1 b5 d2 e2 b6 d3 … 25   [78] 

  

d5 e1 ? 

  

 b6  

  

 e6  

  

 d4  

  

 b5  

  

 … 

  

 14 
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From Appendix C possible followers of d2 for the ? spot are b1, b3, or b5.  From Appendix 

D each of these may have a predecessor of e1 on the second row.  Choose b1; this 

determines the rest of the row to the right:    

  

 e1 b5 d2 e2 b6 d3 … 25   [79] 

  

d5 e1 b1 d6 e2 b2 … 58 

  

 b6  ? 

  

 e6  

  

 d4  

  

 b5  

  

 … 

  

 14 

  

There are no more choices: the tori are now completely determined.  

  

For example the spot where the ? rests now is also determined.  b5 followed by e1 must be 

(from Appendix C) a 52 (aka 47) torus.  The question mark must therefore be d1 followed 

downwards by b4; the remainder of this column is now determined: 

  

 e1 b5 d2 e2 b6 d3 … 25   [80] 

  

d5 e1 b1 d6 e2 b2 … 58 

  

 b6  d1  

  

 e6  b4 

  

 d4  e6 

  

 b5  d6 

  

 … … 

  

 14 47 
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On the third row b6, d1 defines a 17 torus, so we get: 

  

 e1 b5 d2 e2 b6 d3 … 25   [81] 

  

d5 e1 b1 d4 e6 b6 … 58 

  

 b6  d1 e5 b1 d2 e6 … 17 

  

 e6  b4  

  

 d4  e6 

  

 b5  d6 

  

 … … 

  

 14 47 

  

Filling out the remainder of the grid we get: 

  

 e1 b5 d2 e2 b6 d3 … 25   [82] 

  

d5 e1 b1 d6 e2 b2 … 58 

  

 b6  d1 e5 b1 d2 e6 … 17 

  

 e6  b4 d1 e1 b5 d2 … 74 

  

 d4  e6 b6 d5 e1 b1 … 41 

  

 b5  d6 e4 b6 d1 e5 … 82 

  

 … … … … … … 

  

 14 47 28 85 52 71  

  

Each of the bold numbers is labeling an infinite plane extending down from the surface of 

the paper, each holding the surface of a Rodin torus.  This means that each point is 

determined by 4 multiplicative series as well as 2 of the d, b, or e series of which it is an 

element.  Thus each element is locked into place by being a member of no less than 6 
series at once.  This is no small amount of regularity! 

  

Notice also that we have used all twelve of the permissible Rodin tori so far.  Let’s go 

one more in each direction and see what happens: 
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 e1 b5 d2 e2 b6 d3 e3 … 25  [83] 

  

d5 e1 b1 d6 e2 b2 d1 … 58 

  

 b6  d1 e5 b1 d2 e6 b2 … 17 

  

 e6  b4 d1 e1 b5 d2 e2 … 74 

  

 d4  e6 b6 d5 e1 b1 d6 … 41 

  

 b5  d6 e4 b6 d1 e5 b1 … 82 

  

 e5 b3 d6 e6 b4 d1 e1 … 25  

  

 … … … … … … … 

  

 14 47 28 85 52 71 14 
  

At this point we can’t be too surprised that the series of tori looks like it is going to 

repeat. 
  

It is worth pointing out that the columns are filled with d, b, e series, while the rows are 

filled with b, d, e series.   
  

Having constructed a 3D Rodin torus, it is worth asking whether there is more than one.  

This should be our next issue. 

Let’s upgrade our torus notation to 3 dimensions.  ti j k is now the torus element, with i 

denoting the index of the row down the page, j denoting the index of the column across 

the page, and k denoting the index of the element extending perpendicular to the surface 

of the page. 
  

Recall in [78] that after choosing t1 2 1 = e1, we had three choices for the ?  

(t2 2 1): b1, b3, and b5.  We chose b1 and found this determined the torus of [82] (no pun 

here with the 82 torus.)   
  

Let’s try b3 instead of b1: 
  

 e1 b5 d2 e2 b6 d3 … 25   [84] 

  

d5 e1 b3 d6 …   X 

  

 b6  

  

 e6  

  

 d4  

  

 b5  

  

 … 

  

 14 
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If t2 3 1 = b3, then t2 4 1 must be d6, because t2 1 1 = d5, and since this is a b-d-e sequence, the 

next d index must be 5+1 = 6.  But Appendix D says that in the 25 torus determined by 

b3, d6, the preceding row must be e5, not e1 as in [78].  Therefore b3 cannot be a candidate 

for t2 3 1. 

  

Similarly the predecessor of b5, d6 must be e3, so b5 " t2 3 1. t2 3 1 = b1 is the only candidate 

that produces a 3D Rodin Torus. 

  

What about using a different choice for t2 2 1.  Previously we tried e1, and that worked.  

But recall that e3 and e5 were legal candidates.  We can see that these should work, just 

by the logic of the preceding two paragraphs.  Let’s try t2 2 1 = e3: 

  

  

  

 e1 b5 d2 e2 b6 d3 … 25   [85] 

  

d5 e3 b5 d6 e4 b6 … 82 

  

 b6  d5 e1 b1 d6 e2 … 41 

  

 e6  b4 d1 e1 b5 e2 … 74 

  

 d4  e2 b4 d5 e3 b5 … 17 

  

 b5  d4 e6 b6 d5 e1 … 58 

  

 … … … … … …  

  

 14 71 52 85 28 47 

  

This is our second 3D Rodin torus.  Notice that the m-series making up this 3D torus are 

the same set of 12 m-series making up [82], but in the reverse order. 

  

We must of course try e5 next: 

  

 e1 b5 d2 e2 b6 d3 … 25   [86] 

  

d5 e5 b3 d6 e6 b4 … 25 

  

 b6  d3 e3 b1 d4 e4 … 74 

  

 e6  b4 d1 e1 b5 d2 … 74 

  

 d4  e4 b2 d5 e5 b3 … 74 

  

 b5  d2 e2 b6 d3 e3 … 25 

  

 … … … … … … 

  

 14 14 85 85 85 14 
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Here only 4 of the 12 possible m-series are used to build the torus, and since they are 

pairs, there are really only 2 in use: 25 and 14.   

  

What’s Next 

  

From this point there are several research directions of interest.  One is to understand in a 

precise way how the number series lay on the surface of the torus.  Another is to catalog 

the complete set of 3D tori, much as was done for the 2D tori in Appendices C and D.  It 

is also interesting to conjecture that a 4D or higher dimensional torus might exist.   

  

In the long run there are a number of fields of mathematics which are—with this work—

now potentially applicable to the Rodin torus.  These include matrix algebra, vector 

calculus, topology, and time series analysis.  These in turn render much of physics 

accessible, including in particular classical electrodynamics.   

Appendix A:  d, b, and e Series 

  

  

  1 2 3 4 5 6       

d 2 4 8 7 5 1       

                    

  1 2 3 4 5 6       

b 1 5 7 8 4 2       

                    

  1 2 3 4 5 6       

e 6 6 9 3 3 9       

  

  

Appendix B:  M-Series 

  

 

 

  

  1 2 3 4 5 6 7 8 9                           

m1 1 2 3 4 5 6 7 8 9                           

                                              

  1 2 3 4 5 6 7 8 9                           

m8 8 7 6 5 4 3 2 1 9                           

                                              

  1 2 3 4 5 6 7 8 9                           

m4 4 8 3 7 2 6 1 5 9                           
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  1 2 3 4 5 6 7 8 9                           

m5 5 1 6 2 7 3 8 4 9                           

                                              

  1 2 3 4 5 6 7 8 9                           

m2 2 4 6 8 1 3 5 7 9                           

                                              

  1 2 3 4 5 6 7 8 9                           

m7 7 5 3 1 8 6 4 2 9                           

 

  

Appendix C: All Possible d-b Rodin Tori 

      d

: 

                                                      

      1         2         3         4         5         6     

              e6 9 6               e4 3 3               e2 6 9   

      2 4       4 8       8 7       7 5       5 1       1 2   

b

: 

1   1 5       1 5       1 5       1 5       1 5       1 5   

          X   e5 3 9 28         X   e3 9 3 52         X   e1 6 6 85 

                                                              

                                                              

    e3 9 3               e1 6 6               e5 3 9             

  2   2 4       4 8       8 7       7 5       5 1       1 2   

      5 7       5 7       5 7       5 7       5 7       5 7   

    e2 6 9 14         X   e6 9 6 71         X   e4 3 3 47         X 

                                                              

              e4 3 3               e2 6 9               e6 9 6   

  3   2 4       4 8       8 7       7 5       5 1       1 2   

      7 8       7 8       7 8       7 8       7 8       7 8   

          X   e3 9 3 85         X   e1 6 6 28         X   e5 3 9 52 

                                                              

    e1 6 6               e5 3 9               e3 9 3             

  4   2 4       4 8       8 7       7 5       5 1       1 2   

      8 4       8 4       8 4       8 4       8 4       8 4   

    e6 9 6 47         X   e4 3 3 14         X   e2 6 9 71         X 

                                                              

              e2 6 9               e6 9 6               e4 3 3   

  5   2 4       4 8       8 7       7 5       5 1       1 2   

      4 2       4 2       4 2       4 2       4 2       4 2   

          X   e1 6 6 52         X   e5 3 9 85         X   e3 9 3 28 

                                                              

    e5 3 9               e3 9 3               e1 6 6             

  6   2 4       4 8       8 7       7 5       5 1       1 2   

      2 1       2 1       2 1       2 1       2 1       2 1   

    e4 3 3 71         X   e2 6 9 47         X   e6 9 6 14         X 
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Appendix D: All Possible b-d Rodin Tori 

      b

: 

                                                      

      1         2         3         4         5         6     

              e2 6 9               e6 9 6               e4 3 3   

      1 5       5 7       7 8       8 4       4 2       2 1   

d

: 

1   2 4       2 4       2 4       2 4       2 4       2 4   

          X   e3 9 3 41         X   e1 6 6 74         X   e5 3 9 17 

                                                              

                                                              

    e5 3 9               e3 9 3               e1 6 6             

  2   1 5       5 7       7 8       8 4       4 2       2 1   

      4 8       4 8       4 8       4 8       4 8       4 8   

    e6 9 6 82         X   e4 3 3 58         X   e2 6 9 25         X 

                                                              

              e6 9 6               e4 3 3               e2 6 9   

  3   1 5       5 7       7 8       8 4       4 2       2 1   

      8 7       8 7       8 7       8 7       8 7       8 7   

          X   e1 6 6 17         X   e5 3 9 41         X   e3 9 3 74 

                                                              

    e3 9 3               e1 6 6               e5 3 9             

  4   1 5       5 7       7 8       8 4       4 2       2 1   

      7 5       7 5       7 5       7 5       7 5       7 5   

    e4 3 3 25         X   e2 6 9 82         X   e6 9 6 58         X 

                                                              

              e4 3 3               e2 6 9               e6 9 6   

  5   1 5       5 7       7 8       8 4       4 2       2 1   

      5 1       5 1       5 1       5 1       5 1       5 1   

          X   e5 3 9 74         X   e3 9 3 17         X   e1 6 6 41 

                                                              

    e1 6 6               e5 3 9               e3 9 3             

  6   1 5       5 7       7 8       8 4       4 2       2 1   

      1 2       1 2       1 2       1 2       1 2       1 2   

    e2 6 9 58         X   e6 9 6 25         X   e4 3 3 82         X 

  

 

 

 
 

 
 
 

 
 
 

 


