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Preface

After being conjectured by A. Schuster in 1898 (for historical aspects
on antimatter see, e.g., R. L. Forward [1]), antimatter was predicted by
P. A. M. Dirac in the late 1920s in the negative–energy solutions of his
celebrated equation [2]. The existence of antimatter was subsequently
confirmed via the Wilson chamber and became an established part of

graph, see, e.g., M. M. Nieto and T. Goldman [3], and for more recent
studies including those of this monograph see, e.g., proceedings [4]).

Dirac soon discovered that particles with negative energy do not be-
have in a physically acceptable way and, for this reason, he developed his
celebrated “hole theory” [2]. This occurrence restricted the study of an-
timatter to the sole level of second quantization. As a result, antimatter
created a scientific imbalance that lasted for the rest of the 20-th cen-
tury, because matter was treated at all levels of study, from Newtonian
mechanics to second quantization, while antimatter was solely treated
at the level of second quantization.

Studies reviewed in this monograph have shown that the imbalance
was not due to insufficient physical insights, but rather to insufficient
mathematics. Stated differently, the use of conventional mathematics
used for matter (such as conventional numbers, conventional spaces,
conventional functional analysis, etc.) simply cannot permit a classi-
cal formulation of antimatter compatible with its quantum description.

The latter occurrence mandated the search of a new mathematics
specifically conceived for the resolution of the scientific imbalance cre-
ated by antimatter. After numerous efforts, the imbalance was finally
resolved by a new mathematics today known as Santilli’s isodual math-
ematics [5].

The availability of the new mathematics permitted the construction
of the isodual classical mechanics [6], the new isodual quantization and

science (for a technical review prior to the studies presented i this mono-n
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the resulting isodual quantum mechanics [7], the latter resulting to be
equivalent, although not identical, to the conventional quantum treat-
ment of antimatter via charge conjugation, thus ensuring compatibility
of the isodual theory of antimatter with available experimental evidence.

This monograph is devoted to the resolution of the indicated scientific
imbalance caused by antimatter in the 20-th century as permitted by the
isodual mathematics and its consequential classical and operator theo-
ries. A main scope of the monograph is to show that, rather than being
at its final stage, our classical, quantum and cosmological knowledge of
antimatter is at its beginning with so much yet to be discovered.

Above all, a primary objective of this monograph is to show that a
commitment to antimatter by experimentalists deeper than that granted
until now can advance science beyond our imagination, with possible im-
plications such as: experimental detection of antigravity by antimatter
in the field of matter (or vice-versa); a consequential fully causal space-
time machine; new cosmological vistas of the universe; and other far
reaching advances.

[1] Forward, R. L. (1988). In Antiprotons Science and Technology, B. W. Augenstein,
B. E. Bonner, F. E. Mills and M. M. Nieto, Editors, World Scientific, Singapore.

[2] Dirac, P. A. M. (1958). The Principles of Quantum Mechanics, 4th ed. Clarendon
Press, Oxford.

[3] Nieto, M. M. and Goldman, T. (1991). Phys. Reports, 205:221; (1992). Erratum,
216:343.

[4] Holzscheiter, M., editor (1997). Proceedings of the International Workshop on
Antimatter Gravity, Sepino, Molise, Italy, May 1996. Hyperfine Interactions, 109.

[5] Santilli, R. M. (1996). Rendiconti Circolo Matematico di Palermo, Supplemento,
42:7.

[6] Santilli, R. M. (1998). Intern. J. Modern Phys. D, 7:351.

[7] Santilli, R. M. (1997). Invited paper. In Holzscheiter, M., editor, Proceedings
of the International Workshop on Antimatter Gravity, Sepino, Molise, Italy, May
1996. Hyperfine Interactions, 109.

Ruggero Maria Santilli
Palm Harbor, Florida

December 24, 2000
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Chapter 1

INTRODUCTION

1.1 THE SCIENTIFIC IMBALANCE CAUSED
BY ANTIMATTER

1.1.1 Needs for a Classical Theory of Antimatter
The large scientific imbalance of the 20-th century studied in this

monograph is that caused by the treatment of matter at all possible
levels, from Newtonian to quantum mechanics, while antimatter was
solely treated at the level of second quantization [1].

Besides an evident lack of scientific democracy in the treatment of
matter and antimatter, the lack of a consistent classical treatment of
antimatter left open a number of fundamental problems, such as the
inability to study whether a faraway galaxy or quasar is made up of
matter or of antimatter, because such a study requires first a classical
representation of the gravitational field of antimatter, as an evident pre-
requisite for the quantum treatment (see Figure 1.1).

It should be indicated that classical studies of antimatter simply can-
not be done by merely reversing the sign of the charge, because of in-
consistencies due to the existence of only one quantization channel. In
fact, the quantization of a classical antiparticle merely characterized by
the reversed sign of the charge leads to a particle (rather than a charge
conjugated antiparticle) with the wrong sign of the charge.

It then follows that the treatment of the gravitational field of sus-
pected antimatter galaxies or quasars cannot be consistently done via
the Riemannian geometries in which there is a simple change of the sign
of the charge, as rather popularly done in the 20-th century, because
such a treatment would be structurally inconsistent with the quantum
formulation.
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Figure 1.1. An illustration of the first major scientific imbalance of the 20-th century
studied in this monograph, the inability to conduct classical quantitative studies as
to whether faraway galaxies and quasars are made up of matter or of antimatter. In-
depth studies have indicated that the imbalance was not due to insufficient physical
information, but instead it was due to the lack of a mathematics permitting the
classical treatment of antimatter in a form compatible with charge conjugation at the
quantum level.

At any rate, the most interesting astrophysical bodies that can be
made up of antimatter are neutral. In this case general relativity and
its underlying Riemannian geometry can provide no difference at all
between matter and antimatter stars with null total charge. The need
for a suitable new theory of antimatter then becomes beyond reasonable
doubt.

1.1.2 The Mathematical Origin of the Imbalance
The origin of the above scientific imbalance is not of physical nature,

because it is due to the lack of a mathematics suitable for the classical
treatment of antimatter in such a way as to be compatible with charge
conjugation at the quantum level.
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Charge conjugation is an anti-homomorphism. Therefore, a neces-
sary condition for a mathematics to be suitable for the classical treat-
ment of antimatter is that of being anti-homomorphic, or, better, anti-
isomorphic to conventional mathematics.

Therefore, the classical treatment of antimatter requires numbers,
fields, functional analysis, differential calculus, topology, geometries, al-
gebras, groups, symmetries, etc. that are anti-isomorphic to their con-
ventional formulations for matter.

The absence in the 20-th century of such a mathematics is soon estab-
lished by the lack of a formulation of trigonometric, differential calcu-
lus and elementary transforms, let alone complex topological structures,
that are anti-isomorphic to the conventional ones.

In the early 1980s, due to the absence of the needed mathematics, the
author was left with no other alternative than its construction along the
general guidelines of this monograph, namely, the construction of the
needed mathematics from the physical reality of antimatter, rather than
adapting antimatter to pre-existing insufficient mathematics.1

After considerable search, the needed new mathematics resulted in
being characterized by the most elementary and, therefore, most funda-
mental possible assumption, that of a negative basic unit,

−1, (1.1.1)

and then the reconstruction of the entire mathematics and physical the-
ories of matter in such a way as to admit −1 as the correct left and right
unit at all levels.

In fact, such a mathematics resulted in being anti-isomorphic to that
representing matter, applicable at all levels of study, and resulting in
being equivalent to charge conjugation after quantization.2

1.1.3 Basic Assumptions of Isodual Mathematics
The central idea of isodual mathematics and related theory of an-

timatter for the case of point-like antiparticles (see Section 1.3 for the
treatment of extended antiparticles, such as antiprotons and antineu-
trons) is the lifting of the conventional, trivial units I = +1 for matter
into the negative-definite units Id = −1 for all levels of treatments

I > 0 → Id = −I < 0, (1.1.2)

while jointly changing the conventional product A × B among generic
quantities A, B (such as numbers, vector fields, matrices, etc.) into the
form3

A × B → A ×d B = A × (Id−1) × B = A × (−I) × B, (1.1.3)
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under which Id is the correct left and right unit of the theory,

Id ×d A = A ×d Id = A, (1.1.4)

for all elements A of the set considered.
For certain technical reasons reviewed in Chapter 2, Id is called the

isodual unit, and the new product A ×d B is called the isodual multi-
plication. The liftings I → Id and A × B → A ×d B are called isodual
maps.

As we shall see, despite its elementary character, the lifting of the con-
ventional positive-definite units of matter into negative-definite forms
implies a revision of the totality of mathematical and physical formu-
lations, with far reaching physical implications, such as: antimatter
evolves in time in a direction opposite to ours; negative energies mea-
sured with negative units behave in a fully physical way; motion back-
ward in time measured with negative units of time is as causal as motion
forward in time measured with positive units of time; etc.

The reader should keep in mind that, for consistency, the isodual maps
must be applied to the totality of the mathematical formulations of the
conventional theory of matter, including numbers, fields, spaces, geome-
tries, algebras, symmetries, etc. This results in a new mathematics,
today known as Santilli’s isodual mathematics, that is at the foundation
of the isodual theory of antimatter.

In particular, the application of map (1.1.2) such as

t → td, x → xd, E → Ed (1.1.5)

generates new notions called isodual time, isodual space and isodual en-
ergy. Their nontriviality is illustrated by the fact that, while conven-
tional time, space and energy are measured with respect to positive units,
their isodual images are computed with respect to negative units. As we
shall see, the latter occurrence is crucial for the resolution of existing
inconsistencies for motion backward in time, negative energies and anti-
gravity.

It should be noted that the correct formulation of Santilli’s isodual
map for an arbitrary quantity Q (e.g., a function, a matrix, an operator,
etc.) with an arbitrary dependence is given by

Q(x, φ, . . .) → Qd(xd, φd, . . .) = −Q†(−x†,−φ†, . . .). (1.1.6)

of which map (1.1.2) is an evident particular case. As we shall see, the
above broader form is crucial for the proof of the equivalence between
isoduality and charge conjugation.
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As recalled earlier, a main characteristic of charge conjugation is that
of being an anti–automorphic map (i.e., characterizing a map of a given
space onto itself). By comparison, that both liftings (1.1.2) and its
general form (1.1.6) are anti–isomorphic maps (i.e., characterizing maps
from one space onto a different space with the same dimension).

Note finally that, while charge conjugation solely applies to operator
theories, isodual maps are applicable to all possible theories, irrespec-
tively of whether classical or operator.

1.2 GUIDE TO THE MONOGRAPH
1.2.1 Consistency and Limitations of Special

Relativity and Quantum Mechanics
As it is well known, special relativity4 continues to dominate the ad-

vancement of scientific knowledge in virtually all sections.
Unfortunately, only a few researchers are aware of the fact that, while

possessing an axiomatic structure called “majestic” by this author in his
writing, special relativity also has very clear limitations, some of which
are known to the scientific community at large (such as the inability to
represent gravitation), but others remain generally unknown.

There cannot be a scientific process beyond that of academic religion
without the identification of the majestic axiomatic structure of special
relativity as well as, most importantly for this monograph, the identifica-
tion of their boundaries of applicability beyond which special relativity
is inapplicable and not “violated” because not conceived for the related
applications.

Thanks to historical contributions by Lorentz, Poincaré, Einstein,
Minkowski, Weyl and others conducted for over one century, we can now
safely state that the majestic axiomatic consistency of special relativity
is due to the following features:

1) Special relativity is formulated in the Minkowski spacetime
M(x, η, R) with local spacetime coordinates, metric, line element and
and basic unit given respectively by

x = {xµ} = (rk, t), µ = 1, 2, 3, k = µ = 1, 2, 3, 0, c0 = 1, (1.2.1a)

η = Diag.(1, 1, 1,−1) (1.2.1b)

(x − y)2 = (xµ − yµ) × ηµν × (xν − yν); (1.2.1c)

I = Diag.(1, 1, 1, 1, 1), (1.2.1d)

over the field of real numbers R;
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2) All laws of special relativity, beginning with the above line element,
are invariant (rather than covariant) under the fundamental Poincaré
symmetry

P(3.1) = L(3.1) × T (3.1) (1.2.2)

where L(3.1) is the Lorentz group and T (3.1) is the Abelian group of
translations in spacetime; and

3) The Poincaré transformations are canonical with implications cru-
cial for physical consistency, such as the invariance of the assumed basic
units (as per the very definition of a canonical transformation),

P × [Diag.(1cm, 1cm, 1cm, 1sec)] × Pt

≡ Diag.(1cm, 1cm, 1cm, 1sec), (1.2.3)

with the consequential fundamental property that special relativity ad-
mits basic units and numerical predictions that are invariant in time.
In fact, the quantities characterizing the dynamical equations are the
Casimir invariants of the Poincaré symmetry.

As a result of the above features, special relativity has been and can
be confidently applied to experimental measurements because the units
selected by the experimenter do not change in time, and the numerical
predictions of the theory can be tested at any desired time under the
same conditions without fear of internal axiomatic inconsistencies.

Thanks to these historical results, special relativity is indeed applica-
ble to the area of its original conception, the classical and quantum rep-
resentation of electromagnetic waves and point-particles when moving
in vacuum.

Nevertheless, it should be stressed that, as it was the fate for Galileo’s
relativity and it is the fate for all theories at large, special relativity
has its own well defined limits of applicability. Among the numerous
limitations, those relevant for this monograph are the following:

I) The inability by special relativity to represent gravitation (as well
as accelerations in general) because of the lack of curvature in the Min-
kowski space as well as numerous other dynamical reasons;

II) The inability by special relativity to provide a classical represen-
tation of antimatter in a way consistent with quantum formulations be-
cause the only possible classical representation of antimatter is that via
the sole change of the sign of the charge that, under quantization, leads
to a “particle”, rather than the correct charge conjugated antiparticle,
with the wrong sign of the charge;

III) The inability by special relativity to represent both, particles
and antiparticles as they are in the physical reality, extended, generally
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nonspherical and deformable since such a representation would imply
the breaking of the central pillar of the theory, the rotational symmetry;

IV) The inability to provide a classical and/or quantum representation
of the motion of extended particles and/or antiparticle within physical
media, due to the impossibility of admitting resistive nonpotential forces
and, in any case, the reduction of all objects to point-like constituents
under which reduction all resistive forces disappear because resistive
forces are only experienced by extended particles); and

V) The inability by special relativity to represent the now vast exper-
imental evidence that, far from being a “universal constant”, the speed
of light is a local variable whose value depends on the characteristics of
the medium in which it propagates and can be smaller or bigger than
the speed of light in vacuum.

The scientific scene for quantum mechanics is essentially equivalent to
that of special relativity. Quantum mechanics also possesses a majestic
axiomatic consistency because it is an operator realization of Lie’s theory
on Hilbert spaces. The experimental verifications of quantum mechanics
in the arena of its original conception, the structure of the hydrogen
atom, are also beyond scientific doubt.

Despite these achievements of clearly historical proportions, quantum
mechanics possesses clear limitations whose quantitative study has been
vastly suppressed in the 20-th century by organized academic interests
in the field.

As an illustration, the spectral lines of the hydrogen atom are rep-
resented with astonishing accuracy. Nevertheless, deviations from the
predictions of the theory begin to appear for the spectral lines of the
helium, to become truly embarrassing in value for the spectral lines of
heavy atoms, such as the zirconium. In any case, after one century of
attempts, quantum mechanics has been unable to represent the spectral
emissions of the Sun.

In particle physics we have a similar occurrence. Quantum mechanics
has extremely accurate predictions for the conditions of its original con-
ception, point-like particles moving in vacuum under local-differential,
potential interactions only, as it is the case for quantum electrodynamics.

However, when passing to broader physical conditions (see next sec-
tion for an outline), the predictions of quantum mechanics depart from
experimental data in a progressively growing way. These departures are
usually accommodated by organized interests with the introduction of
free ad hoc parameters of unknown physical origin or meaning, while
in reality these parameters are a measure of the deviations of physical
reality from the basic axioms of the theory, as we shall see.
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As an illustration, the representation of the Bose-Einstein correlation
with relativistic quantum mechanics requires the use of four different ar-
bitrary parameters (called “chaoticity parameters”). In reality, the fit of
the data requires the presence in the two-point correlation function of
off-diagonal elements that are simply outside the quantum axiom of ex-
pectation value for an observable, thus diagonal, operator. The claim of
the exact validity of relativistic quantum mechanics under these extreme
deviations then reduces science to a mere academic religion for.

1.2.2 Outline of the Monograph
Recall that “science” requires rigorous mathematical treatments pro-

ducing numerical values that are consistently confirmed by experiments.
Along these lines, Section 1.3 is devoted to an in-depth study of Lim-
itations II-V of special relativity, since that is a premise for any true
scientific study beyond the level of academic politics.

Section 1.4 is devoted to the identification of structural inconsistencies
of the Riemannian treatment of gravitation because they have a direct
impact on the experimental verification of the isodual theory of antimat-
ter, besides forcing the study of gravitation into a sort of religious belief
rather than rigorously proved scientific setting.

Section 1.5 is devoted to a guide to the covering of quantum me-
chanics known as hadronic mechanics since the studies presented in this
monograph, the isodual theory of antimatter, belong to and can be fully
understood only within the broader setting of the covering hadronic me-
chanics.

Chapter 2 is devoted to the presentation of the new isodual mathe-
matics with Eq. (1.1.1) as its fundamental left and right isodual unit.
Chapter 2 then presents the classical isodual treatment of antimatter,
beginning with a reformulation of Newton’s equations and then passing
to the needed analytic theory. Chapter 2 then presents the operator
formulation known under the name of isodual quantum mechanics. Par-
ticular attention is devoted in Chapter 2 to the experimental verification
of the isodual theory of antimatter at both the classical and operator
levels.

Chapter 3 is devoted to the presentation of the isodual theory for
extended particles and antiparticles in reversible, irreversible and mul-
tivalued conditions. This presentation is crucial for an understanding
of the implications of the theory, such as the first known axiomatically
consistent grand unification permitted by isoduality.

Following these necessary foundational studies, Chapter 4 is devoted
to a comprehensive theoretical and experimental study of the prediction
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of antigravity for antiparticles in the field of matter or vice-versa, as well
as to the “spacetime machine” that is implied by the said antigravity.

Chapter 5 is devoted to the axiomatically consistent grand unification
of electroweak and gravitational interactions permitted by isoduality, the
novel isoselfdual cosmology with identically null total characteristics of
the universe, and other far reaching implications.

1.2.3 Literature on Isoduality
The basic reference of this monograph remains Dirac’s historical con-

tributions [1,2]. In fact, isodual mathematics was discovered while con-
ducting a deeper inspection of Dirac’s celebrated equation and, more
particularly, in the identification of the fact that the two-dimensional
unit of the antiparticle component of Dirac’s equation is indeed negative-
definite.

To the best of our knowledge, isodual mathematics was first presented
by Santilli in Ref. [5] of 1985 for the identification of all possible equiva-
lence classes of the group of rotations, although without any reference to
antimatter. The fundamental numbers of the new mathematics, today
known as Santilli’s isodual numbers, were studied in details for the first
time in Ref. [6] of 1993.

The first treatment of antimatter via the isodual mathematics was
presented in Ref. [7] of 1993, which established the equivalence at the
operator level of isoduality and charge conjugation. The isoduality of
the Minkowski spacetime, the Poincaré symmetry and special relativities
were studied for the first time in Ref. [8] also of 1993.

Ref. [9] of 1994 presented the first far-reaching implications of the
isodual theory of antimatter, the prediction of antigravity for antimat-
ter in the gravitational field of matter, or vice-versa while resolving all
known objections against antigravity (which, as we shall see, become
inapplicable precisely in view of the new mathematics). Ref. [10] also
of 1994 presented another far-reaching implication, the existence of a
(mathematical) “causal spacetime machine” as a direct consequence of
the possible existence of antigravity.

A systematic study of the new isodual quantum mechanics, including
the new channel of isodual quantization, was presented in the second
edition of monographs [11] of 1995. A systematic mathematical treat-
ment of isodual mathematics can be found in memoir [12] of 1996, that
also contains the first known formulation of Newton’s equations for an-
timatter thanks to the new isodual differential calculus.5 Ref. [13] of
1997 presented the first known proof that isodual antimatter emits a
new photon, called the isodual photon, with experimentally detectable
features different than those of the photon emitted by matter, thus per-
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mitting the first known scientific (i.e., quantitative) study as to whether
far-away galaxies and quasars are made up of matter or of antimatter.

Refs. [14] of 1997, [18] of 1999 and [19] of 2003 have established the
crucial role of the isodual theory of antimatter for the achievement of
an axiomatically consistent grand unification of electroweak and gravi-
tational interactions. Ref. [15] of 1998 presented a rigorous study of the
isodual Minkowskian and Riemannian geometries. Ref. [16] of 1998 pre-
sented the novel isoselfdual cosmology with identically null total physical
characteristics of time, mass, energy, etc. Ref. [17] of 1999 presented
the first known classical theory of antimatter developed in such a form
as to be compatible with charge conjugation at the operator level. Vol-
umes [11,22] of 1995 provided the first comprehensive presentation of the
isodual theory of antimatter. Memoir [21] of 1996 provided an upgrade
and memoir [22] of 2003 provided a further upgrade for the treatment
of antimatter via isodual, isodual isotopic, isodual genotopic and isod-
ual hyperstructural methods. This monograph provides an upgrade of
the isodual theory of antimatter as of 2005 that is warranted in view of
recent advances in isodual mathematics and physics.

The isodual theory of antimatter has also been independently studied
by a number of scholars. The theoretician J. V. Kadeisvili presented
in Ref. [23] of 1992 a study of the isodual functional analysis and in
Ref. [24] of 1996 a study of the Poincaré-Santilli isodual symmetry.
The experimentalist J. P. Mills, jr., proved in Ref. [25] of 1996 that
the experimental test of the gravity of antiparticles in horizontal flight
proposed by Santilli in Ref. [9] of 1994 is indeed feasible with current
technologies and the experimental results will be resolutory. The ther-
modynamics of antimatter stars was first formulated by theoreticians
J. Dunning Davies in Ref. [26] of 1999. A systematic study of Santilli’s
isodual number theory was done by the mathematician C.-X. Jiang in his
monograph [27] of 2001. Monographs [28-31] by various authors provide
reviews of the isodual mathematics and/or its treatment of antimatter.

The isodual theory of antimatter is deeply connected to a variety
of pre-existing research. First, isodual particles emerge as possessing
a negative time precisely along the historical conception by Stueckel-
berg, Feynman and others [1]. The equivalence of treatment between
particles and antiparticles at all levels of study can also be seen in the
Stueckelberg-Feynman path integral theory.

Similarly, the isodual theory of antimatter is deeply connected to
various additional contributions, such as those by E. Majorana [32],
J. A. McLennan [33], K. M. Case [34], D. V. Ahluwalia [35], V. V. Dvoe-
glazov [36] and others identified later on. In fact, the latter studies
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admit an immediate and intriguing re-interpretation in terms of the iso-
dual theory, by extending their applicability to the classical level too.

The author would gratefully appreciate the indication of additional
contributions directly relevant for the content of this monograph, that
is, formulations based on the assumption of a negative-definite basic
unit.

1.3 THE SCIENTIFIC IMBALANCE CAUSED
BY SPECIAL RELATIVITY AND
QUANTUM MECHANICS
FOR MATTER AND ANTIMATTER

1.3.1 Foundations of the Imbalance
The second large scientific imbalance of the 20-th century studied

in this monograph is the abstraction of particles and antiparticles as
dictated by special relativity and quantum mechanics, that of being
point-like with consequential reduction of all admitted interactions as
being of local-differential and potential type.

In the physical reality, particles are generally extended, nonspherical,
deformable6 and hyperdense as it is the case for protons and antiprotons,
whose size is actually quite large for particle standards. Even electrons
and positrons do have a point-like charge, but point-like wavepackets do
not exist in nature.

With the understanding that point-like abstractions remain valid in
a first approximation of nature, no serious advance in the study of both
particles and antiparticles can be claimed without a quantitative repre-
sentation of their actual, extended and deformable shapes as well as of
their density.

The scientific imbalance here considered is first caused by the fact
that, as expected to be known and admitted by experts to qualify as
such, the representation of these features is beyond the capability of
special relativity and quantum mechanics.

In fact, nonspherical shapes cause the loss of the basic symmetry
of these theories, the rotational symmetry O(3); special relativity and
quantum mechanics are known to be incompatible with deformations;
and the vast literature in hadron physics of the 20-th century contains no
consideration at all of the densities of hadrons, as readers are encouraged
to verify.7

As we shall see shortly, the very notions of shapes and densities are
beyond the representational capability of a Lagrangian or a Hamiltonian,
thus being structurally beyond the representational capabilities of spe-
cial relativity and quantum mechanics.
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Figure 1.2. A first illustration of the second major scientific imbalance of the 20-th
century studied in this monograph, the abstraction of extended and hyperdense parti-
cles, such as protons and antiprotons (as well as their constituents) to points, with con-
sequential dismissal of the contact, nonlocal-integral and nonpotential effects caused
by the deep overlapping and mutual penetration of hyperdense media. As we shall
see, the implications for such an abstraction have been rather serious, such as the
emergence of divergences that are eliminated by a quantitative representation of the
indicated contact effects. More serious implications deal with the inability to predict
new clean energies and fuels that, regrettably, we cannot treat in this monograph but
are studied elsewhere [22].

The imbalance here considered is further caused by the fact that the
assumption of the extended character of particles and antiparticles im-
plies the necessary emergence of contact interactions, that is, interac-
tions occurring within a finite volume or surface that, as such, are strictly
nonlocal-integral (in the sense of not being reducible to a finite set of iso-
lated points), are of zero range by conception and, thus, are not derivable
from a potential (see Figure 1.2).

In turn, the contact, nonlocal-integral and zero range interactions are
structurally incompatible with special relativity and quantum mechanics,
because the interactions here considered cause the catastrophic collapse
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of the mathematics underlying the said theories, let alone the inapplica-
bility of their physical laws.

In fact, the local-differential topology, calculus, geometries, symme-
tries, and other mathematical methods underlying special relativity and
quantum mechanics permit the sole consistent description of a finite
number of isolated point-like particles moving in vacuum (empty space).
Since points have no dimension and, consequently, cannot experience col-
lisions or contact effects, the only possible interactions are at-a-distance,
thus being derivable from a potential. The entire machinery of special
relativity and quantum mechanics then follows.

For systems of particles at large mutual distances for which the size of
the particle is ignorable, such as for the structure of the hydrogen atoms
(anti-hydrogen atom), special relativity and quantum mechanics (their
isoduals) are then fully valid, as we shall see in Chapter 2.

However, for all systems of particles at short mutual distances, such
as the structure of hadrons, nuclei and stars, we have the inevitable
emergence of contact, nonlocal-integral, nonpotential and zero-range in-
teractions for which special relativity and quantum mechanics cannot be
claimed to be exactly valid.

In Chapter 2 we show the structural inability of special relativity for a
classical representation of antimatter in a form compatible with charge
conjugation. In Chapter 3, we show the inability of special relativity
to represent extended, nonspherical and deformable particles or antipar-
ticles and/or their wavepackets under nonlocal-integral interactions at
short distances.

The third scientific imbalance of the 20-th century studied in this
monograph is the treatment of irreversible processes for particles and
antiparticles via strictly reversible mathematical and physical methods.
In fact, as it is well known, the very axioms of special relativity and
quantum mechanics are strictly reversible in time. Consequently, these
theories are indeed adequate for the study of reversible systems, such as
planetary or atomic structures, but the same theories became manifestly
insufficient for the representation of irreversible processes, such as the
growth of a sea shell (see Figure 1.4).

It is evident that, under the indicated premises, the results will be
compatible with the assumptions, thus implying a de facto reduction
of irreversible processes to reversible abstractions. Rather than adapt-
ing nature to pre-existing mathematical and physical theories, in this
monograph we shall do the opposite, that is, adapting mathematical
and physical theories to nature.
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1.3.2 Limitations of Special Relativity and
Quantum Mechanics

A technical study of the scientific imbalances of the preceding section
requires the knowledge of the following fundamental distinction:

DEFINITION 1.3.1: Dynamical systems of matter and, separately, of
antimatter can be classified into:

IA: CLOSED SYSTEMS, comprising systems of particles isolated
from the rest of the universe, thus verifying the known ten total conser-
vation laws of Galilei’s and Special relativities;

IB: OPEN SYSTEMS, comprising systems of particles that are not
isolated from the rest of the universe, thus generally possessing noncon-
served energy, linear momentum, angular momentum or other physical
quantities;

IIA: EXTERIOR SYSTEMS, comprising particles at sufficiently large
mutual distances to permit their point-like approximation under sole
action-at-a-distance interactions;

IIB: INTERIOR SYSTEMS, comprising extended and deformable
particles at mutual distances of the order of their size under action-
at-a-distance interactions as well as contact nonpotential interactions;

IIIA: REVERSIBLE SYSTEMS, comprising systems for which the
behaviour of their physical characteristics is invariant under time rever-
sal;

IIIB: IRREVERSIBLE SYSTEMS, comprising systems whose behav-
ior is not invariant under time reversal.

Typical examples of closed exterior systems are given by planetary and
atomic structures of matter or antimatter when isolated from the rest
of the universe. Typical examples of closed interior systems are given
by the structure of planets at the classical level and by the structure of
hadrons, nuclei, and stars of matter or antimatter at the operator level,
when also isolated from the rest of the universe.

Planetary and atomic systems also constitute examples of reversible
systems, while interior systems are generally irreversible even when closed.
This is typically the case in the structure of a planet, such as Jupiter,
at the classical level, where irreversibility is established by the internal
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increase of entropy, or the structure of a star, such as the Sun, where
irreversibility is established by its open character (due to the emission
of energy, finite life and other reasons).

Note that open-nonconservative systems are generally irreversible, but
the verification of the ten total conservation laws does not assure re-
versibility or internal conservation laws. For instance, when considered
as isolated from the rest of the universe, Jupiter does verify indeed the
ten total conservation laws of Galilei’s or special relativities. Despite
that, one can see in a telescope the existence in the interior of Jupiter of
vortices with continuously varying angular momenta, and similar non-
conservative effects. We merely have internal exchanges of angular mo-
menta in such a way to verify the conservation of the total angular
momentum.

It is now established that special relativity does apply for classical
systems of point-particles in vacuum, that are closed, external and re-
versible, but it is inapplicable (rather than violated) for the same system
when composed of antimatter because of inconsistencies in quantization
indicated earlier (the map into particles, rather than antiparticles with
the wrong sign of the charge). It is also established that quantum me-
chanics does apply for operator systems of point particles that are closed,
external and reversible, but it solely applies for systems of antiparticles
in second quantization.

It is important for the studies of this monograph to see from these
introductory notes that special relativity and quantum mechanics do not
apply for all remaining systems as per Definition 1.3.1. The inapplica-
bility (rather than violation) of these theories for open-nonconservative
systems is established by the following:

THEOREM 1.3.1 [22b] A (relativistic or nonrelativistic) classical,
open-nonconservative system cannot be consistently reduced to a finite
number of quantum particles and, vice-versa, a finite ensemble of quan-
tum particles cannot consistently produce a classical open-nonconserva-
tive system under the correspondence or other principles.

Proof. Quantum systems are strictly closed, external and reversible,
thus based on conservation laws. Consequently, there is no consistent
possibility for quantum systems to produce classical nonconservation
laws. The condition of a finite number of quantum particles is introduced
to avoid divergencies under which things can be adjusted. q.e.d.

Note that the inapplicability of quantum mechanics at the operator
level implies that of special relativity at both the operator and classical
levels. Note also that Theorem 1.3.1 includes the inapplicability of spe-
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cial relativity and quantum mechanics for interior systems, because the
latter are based on nonconservative forces (see Chapter 3 for details).

The validity of special relativity and quantum mechanics for irre-
versible systems is prohibited by the following:

THEOREM 1.3.2 [22b]: A classical, closed or open irreversible system
cannot be consistently reduced to a finite number of quantum particles
and, vice-versa, a finite ensemble of quantum particles cannot consis-
tently produce an irreversible system under the correspondence or other
principles.

Proof. By recalling that all known, or otherwise physically estab-
lished potentials are reversible in time, quantum particles are strictly
reversible and, therefore, they cannot possibly represent an irreversible
system. q.e.d.

The ultimate origin of the inapplicability of special relativity and
quantum mechanics as per Theorems 1.3.1 and 1.3.2 is the classical
existence of the contact, nonlocal, nonpotential and zero range inter-
actions among extended particles indicated earlier. Therefore, the ulti-
mate meaning of Theorems 1.3.1 and 1.3.2 is that of rendering manda-
tory the emergency of said contact, nonlocal and nonpotential forces at
the ultimate elementary level of nature or, equivalently, of the necessity
of representing elementary particles and their wavepackets as they are
in nature, extended, generally nonspherical and deformable from which
feature said novel interactions follows.

Because of the above occurrences, a main objective of Chapter 2 is the
construction of isodual special relativity and isodual quantum mechanics
to reach a consistent classical treatment of closed, external and reversible
systems of antiparticles with a consistent operator map, as well as a
consistent treatment of antiparticles at the level of first quantization.

In Chapter 3 we shall then study the so-called isotopic and genotopic
liftings of special relativity and quantum mechanics and their isoduals
for a consistent treatment of the remaining systems of matter and anti-
matter of Definition 1.3.1.

A few introductory comments appear recommendable for the self-
sufficiency of these introductory lines. The distinction of systems into
exterior and interior forms was introduced by the founders of analytic
dynamics, such as Lagrange, Hamilton, Jacobi (see Ref. [54a] for histor-
ical accounts and references).8

Well written treatises on mechanics up to the early part of the 20-th
century (see, e.g., Whittaker [56]) present the distinction between exte-
rior and interior dynamical problems. The greatest majority of scientific
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papers, also up to the first part of the 20-th century, treat separately
exterior and interior problems.

For instance, Schwartzschild’s [57] solution of gravitational field equa-
tions has been quoted countless times throughout the 20-th century, but
without a mention that Ref. [57] was specifically written for the exterior
gravitational problem, and that Schwartzschild wrote a perhaps more
interesting separate paper [58] dedicated to the interior gravitational
problem, that has remained largely ignored to this day.

The reasons for ignoring the above distinction are numerous, and have
yet to be studied by historians. A first reason indicated earlier is due
to the widespread abstraction of particles as being point-like, in which
case all distinctions between interior and exterior systems are lost since
all systems are reduced to point-particles moving in vacuum.

An additional reason for ignoring interior dynamical systems is due to
the great successes of the planetary and atomic structures, thus suggest-
ing the reduction of all structures in the universe to exterior conditions
in vacuum.

In the author’s view, the primary reason for ignoring interior dynam-
ical systems is that they imply the inapplicability of the virtual totality
of the mathematics and physics developed during the 20-th century, in-
cluding classical and quantum mechanics, special and general relativities,
etc., as we shall see.

The most salient distinction between exterior and interior systems
is the following. Exterior dynamical systems can be entirely described
via the sole knowledge of a Lagrangian or Hamiltonian and the truncated
Lagrange and Hamilton analytic equations, those without external terms,
also known as the truncated analytic equations,

d

dt

∂L(t, r, v)
∂vk

a

− ∂L(t, r, v)
∂rk

a

= 0, (1.3.1a)

drk
a

dt
=

∂H(t, r, p)
∂pak

,
dpak

dt
= −∂H(t, r, p)

∂rk
a

, (1.3.1b)

L = Σa
1
2
× ma × v2

a − V (t, r, v), (1.3.1c)

H = Σa
p2

a

2 × ma
+ V (t, r, p), (1.3.1d)

V = U(t, r)ak × vk
a + U0(t, r); k = 1, 2, 3; a = 1, 2, 3, . . . , n, (1.3.1e)

where t is the time of the observer, r, v and p represent the coordinates,
velocities and momentum, respectively, of a system of n particles, and
the convention of the sum of repeated indices is hereon assumed.
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By comparison, interior dynamical systems admit additional interac-
tions that simply cannot be represented with a Lagrangian or a Hamil-
tonian and, for this reason, Lagrange, Hamilton Jacobi and other founders
of analytic dynamics presented their celebrated equations with external
terms representing precisely the contact, zero-range, nonpotential forces
among extended particles.

Therefore, the treatment of interior systems requires the true Lagrange
and Hamilton analytic equations, those with external terms

d

dt

∂L(t, r, v)
∂vk

a

− ∂L(t, r, v)
∂rk

a

= Fak(t, r, v), (1.3.2a)

drk
a
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∂H(t, r, p)
∂pak

,
dpak

dt
= −∂H(t, r, p)

∂rk
a

+ Fak(t, r, p), (1.3.2b)

L = Σa
1
2
× ma × v2

a − V (t, r, v), (1.3.2c)

H = Σa
p2

a

2 × ma
+ V (t, r, p), (1.3.2d)

V = U(t, r)ak × vk
a + U0(t, r), (1.3.2e)

F (t, r, v) = F (t, r, p/m). (1.3.2f)

The necessary and sufficient conditions for the existence of a La-
grangian or a Hamiltonian, originally studied by Helmholtz, are known
as the conditions of variational selfadjointness. Their comprehensive
study was conducted in monograph [54a]. These studies permitted the
separation of all acting forces into those derivable from a potential, or
variationally selfadjoint (SA) forces, and those not derivable from a po-
tential, or variationally nonselfadjoint (NSA) forces,

F Tot = FSA(t, r, v) + FNSA(t, r, v, a, . . .). (1.3.3)

In particular, the reader should keep in mind that, while selfadjoint
forces are of Newtonian type, nonselfadjoint forces are generally non-
Newtonian, in the sense of having an unrestricted functional dependence,
including that on accelerations a and other non-Newtonian forms.

Nonselfadjoint forces generally have a nonlocal-integral structure that
is usually reduced to a local-differential form via power series expansions
in the velocities.

For instance, the contact, zero-range, resistive force experiences by
a missile moving in our atmosphere (see Figure 1.3) is characterized
by an integral over the surface of the missile and it is usually approx-
imated by a power series in the velocities that, in view of the current
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Figure 1.3. Another illustration of the second scientific imbalance studied in this
monograph, the impossibility of reducing nature to point-like elementary constituents.
The top view depicts a typical open nonconservative and irreversible Newtonian sys-
tem with nonlocal and nonpotential forces, such as a missile moving in atmosphere,
while the bottom view depicts its reduction to point-like constituents. Such a re-
duction is now known to be inconsistent because no finite ensemble of elementary
quantum particles can reproduce a missile in atmosphere, evidently because the for-
mer system is closed, reversible and conservative, while the latter system is open
nonconservative and irreversible. This establishes that the nonlinear, nonlocal and
nonpotential interactions responsible for classical Newtonian systems such as a missile
in atmosphere originate at the level of the ultimate elementary constituents of nature.

high speeds, can reach up to the 10-th power of the velocity, thus being
irreconcilably beyond the representational capabilities of a Lagrangian
or a Hamiltonian9,

FNSA =
∫

σ
dr3 × Γ(r, v, . . .) = k1 × v + k2 × v2 + k3 × v3 + . . . (1.3.4)

where σ is the surface or volume of mutual contact and Γ is a suitable
kernel.

Moreover, the studies of monographs [54a] establish the following im-
portant:

THEOREM 1.3.3: Nonconservative Newtonian systems in more than
one dimension are variationally nonselfadjoint and do not admit a La-
grangian or a Hamiltonian representation in the fixed frame of the ob-
server. Only one-dimensional nonconservative systems admit indirect
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Lagrangian or Hamiltonian representations via suitable integrating fac-
tors.

As also studied in detail in Refs. [54], under sufficient continuity
and regularity conditions and under the necessary reduction of nonlocal
external terms to local approximations such as that in Eq. (1.3.4), the
Darboux’s theorem of the symplectic geometry or, equivalently, the Lie-
Koening theorem of analytic mechanics assure the existence of coordinate
transformations

{r, p} → {r′(r, p), p′(r, p)}, (1.3.5)

under which nonselfadjoint systems (1.3.2) can be turned into the self-
adjoint form (1.3.1), thus eliminating external terms.

However, coordinate transforms (1.3.5) are necessarily nonlinear. Con-
sequently, the new reference frames are necessarily noninertial. There-
fore, the elimination of the external nonselfadjoint forces via coordinate
transforms cause the necessary loss of Galileo’s and Einstein’s relativi-
ties.

Moreover, it is evidently impossible to place measuring apparata in
new coordinate systems of the type

r′ = exp(α × p), p′ = ln(β × r3), (1.3.6)

where α and β are constants. For these reasons, the use of Darboux’s
theorem or of the Lie-Koening theorem was strictly prohibited in mono-
graphs [54] and, to avoid misrepresentations, we shall use throughout
this monograph the same:

ASSUMPTION 1.3.1: The sole admitted analytic representations are
those in the fixed references frame of the experimenter without the use of
integrating factors or the transformation theory, called “direct analytic
representations”. Only after these representations have been identified,
the use of the transformation theory may have physical relevance.

As an illustration, the admission of integrating factors within the fixed
coordinates of the experimenter does indeed allow the achievement of
an analytic representation without external terms of a restricted class of
one-dimensional nonconservative systems, although the approach results
in mathematical Hamiltonians of the type

H = ef(t,r,...)×p2/2×m. (1.3.7)

The above Hamiltonian has the fully valid canonical meaning of rep-
resenting the time evolution. However, the above Hamiltonian loses its
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Figure 1.4. A pictorial view of the impossibility for quantum mechanics to be exactly
valid in nature: the growth of a seashell. In fact, quantum mechanics is structurally
irreversible, in the sense that all its axioms, geometries and symmetries are fully
reversible in time, while the growth of a seashell is structurally irreversible. The
need for an irreversible generalization of quantum mechanics is out credible reason,
as studied in detail in Chapter 4.

meaning as representing the energy of the system (in fact, the energy is
nonconserved in this case, while the above Hamiltonian is a constant of
motion).

The quantization of such a Hamiltonian then leads to a plethora of
illusions, such as the belief that the uncertainty principle is valid for
nonconservative systems, an issue basically open to this writing, while
in reality the uncertainty principle can be solely formulated for the math-
ematical Hamiltonian (1.3.7) (see Ref. [22] for details).

Under the strict adoption of Assumption 1.3.1, all these ambiguities
are prevented because H will always represent the energy, irrespective
of whether conserved or nonconserved, thus setting up solid foundations
for correct physical interpretations.
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1.3.3 Limitations of Conventional Mathematical
and Physical Methods

The next aspect important for these introductory lines is that the
limitations of special relativity and quantum mechanics of the preced-
ing section are not due to insufficient physical insight, but rather to
insufficient mathematics.

This author has repeatedly voiced the opinion that protracted physical
controversies are generally due to the use of inadequate mathematics,
and they are generally resolved via the use of a broader mathematics
more appropriate for the problem at hand.

For instance, the resolution of the century old controversies on general
relativity indicated in Section 1.2 appears to be resolved via the construc-
tion of a new geometry, such as the novel iso-Minkowskian geometry [15]
that unifies the Minkowskian and Riemannian geometries, thus unifying
special and general relativities, with consequential resolution of the con-
troversies not only on general relativities, but also on quantum gravity
and grand unifications (see Chapter 4).

It is important for the reader to see from these introductory lines
that, along fully similar lines, the limitations of special relativity and
quantum mechanics established by Theorems 1.3.1 and 1.3.2 are not due
to insufficient physical insights, but also to insufficient mathematics.

After one century of failed attempts it is time to admit that the mathe-
matics underlying quantum mechanics, rather than the quantum axioms
themselves, cannot possibly permit a meaningful representation of non-
conservations, irreversibility and all non-Hamiltonian effects, including
shapes and densities.

At this stage of our studies it is important to see the insufficiency of
conventional mathematics at the primitive classical level, since operator
formulations merely follow.

To begin, the presence of irreducible nonselfadjoint external terms
in the analytic equations causes the loss of their derivability from a
variational principle. In turn, the lack of an action principle and related
Hamilton-Jacobi equations causes the lack of a consistent quantization,
thus illustrating the reasons why the voluminous literature in quantum
mechanics of the 20-th century carefully avoids the treatment of analytic
equations with external terms.

By contrast, one of the central objectives of chapter 3 is to review the
studies that have permitted the achievement of a reformulation of Eq.
(1.3.2) fully derivable from a variational principle in conformity with
Assumption 1.3.1, while permitting a consistent operator version of Eq.
(1.3.2) as a covering of conventional quantum formulations.
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Recall thatLie algebras are at the foundations of all classical and quan-
tum theories of the 20-th century. This is due to the fact that the brack-
ets of the time evolution as characterized by the truncated Hamilton’s
equations,

dA

dt
=

∂A

∂rk
a

× drk
a

dt
+

∂A

∂pak
× dpak

dt

=
∂A

∂rk
a

× ∂H

∂pak
− ∂H

∂rk
a

× ∂A

∂pak
= [A, H], (1.3.8)

firstly, verify the conditions to characterize an algebra as currently un-
derstood in mathematics, that is, the brackets [A, H], verify the right
and left scalar and distributive laws,

[n × A, H] = n × [A, H], (1.3.9a)

[A, n × H] = [A, H] × n, (1.3.9b)

[A × B, H] = A × [B, H] + [A, H] × B, (1.3.9c)

[A, H × Z] = [A, H] × Z + H × [A, Z], (1.3.9d)

and, secondly, the brackets [A, H] verify the Lie algebra axioms

[A, B] = −[B, A], (1.3.10a)

[[A, B], C] + [[B, C], A] + [[C, A], B] = 0. (1.3.10b)

The above properties then persist following quantization into the oper-
ator brackets [A, B] = A × B − B × A, as well known.

In 1978, Santilli [103] showed that, when adding external terms, the
resulting new brackets,

dA

dt
=

∂A
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a

× drk
a

dt
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∂A
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dt
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∂rk
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× F k
a

= (A, H) = [A, H] +
∂A

∂rk
a

× F k
a , (1.3.11)

violate the right scalar law (1.3.9b) and the right distributive law (1.3.9d)
and, therefore, the brackets (A, H) do not constitute any algebra at all,
let alone violate the basic axioms of the Lie algebras.

This occurrence should not be surprising because, while the math-
ematics and physics of the 20-th century were intent in representing
conservation laws, Lagrange, Hamilton and Jacobi were primarily intent
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in representing nonconservation laws, trivially, because the former are a
particular case of the latter, but not vice-versa. In fact, a central fea-
ture of analytic equations (1.3.2) is that of representing the time-rate
of variation of the energy and other physical quantities according to the
familiar law

dA

dt
= [A, H] +

∂A

∂rk
a

× F k
a , (1.3.12)

for which
dH

dt
=

∂H

∂rk
a

× F k
a �= 0. (1.3.13)

Unfortunately, in the transition from conservation to nonconservation
laws there is the loss of all algebras that, in turn, causes the loss of
all mathematical and physical formulations built in the 20-th century
without physically significant exceptions known to this author.

The loss of basic methods constitutes the main reason for the aban-
donment of the study of interior dynamical systems. In fact, external
terms in the analytic equations were essentially ignored through the
20-th century, by therefore adapting the universe to the truncated ana-
lytic equations (1.3.1).

By contrast, another central objective of Chapter 3 is to review the
studies that have permitted the achievement of a reformulation of the
historical analytic equations with external terms, into a form not only
derivable from an action principle with related operator map, but also
characterizing brackets in the time evolution that, firstly, constitute an
algebra and, secondly, that algebra results to be a covering of Lie alge-
bras.

1.3.4 Inapplicability of the Galilean and Special
Relativities for Matter and Antimatter
Dynamical Systems with Resistive Forces

The scientific imbalance caused by the reduction of interior dynamical
systems to point-like particles moving in vacuum, is of historical propor-
tion because it caused the belief of the exact applicability of special
relativity and quantum mechanics for all conditions of particles existing
in the universe, thus implying their applicability under conditions for
which these theories were not intended for by their originators.

At the classical level, the “inapplicability” (rather then the “viola-
tion”) of the Galilean and special relativities for the description of an
interior system such as a missile in atmosphere is beyond credible doubt,
as any expert should know to qualify as such, because said relativities can
only describe systems with action-at-a-distance potential forces, while
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the force acting on a missile in atmosphere are of contact-zero-range
nonpotential type.

When faced with the above evidence, a rather general posture in-
tended to adapt nature to pre-existing theories is, that the resistive
forces are “illusory” because, when the missile in atmosphere is reduced
to its elementary point-like constituents, all resistive forces “disappear”.

Such a belief has been disproved by Theorem 1.3.1. Therefore, the
inapplicability of the Galilean and special relativities to classical systems
with resistive forces also extends to its elementary constituents due to
the lack of a credible reduction of a nonconservative classical system to a
finite ensemble of elementary constituents all in conservative conditions,
as necessary for the validity of the relativities herein considered.

Rather than adapting nature to pre-existing doctrines, a main scope
of this monograph is that of adapting doctrines to nature, as requested
by scientific ethics and accountability.

1.3.5 Inapplicability of Special Relativity for the
Propagation of Light within Physical Media
of Matter or Antimatter

Among the various cases of interior systems, a most important one is
the propagation of light within physical media described by the law we
learn in high school

C =
c

n
, (1.3.14)

where c is the speed of light in vacuum and n is the familiar index of
refraction.

As an illustration, it is known that, for the case of water, light prop-
agates at a speed much smaller than the speed in vacuum and approxi-
mately given by the value

C =
c

n
=

2
3
× c < c, n =

3
2

> 1. (1.3.15)

It is equally known that electrons can propagate in water at speeds
bigger than the local speed of light, and actually approaching the speed
of light in vacuum. In fact, the propagation of electrons faster than the
local speed of light is responsible for the blueish of light, called Cerenkov
light, that can be seen in the pools of nuclear reactors.

Finally, it is also well known that special relativity was built to describe
the propagation of light in vacuum, and certainly not within physical
media. In fact, the setting of a massive particle travelling faster than
the local speed of light is in violation of the basic axioms of special
relativity.
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In an attempt to adapt nature to special relativity, the following three
beliefs are generally voiced. Firstly, it is believed that “the speed of light
in vacuum c is the maximal causal speed within water” (see Figure 1.5).

However, in this case there is the violation of the axiom of relativistic
addition of speeds, because the sum of two speeds of light in water does
not yield the speed of light, as required by a fundamental axiom of special
relativity,

Vtot =
C + C

1 + C2

c2

=
12
13

× c �= C. (1.3.16)

Secondly, it is believed that “the speed of light in water C is the maximal
causal speed in water.” In this case the axiom of relativistic compositions
of speeds is verified,

Vtot =
C + C

1 + C2

C2

= C, (1.3.17)

but there is the violation of the principle of causality evidently due to
the fact that ordinary massive particles such as the electron (and not hy-
pothetical tachyons) can travel faster than the assumed maximal causal
speed.

Thirdly, it is believed that “the reduction of the speed of light in water
is illusory” because the reduction of light to photons scattering among
the atoms constituting water re-establishes the full validity of special
relativity.

The latter belief is essentially nonscientific because it is not substanti-
ated by credible calculations proving not only the actual reduction of the
speed of light by one third but also the validity of such a large reduction
to a sufficient number of different frequencies or wavelengths.

To begin, the nonscientific nature of the third belief is soon proved
for the case of electromagnetic waves with large wavelength, since the
latter do not admit a credible reduction to photons for the case here
considered. Even for the case of wavelengths of atomic size, the cross
section of the Compton Scattering herein considered is known to be
small, and definitely insufficient to generate a 33% reduction of the speed
of light, as first year graduate students can easily prove.

All the preceding aspects refer to the propagation of light at speeds
C smaller than the speed in vacuum c. In addition, there exist today a
large volume of experimental evidence reviewed later on establishing that
light propagates within hyperdense media, such as those in the interior
of hadrons, nuclei and stars, at speed much bigger than the speed in
vacuum,

C =
c

n
� c, n � 1. (1.3.18)
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Figure 1.5. A further visual evidence of the lack of applicability of Einstein’s doc-
trines within physical media, the refraction of light in water due to the decrease of
its speed, contrary to the axiom of the “universal constancy of the speed of light”.
Organized academic interests on Einsteinian doctrines have claimed throughout the
20-th century that this effect is “illusory” because Einsteinian doctrines are fully re-
covered by reducing light to the scattering of photons among atoms. The political
nature of the argument, particularly when proffered by experts, is established by the
impossibility of achieving numerical representations of the occurrence, such as the
33% reduction of the speed of light in water, experimental evidence for speeds bigger
than the speed of light in water (for which the reduction of light to photons scattering
among atoms has no physical sense), and other data.

in which case the reduction of light to photons scattering among atoms
loses any scientific credibility (because such a propagation can never
reach speeds bigger than c).

In conclusion, experimental evidence establishes beyond credible doubt
that special relativity is indeed valid for point-particles and electro-
magnetic waves moving in vacuum, but special relativity is inapplicable
(rather than violated) for the propagation of particles and electromag-
netic waves within physical media because the speed of light C is a local
variable dependent on the characteristics of the medium in which it prop-
agates, with speed C = c in vacuum, speeds C � c within physical media
of low density and speeds C � c within media of very high density.

The variable character of the speed of light then establishes the lack of
universal applicability of Einsteinian doctrines, since the latter are no-
toriously based on the philosophical assumption of “universal constancy
of the speed of light”.

Unreassuringly, the experimental evidence on speeds of light greater
than that in vacuum has been confirmed by German experimentalists
who have transmitted an entire Beethoven symphony with electromag-
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netic waves propagating between certain guides at speeds bigger than
that of light in vacuum, thus establishing the limitations of special rel-
ativity herein considered.

Nevertheless, this so important an event continues to be ignored by
organized interests on Einsteinian doctrines with rather sinister implica-
tions for mankind because, as today known, the restriction of nature to
comply with special relativity prevents the prediction, let alone study,
of much needed new clean energies and fuels [22].

1.3.6 Inapplicability of the Galilean and Poincaré
symmetries for Interior Dynamical Systems
of Matter or Antimatter

By remaining at the classical level, the inapplicability of Einsteinian
doctrines within physical media is additionally established by the dra-
matic dynamical differences between the structure of planetary systems
(such as our Solar system), and the structure of planets (such as Jupiter).

Planetary systems are Keplerian systems, that is, a systems in which
the heaviest component is at the center (actually in one of the two foci of
elliptical orbits) and the other constituents orbit around it. By contrast,
planets absolutely do not constitute Keplerian systems, because they do
not have a Keplerian center with lighter constituents orbiting around it
(Figure 1.6).

Moreover, for a planetary system isolated from the rest of the universe,
the total conservation laws for the energy, linear momentum and angular
momentum are verified by each individual constituent. For instance, the
conservation of the intrinsic and orbital angular momentum of Jupiter is
crucial for the stability of its orbit and the same holds for all remaining
planets of the solar system.

On the contrary, for the interior dynamical problem of Jupiter, con-
servation laws hold only globally, while no conservation law can be for-
mulated for individual constituents.

For instance, in Jupiter’s structure we can see in a telescope with our
naked eye the existence in Jupiter’s atmosphere of interior vortices with
variable angular momentum, yet always in such a way to verify total
conservation laws. We merely have internal exchanges of energy, linear
and angular momentum but always in such a way that they cancel out
globally resulting in total conservation laws.

In the transition to particles, the situation remains the same as that at
the classical level. For instance, nuclei do not have nuclei and, therefore,
nuclei do not constitute Keplerian systems. Similarly, the Solar system
is a Keplerian system, but the Sun is not.
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Figure 1.6. Another illustration of the second major scientific imbalance of the 20-th
century studied in this monograph, the dramatic structural differences between ex-
terior and interior dynamical systems, here represented with the Solar system (top
view) and the structure of Jupiter (bottom view). Planetary systems have a Kep-
lerian structure with the exact validity of the Galilean and Poincaré symmetries. By
contrast, interior systems such as planets (as well as hadrons, nuclei and stars) do not
have a Keplerian structure because of the lack of the Keplerian center. Consequently,
the Galilean and Poincaré symmetries cannot possibly be exact for interior systems
in favor of covering symmetries and relativities studied in this monograph.

Any reduction of the structure of the Sun to a Keplerian system
directly implies the belief in the perpetual motion within a physical
medium, because the former belief implies that electrons and protons
move in the hyperdense medium in the core of a star with a locally con-
served angular momentum, namely, a belief outside all boundaries of
credibility, let alone science.
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If the above aspects applies for matter, there is no need to treat anti-
matter because the problems multiply due to inconsistent quantization
of a classical Galilean or Poincaré system into a charge conjugate state.
The above evidence establishes beyond credible doubt the following:

THEOREM 1.3.4 [22]: Galileo’s and Poincaré symmetries are inap-
plicable for classical and operator interior dynamical systems of matter
or of antimatter due to their lack of Keplerian structure originating from
the presence of contact, zero-range, non-potential interactions, and other
reasons.

Note the use of the word “inapplicable”, rather than “violated” or
“broken”. This is due to the fact that, as clearly stated by the originators
of the basic spacetime symmetries (rather than their followers of the
20-th century), Galileo’s and Poincaré symmetries were not built for
interior dynamical conditions.

1.3.7 Lack of Exact Character of Special
Relativity and Quantum Mechanics for the
Structure of Hadrons, Nuclei and Stars

Perhaps the biggest scientific imbalance of the 20-th century has been
the abstraction of hadronic constituents to point-like particles as a nec-
essary condition to use conventional spacetime symmetries, relativities
and quantum mechanics for interior conditions. In fact, such an abstrac-
tion is at the very origin of the conjecture that the undetectable quarks
are the physical constituents of hadrons.

As repeatedly shown later on in this monograph, the unitary sym-
metries for the Mendeleev-type classification of hadrons into family has
indeed a final character. However, the belief that the same unitary sym-
metries for the classification of hadrons can jointly provide the struc-
ture of each individual member of a unitary multiplet, is afflicted by a
plethora of catastrophic inconsistencies that, after decades of attempts,
have remained unresolved.

It is sufficient to recall at this point thatquarks cannot have any gravity
at all, because gravity can only be defined in spacetime while quarks
can only be define on a unitary internal space without connection to our
spacetime (due to O’Rafearthaigh’s theorem10). Note that, under the
conjecture that quarks are the constituents of nucleons, thus of nuclei,
our bodies should float in the air because of the proven lack of gravity.

Also, quark masses cannot have a credible inertia, because to have
inertial masses must be defined in our spacetime, that is, masses must
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be the eigenvalues of the second order Casimir invariant of the Poincaré
symmetry, while quarks cannot be characterized at all with such a space-
time symmetry. As a consequence, quark masses are purely mathematical
parameters solely definable in a purely mathematical unitary space of the
classification (and not the structure) of hadrons. Additional catastrophic
inconsistencies of quark conjectures will be pointed out later on.

Even assuming that quarks are physical particles, their structure for
protons, neutrons and all baryons does not constitute a Keplerian sys-
tem, under which condition the use of nonrelativistic or relativistic quan-
tum mechanics is a pure religion and not a scientific truth.

Another main objective of this monograph is to show that the as-
sumption of the unconfinable and undetectable quarks without gravity
and inertia are the physical constituents of hadrons prevents any possi-
ble utilization of the immense reservoir or energy inside nucleons. On
the contrary, if physical particles with proven gravity and inertial are
assumed as the physical constituents of hadrons that can be expelled
and detected under certain conditions, new clean energies are indeed
possible, provided that special relativity and quantum mechanics are
abandoned in favor of covering theories.

Irrespective of whether we consider quarks or other more credible par-
ticles, all particles have a wavepacket of the order of 1F = 10−13 cm,
that is, a wavepacket of the order of the size of all hadrons. Therefore,
the hyperdense medium in the interior of hadrons is composed of parti-
cles with extended wavepackets in conditions of total mutual penetration.
Under these conditions, the belief that Galileo’s and Poincaré symme-
tries are exactly valid in the interior of hadrons implies the exiting from
all boundaries of credibility, let alone of science.

The inapplicability of the fundamental spacetime symmetries then
implies the inapplicability of Galilean and special relativities as well as
of classical and quantum nonrelativistic and relativistic mechanics. We
can therefore conclude with the following:

THEOREM 1.3.5 [22]: Classical Hamiltonian mechanics and related
Galilean and special relativities are not exactly valid for the treatment
of interior classical systems such the structure of Jupiter, while non-
relativistic and relativistic quantum mechanics and related Galilean and
special relativities are not exactly valid for interior particle systems, such
as the structure of hadrons, nuclei and stars.

Another important scope of this monograph is to show that the prob-
lem of the exact spacetime symmetries applicable to interior dynamical
systems is not a mere academic issue, because it carries a direct societal
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relevance. In fact, we shall show that broader spacetime symmetries
specifically built for interior systems predict the existence of new clean
energies and fuels that are absolutely prohibited by the spacetime sym-
metries of the exterior systems.

More particularly, as we shall see, the assumption that the unde-
tectable quarks are physical constituents of hadrons prohibits any possi-
ble new energy based on processes occurring in the interior of hadrons
(rather than in the interior of their ensembles such as nuclei). On the
contrary, the assumption of hadronic constituents that can be fully de-
fined in our spacetime directly implies new clean energies.

1.4 THE SCIENTIFIC IMBALANCE CAUSED
BY GENERAL RELATIVITY AND
QUANTUM GRAVITY FOR MATTER
AND ANTIMATTER

1.4.1 The Negative Impact of General Relativity
on Antimatter

An important requirement of any consistent classical theory of anti-
matter is the existence of antigravity defined as a gravitational repulsion
experienced by antimatter in the field of matter, and vice-versa.

As we shall see in detail in Chapter 4, this is essentially due to the
achievement in the classical treatment of antimatter of a full dynamical
equivalence between electromagnetic and gravitational interactions, thus
including the existence of both attraction and repulsion, which classical
equivalence is generally lost when antimatter is solely treated in second
quantization owing to the notorious absence of a consistent gravitational
theory for that level of study.

By contrast, in its current formulation, general relativity strictly pro-
hibits the existence of antigravity, thus casting a severe constraint in the
scientific development of our knowledge on antimatter. For instance, the
experimental verification of the prediction of antigravity experienced by
very low energy positrons in horizontal flight on Earth [9] is fully fea-
sible with current technology, resolutory (because the displacement can
be seen by the naked eye on an scintillator), and transparently more
important than various currently preferred, yet sterile particle experi-
ments.

Despite all this relevance, said test of antigravity is often dismissed
by experimentalists and theoreticians alike on grounds that “general
relativity does not predict antigravity”. Consequently, basic advances in
antimatter (as well as on numerous other fields) are in jeopardy without
an in depth appraisal of general relativity.
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In this section we outline a number of inconsistencies of general rela-
tivity published in refereed technical journals that are so serious to be
known as “catastrophic inconsistencies”. The lack of resolution of these
inconsistencies, also published in refereed technical journals, establishes
that general relativity simply cannot be used as an argument to suppress
basic new experiments in antigravity.

Independently from these inconsistencies, recall that, according to
Dirac’s teaching, antimatter requires negative-energy solutions. Conse-
quently, general relativity cannot have any serious impact on antimatter
because it does not allow for negative-definite energies.

1.4.2 Catastrophic Inconsistencies of General
Relativity due to Lack of Sources

While special relativity has a majestic axiomatic consistency indicated
in Section 1.2.1, there is no doubt that, despite widespread popular sup-
port, general relativity has been the most controversial theory of the
20-th century. In this section we shall review some of the major, mathe-
matical, theoretical and experimental inconsistencies of general relativity
published in the refereed technical literature, yet generally ignored by
scientists in the field, and today known as “catastrophic inconsisten-
cies”.11

There exist subtle distinctions between “general relativity”, “Ein-
stein’s Gravitation”, and “Riemannian treatment of gravity”.12 For our
needs, we here define Einstein’s gravitation the reduction of exterior
gravitation in vacuum to pure geometry, namely, gravitation is solely
represented via curvature in a Riemannian space R(x, g, R) with space-
time coordinates x = (xµ, µ = 1, 2, 3, 4) and nowhere singular real-
valued and symmetric metric g(x) over the reals R, with field equations

Gµν = Rµν − gµν × R/2 = 0, (1.4.1)

in which, as a central condition to have “Einstein’s gravitation”, there are
no sources for the exterior gravitational field in vacuum for a body with
null total electromagnetic field (null total charge and magnetic moment).

For our needs, we define as general relativity any description of exterior
gravity on a Riemannian space over the reals with Einstein-Hilbert field
equations including a source due to the presence of electric and magnetic
fields,

Gµν = Rµν − gµν × R/2 = k × tµν , (1.4.2)
where k is a constant depending on the selected unit whose value is here
irrelevant. For the scope of this monograph, it is sufficient to assume that
the Riemannian description of gravity coincides with general relativity
according to the above definition.13

A detailed
study of the content of this section was conducted in Ref. [109].
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In the following, we shall study in this section the inconsistencies of
Einstein gravitation, that is, the inconsistencies in the entire reduction
of gravity to curvature without source. We shall then study in the next
section the inconsistencies caused by curvature itself even in the presence
of sources.

It should be stressed that a technical appraisal of the content of this
section can only be reached following the study in Chapter 5 of the
axiomatic inconsistencies of grand unified theories of electroweak and
gravitational interactions whenever gravity is represented with curvature
on a Riemannian space, and irrespective of whether with or without
sources [3].

THEOREM 1.4.1 [41]: Einstein’s gravitation and general relativity at
large are incompatible with the electromagnetic origin of mass established
by quantum electrodynamics, thus being inconsistent with experimental
evidence.

Proof. Quantum electrodynamics has established that the mass of all
elementary particles, whether charged or neutral, has a primary electro-
magnetic origin, that is, all masses have a first-order origin given by the
volume integral of the 00-component of the energy-momentum tensor
tµν of electromagnetic origin,

m =
∫

d4x × telm00 . (1.4.3a)

tαβ =
1
4π

(Fµ
α Fµβ +

1
4
gαβFµνF

µν), (1.4.3b)

where tαβ is the electromagnetic tensor, and Fαβ is the electromagnetic
field (see Ref. [11a] for explicit forms of the latter with retarded and
advanced potentials).

Therefore, quantum electrodynamics requires the presence of a first-
order source tensor in the exterior field equations in vacuum as in
Eq. (1.4.2). Such a source tensor is absent in Einstein’s gravitation
(1.4.1) by conception. Consequently, Einstein’s gravitation is incompat-
ible with quantum electrodynamics.

The incompatibility of general relativity with quantum electrodynam-
ics is established by the fact that the source tensor in Eq. (1.4.2) is of
higher order in magnitude, thus being ignorable in first approximation
with respect to the gravitational field, while according to quantum elec-
trodynamics said source tensor is of first order, thus not being ignorable
in first approximation.
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The inconsistency of both Einstein’s gravitation and general relativ-
ity is finally established by the fact that, when the total charge and
magnetic moment of the body considered are null, Einstein’s gravitation
and general relativity allow no source at all. By contrast, as illustrated
in Ref. [41], quantum electrodynamics requires a source tensor of first
order in magnitude even when the total charge and magnetic moments
are null due to the charge structure of matter. q.e.d.

The first consequence of the above property can be expressed via the
following:

COROLLARY 1.4.1A [41]: Einstein’s reduction of gravitation in vac-
uum to pure curvature without source is incompatible with physical real-
ity.

A few comments are now in order. As is well known, the mass of the
electron is entirely of electromagnetic origin, as described by Eq. (1.4.3),
therefore requiring a first-order source tensor in vacuum as in Eq . (1.4.2).
Thus, Einstein’s gravitation for the case of the electron is inconsistent
with nature. Also, the electron has a point charge. Consequently, the
electron has no interior problem at all, in which case the gravitational
and inertial masses coincide,

mGrav.
Electron ≡ mIner

Electron. (1.4.4)

Next, Ref. [41] proved Theorem 1.4.1 for the case of a neutral particle
by showing that the π◦ meson needs a first-order source tensor in the
exterior gravitational problem in vacuum since its structure is composed
of one charged particle and one charged antiparticle in high dynamical
conditions.

In particular, the said source tensor has such a large value to account
for the entire gravitational mass of the particle [41]

mGrav.
π◦ =

∫
d4x × tElm

00 . (1.4.5)

For the case of the interior problem of the π◦, we have the additional
presence of short range weak and strong interactions representable with
a new tensor τµν . We, therefore, have the following

COROLLARY 1.4.1B [41]: In order to achieve compatibility with elec-
tromagnetic, weak and strong interactions, any gravitational theory must
admit two source tensors, a traceless tensor for the representation of the
electromagnetic origin of mass in the exterior gravitational problem, and
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a second tensor to represent the contribution to interior gravitation of
the short range interactions according to the field equations

GInt.
µν = Rµν − gµν × R/2 = k × (tElm

µν + τShortRange
µν ). (1.4.6)

A main difference of the two source tensors is that the electromagnetic
tensor tElm

µν is notoriously traceless, while the second tensor τShortRange
µν

is not. A more rigorous definition of these two tensors will be given
shortly.

It should be indicated that, for a possible solution of Eq. (1.4.6),
various explicit forms of the electromagnetic fields as well as of the
short range fields originating the energy-momentum tensors are given
in Ref. [41].

Since both sources tensors are positive-definite, Ref. [41] concluded
that the interior gravitational problem characterizes the inertial mass
according to the expression

mIner =
∫

d4x × (tElm
00 + τShortRange

00 ), (1.4.7)

with consequential general law

mInert. ≥ mGrav., (1.4.8)

where the equality solely applies for the electron.
Finally, Ref. [41] proved Theorem 1.4.1 for the exterior gravitational

problem of a neutral massive body, such as a star, by showing that the
situation is essentially the same as that for the π◦. The sole difference
is that the electromagnetic field requires the sum of the contributions
from all elementary constituents of the star,

mGrav.
Star = Σp=1,2,...

∫
d4x × tElem.

p00 . (1.4.9)

In this case, Ref. [41] provided methods for the approximate evaluation
of the sum that resulted to be of first-order also for stars with null total
charge.

When studying a charged body, there is no need to alter equations
(1.4.6) since that particular contribution is automatically contained in
the indicated field equations.

Once the incompatibility of general relativity at large with quantum
electrodynamics has been established, the interested reader can easily
prove the incompatibility of general relativity with quantum field the-
ory and quantum chromodynamics, as implicitly contained in Corollary
1.4.1B.
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An important property apparently first reached in Ref. [41] of 1974
is the following:

COROLLARY 1.4.1C [41]: The exterior gravitational field of a mass
originates entirely from the total energy-momentum tensor (1.4.3b) of
the electromagnetic field of all elementary constituents of said mass.

In different terms, a reason for the failure to achieve a “unification” of
gravitational and electromagnetic interactions, failures initiated by Ein-
stein himself, is that the said interactions can be “identified” with each
other and, as such, they cannot be unified. In fact, in all unifications at-
tempted until now, the gravitational and electromagnetic fields preserve
their identity, and the unification is attempted via geometric and other
means resulting in redundancies that eventually cause inconsistencies
(see Chapter 5 for details).

Note that conventional electromagnetism is represented with the ten-
sor Fµν and related Maxwell’s equations. When electromagnetism is
identified with exterior gravitation, it is represented with the energy-
momentum tensor tµν and related equations (1.4.6).

In this way, gravitation results to be a mere additional manifestation
of electromagnetism. The important point is that, besides the transition
from the field tensor Fµν to the energy-momentum tensor tµν , there is
no need to introduce a new interaction to represent gravity.

Note finally the irreconcilable alternatives emerging from the studies
herein considered:

ALTERNATIVE I: Einstein’s gravitation is assumed as being correct,
in which case quantum electrodynamics must be revised in such a way
as to avoid the electromagnetic origin of mass; or

ALTERNATIVE II: Quantum electrodynamics is assumed as being
correct, in which case Einstein’s gravitation must be irreconcilably aban-
doned in favor of a more adequate theory.

By remembering that quantum electrodynamics is one of the most
solid and experimentally verified theories in scientific history, it is evi-
dent that the rather widespread assumption of Einstein’s gravitation as
having a final and universal character is non-scientific.

THEOREM 1.4.2 [42,11]: Einstein’s gravitation (1.4.1) is incompati-
ble with the Freud identity of the Riemannian geometry, thus being in-
consistent on geometric grounds.
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Proof. The Freud identity [11b] can be written

Rα
β−

1
2
×δα

β×R−1
2
×δα

β×Θ = Uα
β +∂V αρ

β /∂xρ = k×(tαβ+τα
β ), (1.4.10)

where
Θ = gαβgγδ(ΓραβΓρ

γβ − ΓραβΓρ
γδ), (1.4.11a)

Uα
β = −1

2
∂Θ

∂gρα
|ρ

gγβ ↑γ , (1.4.11b)

V αρ
β =

1
2
[gγδ(δα

β Γρ
αγ − δρ

βΓρ
αδ)+

+(δρ
βgαγ − δα

β gργ)Γδ
γδ + gργΓα

βγ − gαγΓρ
βγ ]. (1.4.11c)

Therefore, the Freud identity requires two first order source tensors
for the exterior gravitational problems in vacuum as in Eq. (3.6) of
Ref. [11a]. These terms are absent in Einstein’s gravitation (1.4.1) that,
consequently, violates the Freud identity of the Riemannian geometry.
q.e.d.

By noting that trace terms can be transferred from one tensor to the
other in the r.h.s. of Eq. (1.4.10), it is easy to prove the following:

COROLLARY 1.4.2A [11]: Except for possible factorization of com-
mon terms, the t- and τ -tensors of Theorem 1.4.2 coincide with the elec-
tromagnetic and short range tensors, respectively, of Corollary 1.4.1B.

A few historical comments regarding the Freud identity are in order.
It has been popularly believed throughout the 20-th century that the
Riemannian geometry possesses only four identities (see, e.g., Ref. [43]).
In reality, Freud [42] identified in 1939 a fifth identity that, unfortunately,
was not aligned with Einstein’s doctrines and, as such, the identity was
ignored in virtually the entire literature on gravitation of the 20-th cen-
tury.

However, as repeatedly illustrated by scientific history, structural
problems simply do not disappear with their suppression, and actually
grow in time. In fact, the Freud identity did not escape Pauli who quoted
it in a footnote of his celebrated book of 1958 [45]. Santilli became aware
of the Freud identity via an accurate reading of Pauli’s book (including
its important footnotes) and assumed the Freud identity as the geometric
foundation of the gravitational studies presented in Ref. [11].14

Subsequently, in his capacity as Editor in Chief of Algebras, Groups
and Geometries, Santilli requested the mathematician Hanno Rund, a
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known authority in Riemannian geometry [46], to inspect the Freud
identity for the scope of ascertaining whether the said identity was indeed
a new identity. Rund kindly accepted Santilli’s invitation and released
paper [46] of 1991 (the last paper prior to his departure) in which Rund
confirmed indeed the character of Eq. (1.4.10) as a genuine, independent,
fifth identity of the Riemannian geometry.

The Freud identity was also rediscovered by Yilmaz (see Ref. [47] and
papers quoted therein) who used the identity for his own broadening of
Einstein’s gravitation via an external stress-energy tensor that is essen-
tially equivalent to the source tensor with non-null trace of Ref. [41] of
1974, Eq. (1.4.6).

Despite these efforts, the presentation of the Freud identity to various
meetings and several personal mailings to colleagues in gravitation, the
Freud identity continues to remain vastly ignored to this day, with very
rare exceptions.15

Theorems 1.4.1 and 1.4.2 complete our presentation on the catastrophic
inconsistencies of Einstein’s gravitation due to the lack of a first-order
source in the exterior gravitational problem in vacuum. These theorems,
by no means, exhaust all inconsistencies of Einstein’s gravitation, and
numerous additional inconsistencies do indeed exist.

For instance, Yilmaz [47] has proved that Einstein’s gravitation ex-
plains the 43 ′′ of the precession of the perihelion of Mercury, but cannot
explain the basic Newtonian contribution. This result can also be seen
from Ref. [41] because the lack of source implies the impossibility of
importing into the theory the basic Newtonian potential. Under these
conditions the representation of the Newtonian contribution is reduced
to a religious belief, rather than a serious scientific statement.

For these and numerous additional inconsistencies of Einstein’s grav-
itation or general relativity at large we refer the reader to Yilmaz [47],
Wilhelm [48], Santilli [53], Alfvén [49,50], Fock [51], Nordensen [52], and
large literature quoted therein.

1.4.3 Catastrophic Inconsistencies of General
Relativity due to Curvature

We now pass to the study of the structural inconsistencies of general
relativity caused by the very use of the Riemannian curvature, irrespec-
tive of the selected field equations, including those fully compatible with
the Freud identity.

THEOREM 1.4.3 [53]: Gravitational theories on a Riemannian space
over a field of real numbers do not possess time invariant basic units
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and numerical predictions, thus having catastrophic mathematical and
physical inconsistencies.

Proof. The map from Minkowski to Riemannian spaces is known to
be noncanonical,

η = Diag.(1, 1, 1,−1) → g(x) = U(x) × η × U(x)†, (1.4.12a)

U(x) × U(x)† �= I. (1.4.12b)

Thus, the time evolution of Riemannian theories is necessarily noncanon-
ical, with consequential lack of invariance in time of the basic units of
the theory, such as

It=0 = Diag.(1 cm, 1 cm, 1 cm, 1 sec) → I ′t>0 = Ut × I × U †
t �= It=0.

(1.4.13)
The lack of invariance in time of numerical predictions then follows from
the known “covariance”, that is, lack of time invariance of the line ele-
ment. q.e.d.

As an illustration, suppose that an experimentalist assumes at the
initial time t = 0 the units 1 cm and 1 sec. Then, all Riemannian
formulations of gravitation, including Einstein’s gravitation, predict that
at the later time t > 0 said units have a different numerical value.

Similarly, suppose that a Riemannian theory predicts a numerical
value at the initial time t = 0, such as the 43 ′′ for the precession of the
perihelion of Mercury. One can prove that the same prediction at a later
time t > 0 is numerically different precisely in view of its “covariance”,
rather than invariance as intended in special relativity, thus preventing
a serious application of the theory to physical reality. We therefore have
the following:

COROLLARY 1.4.3A [53]: Riemannian theories of gravitation in gen-
eral, and Einstein’s gravitation in particular, can at best describe physical
reality at a fixed value of time, without a consistent dynamical evolution.

Interested readers can independently prove the latter occurrence from
the lack of existence of a Hamiltonian in Einstein’s gravitation. It is
known in analytic mechanics (see, e.g., Refs. [55,56]) that Lagrangian
theories not admitting an equivalent Hamiltonian counterpart, as is the
case for Einstein’s gravitation, are inconsistent under time evolution,
unless there are suitable subsidiary constraints. But the latter are absent
in general relativity.

It is therefore surprising at best to note that thousands of physicists
during the 20-th century, who are expected from their academic ranks
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to have a serious knowledge analytic mechanics, have believed Einstein’s
gravitation to be correct despite the characterization by a Lagrangian
formulation without a consistent Hamiltonian counterpart or suitable
subsidiary constraints.

It should be indicated that the inconsistencies caused by curvature
are much deeper than those indicated above. For consistency, the Rie-
mannian geometry must be defined on the field of numbers R(n, +,×)
that, in turn, is fundamentally dependent on the basic unit I. But the
Riemannian geometry does not leave time invariant the basic unit I due
to its noncanonical character. The loss in time of the basic unit I then
implies the consequential loss in time of the base field R, with conse-
quential catastrophic collapse of the entire mathematical structure of
the geometry [53].

In conclusion, not only is Einstein’s reduction of gravity to pure cur-
vature is inconsistent with nature because of the lack of sources, but
also the ultimate origin of the inconsistencies rests in the curvature it-
self when assumed to represent gravity, due to its inherent noncanonical
character at the classical level with consequential nonunitary structure
at the operator level.

Serious mathematical and physical inconsistencies are then unavoid-
able under these premises, thus establishing the impossibility of any
credible use of general relativity, for instance, as an argument against
the test on antigravity predicted for antimatter in the field of matter [9],
as well as establishing the need for a profound revision of our current
views on gravitation.

THEOREM 1.4.4: Einstein’s gravitation is incompatible with experi-
mental evidence because it predicts the bending of light as due to curva-
ture, thus ignoring that due to Newton’s attraction.

Proof. Light carries energy, thus being subjected to a bending due
to the conventional Newtonian gravitational attraction, while Einstein’s
gravitation predicts that the bending of light is entirely due to curva-
ture. The assumption that Einstein’s graviutation includes Newtonian
attraction leads to a bending twice that experimentally measured. If
the bending of light is reducved to pure curvature to comply with ex-
perimental values, this requires the inability of Einstein’s gravitation to
include the Newtonian attraction with consequential other catastrophic
inconsistencies, such as the inability to represent the base Newtonian
contribution in planetary motion as shown by Yilmaz [47] and other
inconsistencies [48-52]. q.e.d.
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THEOREM 1.4.5: The lack of curvature in gravitation is established
by the free fall of masses that necessarily occurs along a straight radial
line.

In fact, a consistent representation of the free fall of a mass along a
straight radial line requires that the Newtonian attraction be represented
the field equations necessarily without curvature, thus disproving the
customary belief needed to avoid Corollary 1.4.2.A that said Newtonian
attraction emerges at the level of the post-Newtonian approximation
(the PPN approximation) [43,44] of Eq. (1.4.1).

THEOREM 1.4.6. Gravitational experimental measurements do not
verify Einstein’s gravitation uniquely.

Proof. All claimed “experimental verifications” of Einstein’s gravi-
tation are based on the PPN “expansion” (or linearization) of the field
equations that, as such, is not unique. In fact, Eq. (1.4.1) admit a
variety of inequivalent expansions depending on the selected parameter,
the selected expansion and the selected truncation. It is then easy to
show that the selection of an expansion of the same equations (1.4.1)
but different from the PPN approximation leads to dramatic departures
from experimental values. q.e.d.

A comparison between special and general relativities is here in order.
Special relativity can be safely claimed to be “verified by experiments”
because the said experiments verify numerical values uniquely and unam-
biguously predicted by special relativity. By contrast, no such statement
can be made for general relativity since the latter does not uniquely and
unambiguously predict given numerical values due, again, to the variety
of possible expansions and linearization.

The origin of such a drastic difference is due to the fact that the nu-
merical predictions of special relativity are rigorously controlled by the
basic Poincaré “invariance”. By contrast, one of the several drawbacks
of the “covariance” of general relativity is precisely the impossibility of
predicting numerical values in a unique and unambiguous way, thus pre-
venting serious claims of true “experimental verifications” of general
relativity.

By no means, the inconsistencies expressed by the above theorems
constitute all inconsistencies of general relativity. In the author’s opin-
ion, additional deep inconsistencies are caused by the fact that general
relativity does not possess a well defined Minkowskian limit, while the
admission of the Minkowski space as a tangent space is basically insuf-



INTRODUCTION 43

ficient on dynamical grounds (trivially, because on said tangent space
gravitation is absent).

As an illustration, we should recall the controversy on conservation
laws that raged during the 20-th century [11]. Special relativity has
rigidly defined total conservation laws because they are the Casimir in-
variants of the fundamental Poincaré symmetry. By contrast, there exist
several definitions of total conservation laws in a Riemannian represen-
tation of gravity due to various ambiguities evidently caused by the
absence of a symmetry in favor of covariance, the absence of sources and
other structural problems.

Moreover, none of the gravitational conservation laws yields the con-
servation laws of special relativity in a clear and unambiguous way,
precisely because of the lack of any limit of a Riemannian into the
Minkowskian space. Under these conditions, the compatibility of general
relativity with the special reduces to personal beliefs outside a rigorous
scientific process. Therefore, we have the following

THEOREM 1.4.7 [11]: The total conservation laws of general relativ-
ity are incompatible with those of special relativity.

Proof. The lack of compatibility of total conservation laws of general
and special relativity is established by the fact that the latter is based
on the Poincaré invariance while the former is merely a covariant theory,
since total conservation laws are the generator of the Poincaré symmetry
while having no role in covariance. q.e.d.

The above occurrence will be better illustrated in Chapter 3 where
we shall show that the achievement of a rigorous compatibility between
total conservation laws of special and general relativity will require their
assumption as the generators of a symmetry for both relativities, a task
that can only be accomplished via a new mathematics specifically con-
ceived for gravitation.

Another controversy that remained unresolved in the 20-th century
(primarily because of lack of sufficient consideration by scholars in the
field) is that, during its early stages, gravitation was divided into the
exterior and interior problems. For instance, Schwartzschild wrote two
articles on gravitation, one on the exterior [57] and one on the interior
problem [58].

However, it soon became apparent that general relativity was struc-
turally unable to represent interior problems for numerous reasons, such
as the impossibility of incorporating shape, density, local variations of
the speed of light within physical media via the familiar law we study
in high school c = c◦/n (which variation cannot be ignored classically),
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inability to represent interior contact interactions with a first-order La-
grangian, structural inability to represent interior nonconservation laws
(such as the vortices in Jupiter’s atmosphere with variable angular mo-
menta), structural inability to represent entropy, its increase and other
thermodynamical laws, etc. (see Ref. [11] for brevity).

Consequently, Schwartzschild’s solution for the exterior problem be-
came part of history (evidently because aligned with organized interests
in general relativity), while his interior solution has remained vastly
ignored to this day (evidently because not aligned with said organized
interests). In particular, the constituents of all astrophysical bodies have
been abstracted as being point-like, an abstraction that is beyond the
boundaries of science for classical treatments; all distinctions between
exterior and interior problems have been ignored in the majority of the
vast literature in the field; and gravitation has been tacitly reduced to
one single problem.

Nevertheless, as indicated earlier, major structural problems grow in
time when ignored, rather than disappearing. The lack of addressing
the interior gravitational problem is causing major distortions in astro-
physics, cosmology and other branches of science (see also next section).
We have, therefore, the following important result:

THEOREM 1.4.6 [11]: General relativity is incompatible with the ex-
perimental evidence on interior gravitational problems.

By no means the above analysis exhaust all inconsistencies of general
relativity, and numerous additional ones do indeed exist, such as that
expressed by the following:

THEOREM 1.4.7 [11b]: Operator images of Riemannian formulations
of gravitation are inconsistent on mathematical and physical grounds.

Proof. As established by Theorem 1.4.1, classical formulations of Rie-
mannian gravitation are noncanonical. Consequently, all their operator
counterparts must be nonunitary for evident reasons of compatibility.
But nonunitary theories are known to be inconsistent on both mathe-
matical and physical grounds [11b]. In fact, on mathematical grounds,
nonunitary theories of quantum gravity (see, e.g., Refs. [78–80]) do
not preserve in time the basic units, fields and spaces, while, on phys-
ical grounds, the said theories do not possess time invariant numerical
predictions, do not possess time invariant Hermiticity (thus having no
acceptable observables), and violate causality. q.e.d
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The reader should keep in mind the additional well known inconsis-
tencies of quantum gravity, such as its historical incompatibility with
quantum mechanics, the lack of a credible PCT theorem, etc.

To avoid raising issues of scientific ethics, all these inconsistencies
establish beyond a scientific, or otherwise credible, doubt, the need for a
profound revision of the gravitational views of the 20-th century. Studies
along these lines will be presented in Chapter 3.

1.5 HADRONIC MECHANICS
1.5.1 Foreword

The isodual theory of antimatter is a particular case of a broadening of
quantum mechanics known as hadronic mechanics. A knowledge of the
latter mechanics is mandatory for any treatment of antiparticles, such as
antiprotons and antineutrons, beyond the academic abstraction as being
point-like, since the latter abstraction is necessary for the applicability
of quantum mechanics.

In turn, the representation of antiprotons and antineutrons as they are
in the physical reality, extended, nonspherical, deformable and hyper-
dense, can be best achieved via the study, first, of the representation of
extended protons and neutrons within the context of hadronic mechan-
ics, and then the transition to their antiparticle forms via isoduality.

When facing the limitations of special relativity and quantum mechan-
ics for the representation of extended, nonspherical, deformable and hy-
perdense particles and antiparticles under linear and nonlinear, local and
nonlocal as well as potential and nonpotential forces, a rather general at-
titude is that of attempting their generalization via the broadening into
noncanonical and nonunitary structures, respectively, while preserving
the mathematics of their original formulation.

Despite the widespread publication of papers on theories with non-
canonical or nonunitary structures in refereed journals, including those
of major physical societies, it is not generally known that these broader
theories too are afflicted by inconsistencies so serious to be equally called
catastrophic.

A central scope of this monograph is the detailed identification of these
inconsistencies because their only known resolution is that presented
in the next chapters, that permitted by new mathematics specifically
constructed from the physical conditions considered.

In fact, the broadening of special relativity and quantum mechan-
ics into noncanonical and nonunitary forms, respectively, is necessary
to exit form the class of equivalence of the conventional formulations.
The resolution of the catastrophic inconsistencies of these broader for-
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mulations when treated via the mathematics of canonical and unitary
theories, then leaves no other possibility than that of it broadening the
basic mathematics.

Therefore, in the next two sections we shall review the inconsistencies
of noncanonical and nonunitary theories. The remaining sections of this
chapter are devoted to an outline of hadronic mechanics so as to allow
the reader to enter in a progressive way into the advanced formulations
presented in the next chapters.

1.5.2 Catastrophic Inconsistencies of
Noncanonical Theories

As recalled in Section 1.3, the research in classical mechanics of the
20-th century has been dominated by Hamiltonian systems, that is, sys-
tems admitting their complete representation via the truncated Hamilton
equations (1.3.1), namely, the historical equations proposed by Hamilton
in which the external terms have been cut out.

For the scope of this section, it is best to rewrite Eq. (1.3.1) in the
following unified form16

b = (bµ) = (r, p) = (rk, pk), (1.5.1a)

dbµ

dt
= ωµν × ∂H(t, b)

∂bν
, (1.5.1b)

H = K(p) + V (t, r, p), (1.5.1c)

µ = 1, 2, 3, . . . , 6, k = 1, 2, 3,

where H is the Hamtiltonian, K is the kinetic energy, V is the potential
energy, ωµν is the canonical Lie tensor with explicit form

ωµν =
(

0 I3×3

−I3×3 0

)
(1.5.2)

and I3×3 = Diag(1, 1, 1) is the unit matrix.
In the above unified notation, the brackets of the time evolution can

be written
dA

dt
= [A, H] =

∂A

∂bµ
× ωµν × ∂H

∂bν
, (1.5.3)

and they characterize a Lie algebra, as well known.
The above equations have a canonical structure, namely, their time

evolution characterizes a canonical transformation17,

bµ → b′µ(b), (1.5.4a)

ωµν → ∂b′µ

∂bρ
× ωρσ × ∂b′ν

∂bσ
≡ ωµν ; (1.5.4b)
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and the theory possesses the crucial property of predicting the same
numbers under the same conditions at different times, a property generi-
cally referred to as invariance, such as the invariance of the basic analytic
equations under their own time evolution

dbµ

dt
− ωµν × ∂H(t, b)

∂bν
= 0 → db′µ

dt
− ωµν × ∂H(t′, b′)

∂b′ν
= 0, (1.5.5)

where the invariance is expressed by the preservation of the Lie tensor
ωµν and of the Hamiltonian H.

It is easy to predict that future research in classical mechanics will
be dominated by non-Hamiltonian systems, that is, systems that cannot
be entirely described by the Hamiltonian and require at least a second
quantity for their complete description.

Alternatively, we are referring to systems with internal forces that are
partly of potential type, represented by V , and partly of nonpotential
type, thus requiring new quantities for their representation.

Also equivalently, we are referring to the transition from exterior dy-
namical systems recalled in Section 1.3 (systems of point-like particles
moving in vacuum without collisions under sole action-at-a-distance po-
tential interactions) to interior dynamical systems (extended, nonspher-
ical and deformable particles moving within a resistive medium with
action-at-a-distance potential forces plus contact, nonpotential, nonlo-
cal, and integral forces).

As also recalled in Section 1.3, exterior dynamical systems can be
easily represented with the truncated Hamilton equations, while the first
representation of the broader non-Hamiltonian systems is given precisely
by the historical analytic equations with external terms, Eq. (1.3.2) that
we now rewrite in the unified form

dbµ

dt
= ωµν × ∂H(t, b)

∂bν
+ Fµ(t, b, ḃ, . . .), (1.5.6a)

Fµ = (0, Fk), µ = 1, 2, . . . , 6, k = 1, 2, 3. (1.5.6b)

Nevertheless, as also recalled in Section 1.3, the addition of the exter-
nal terms creates serious structural problems since the brackets of the
new time evolution

dA

dt
= (A, H, F ) =

∂A

∂bµ
× ωµν × ∂H

∂bν
+

∂A

∂bµ
× Fµ, (1.5.7)

violate the conditions to characterize an algebra (since they violate the
right distributive and scalar laws), let alone violate all possible Lie al-
gebras, thus prohibiting the studies of basic aspects, such as spacetime
symmetries under nonpotential forces.
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As experienced by the author, when facing the latter problems, a
rather natural tendency is that of using coordinate transforms b → b′(b)
to turn a systems that is non-Hamiltonian in the b-coordinates into a
Hamiltonian form in the b′-coordinates,

dbµ

dt
− ωµν × ∂H(t, b)

∂bν
− Fµ(t, b, ḃ, . . .) = 0

→ db′µ

dt
− ωµν × ∂H ′(t, b′)

∂bν
= 0. (1.5.8)

These transformations always exist under the necessary continuity and
regularity conditions, as guaranteed by Lie-Koening theorem of analytic
mechanics or the Darboux theorem of the symplectic geometry) [54,55].

This first attempt has no physical value because of excessive problems,
such as: the lack of physical meaning of quantum formulations in the
b′-coordinates; the impossibility of placing a measuring apparatus in
the transformed coordinates; the loss of all known relativities, due to
the necessarily nonlinear character of the transforms with consequential
mapping of inertial into noninertial frames; and other problems.

The above problems force the restriction of analytic representations
of non-Hamiltonian systems within the fixed coordinates of the experi-
menter, the so-called direct analytic representations [54].

Under the latter restriction, the second logical attempt for quantita-
tive treatments of non-Hamiltonian systems is that of broadening con-
ventional canonical theories into a noncanonical form at least admitting
a consistent algebra in the brackets of the time evolution, even though
the resulting the time evolution of the broader equations cannot charac-
terize a canonical transformation.

As an illustration of these second lines of research, in 1978 the author
wrote for Springer-Verlag his first volume of Foundations of Theoretical
Mechanics [54a] devoted to the integrability conditions for the existence
of a Hamiltonian representation (the so-called Helmholtz’s conditions of
variational selfadjointness). The evident scope was that of identifying
the limits of applicability of the theory within the fixed coordinates of
the experimenter.

A main result was the proof that the truncated Hamilton equations
admit a direct analytic representation in three space dimensions only
of systems with potential (variationally selfadjoint) forces,18 thus repre-
senting only a small part of what are generally referred to as Newtonian
systems.

In this way, monograph [54a] confirmed the need to enlarge conven-
tional Hamiltonian mechanics within the fixed frame of the experimenter
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in such a way to admit a direct representation of all possible Newtonian
systems verifying the needed regularity and continuity conditions.

Along the latter line of research, in 1982 the author published with
Springer-Verlag his second volume of Foundations of Theoretical Me-
chanics [54b] for the specifically stated objective of broadening conven-
tional Hamiltonian mechanics in such a way to achieve direct universal-
ity, that is, the capability of representing all Newtonian systems (univer-
sality) in the fixed frame of the experimenter (direct universality), while
jointly preserving not only an algebra, but actually the Lie algebra in
the brackets of the time evolution.

These efforts gave birth to a broader mechanics called by the author
Birkhoffian mechanics in honor of the discoverer of the basic equations,
G. D. Birkhoff [59], which equations can be written in the unified form

dbµ

dt
= Ωµν(b) × ∂B(t, b)

∂bν
, (1.5.9)

where B(t, b) is called the Birkhoffian in order to distinguish it from the
Hamiltonian (since B does not generally represent the total energy), and
Ωµν is a generalized Lie tensor, in the sense that the new brackets

dA

dt
= [A, B]∗ =

∂A

∂bµ
× Ωµν × ∂B

∂bν
, (1.5.10)

still verify the Lie algebra axioms (see Ref. [54b] for details).
Stated in different terms, the main efforts of monograph [54b] were to

show that, under the necessary continuity and regularity properties, the
historical Hamilton’s equations with external terms always admit a re-
formulation within the fixed frame of the experimenter with a consistent
Lie algebra in the brackets of the time evolution,

dbµ

dt
= ωµν × ∂H(t, b)

∂bν
+ Fµ(t, b, . . .) ≡ Ωµν(b) × ∂B(t, b)

∂bν
. (1.5.11)

In this case, rather than being represented with H and F , non-
Hamiltonian systems are represented with B and Ω.

Monograph [54b] achieved in full the intended objective with the proof
that Birkhoffian mechanics is indeed directly universal for Newtonian
systems, and admits the following generalized canonical transformations,

Ωµν(b) → ∂b′µ

∂bρ
× Ωρσ(b(b′)) × ∂b′ν

∂bσ
≡ Ωµν(b′). (1.5.12)

Monograph [54b] concluded with the indication of the apparent full
equivalence of the Birkhoffian and Hamiltonian mechanics, since the
latter is admitted as a particular case of the former (when the generalized
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Lie tensor acquires the canonical form), both theories are derivable from
a variational principle, and both theories admit similar transformation
properties.

Since the generalized Lie tensor Ωµν and related brackets [A, B]∗ are
antisymmetric, we evidently have conservation laws of the type

dB

dt
= [B, B]∗ ≡ 0, (1.5.13)

Consequently, Birkhoffian mechanics was suggested in monograph [54b]
for the representation of closed-isolated non-Hamiltonian systems (such
as Jupiter).

The representation of open-nonconservative non-Hamiltonian systems
required the identification of a yet broader mechanics with a consistent
algebra in the brackets of the time evolution, yet such that the basic
brackets are not antisymmetric. The solution was reached in mono-
graphs [54b] via the Birkhoffian-admissible mechanics with basic ana-
lytic equations

dbµ

dt
= ωµν × ∂H(t, b)

∂bν
+ Fµ(t, b, . . .) ≡ Sµν(b) × ∂B(t, b)

∂bν
, (1.5.14)

where the tensor Sµν is Lie-admissible. According to Santilli’s [61–63]
realization of Albert [60] abstract formulation, namely, in the sense that
the generalized brackets of the time evolution

dA

dt
= (A, B) =

∂A

∂bµ
× Sµν(b) × ∂B

∂bν
, (1.5.15)

do verify all conditions to characterize an algebra, and their attached
antisymmetric brackets

[A, B]∗ = (A, B) − (B, A), (1.5.16)

characterize a generalized Lie algebra as occurring in Birkhoffian me-
chanics.

The representation of the open-nonconservative character of the equa-
tions was then consequential, since the lack of antisymmetry of the brack-
ets yields the correct time rate of variation of the energy E = B

dE

dt
= (E, E) = Fk × vk, (1.5.17)

and the same occurs for all other physical quantities.
Monographs [54b] then proved the direct universality of Birkhoffian-

admissible mechanics for all open-nonconservative systems, identified its
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transformation theory and provided the following elementary, yet uni-
versal realization of the Lie-admissible tensor S for B = H representing
the total nonconserved energy

Sµν =
(

0 I
−I F/(∂H/∂p)

)
. (1.5.18)

However, studies conducted after the publication of monographs [54]
revealed the following seemingly innocuous feature:

LEMMA 1.5.1 [11b]: Birkhoffian and Birkhoffian-admissible mechan-
ics are noncanonical theories, i.e., the generalized canonical transforma-
tions, are noncanonical,

ωµν → ∂b′µ

∂bρ
× ωρσ × ∂b′ν

∂bσ
≡ Ωµν(b′) �= ωµν . (1.5.19)

It is important to understand that Birkhoffian and Birkhoffian-admis-
sible mechanics are mathematically impeccable, but they are not recom-
mended for physical applications, both classically as well as foundations
of operator theories.

The canonical Lie tensor has the well known explicit form (1.5.2).
Therefore, the diagonal matrix I3×3 is left invariant by canonical trans-
formations. But I3×3 is the fundamental unit of the basic Euclidean
geometry. As such, it represents in an abstract and dimensionless form
the basic units of measurement, such as

I3×3 = Diag.(1cm, 1cm, 1cm). (1.5.20)

By their very definition, noncanonical transformations do not preserve
the basic unit, namely, they are transformations of the representative
type (with arbitrary new values)

I3×3 = Diag.(1cm, 1cm, 1cm)

→ U × I3×3 × U t = Diag.(3.127 cm, e−212 cm, log 45 cm), (1.5.21a)

U × U t �= I, (1.5.21b)

where t stands for transposed. We therefore have the following impor-
tant:

THEOREM 1.5.1 [53]: Whether Lie or Lie-admissible, all classi-
cal noncanonical theories are afflicted by catastrophic mathematical and
physical inconsistencies.
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Proof. Noncanonical theories do not leave invariant under time evo-
lution the basic unit. This implies the loss under the time evolution of
the base field on which the theory is defined. Still in turn, the loss in
time of the base field implies catastrophic mathematical inconsistencies,
such as the lack of preservation in time of metric spaces, geometries,
symmetries, etc., since the latter are defined over the field of real num-
bers.

Similarly, noncanonical theories do not leave invariant under time
evolution the basic units of measurements, thus being inapplicable for
consistent measurements. The same noncanonical theories also do not
possess time invariant numerical predictions, thus suffering catastrophic
physical inconsistencies. q.e.d.

In conclusion, the regaining of a consistent algebra in the brackets
of the time evolution, as it is the case for Birkhoffian and Birkhoffian-
admissible mechanics, is not sufficient for consistent physical applica-
tions because the theories remain noncanonical. In order to achieve a
physically consistent representation of non-Hamiltonian systems, it is
necessary that

1) The analytic equations must be derivable from a first-order varia-
tional principle, as necessary for quantization;

2) The brackets of the time evolution must characterize a consistent
algebra admitting exponentiation to a transformation group, as neces-
sary to formulate symmetries; and

3) The resulting theory must be invariant, that is, must admit basic
units and numerical predictions that are invariant in time, as necessary
for physical value.

Despite the large work done in monographs [54], the achievement of
all the above conditions required the author to resume classical studies
from their foundations.

These third efforts finally gave rise to the new Hamilton-Santilli iso-,
geno- and hypermechanics that do verify all conditions 1), 2) and 3), thus
being suitable classical foundations of hadronic mechanics, as reviewed
in Chapter 3.

However, the joint achievement of conditions 1), 2) and 3) for non-
Hamiltonian systems required the prior construction of basically new
mathematics, today known as Santilli’s iso-, geno- and hyper-mathema-
tics, as also reviewed in Chapter 3.

This section would be grossly incomplete and potentially misleading
without a study of requirement 1), with particular reference to the deriv-
ability of analytic equations from a “first-order” variational principle.

Classical studies of non-Hamiltonian systems are essential, not only
to identify the basic methods for their treatment, but above all to iden-
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tify quantization channels leading to unique and unambiguous operator
formulations.

Conventional Hamiltonian mechanics provides a solid foundation of
quantum mechanics because it is derivable from the variational principle
that we write in the unified notation

δA◦ = δ

∫
[R◦

µ(b) × dbµ − H × dt]

= δ

∫
(pk × drk − H × dt), (1.5.22)

where the functions R◦
µ have the canonical expression

(R◦
µ) = (pk, 0), (1.5.23)

under which expression the canonical tensor assumes the realization

ωµν =
∂R◦

ν

∂bµ
−

∂R◦
µ

∂bν
, (1.5.24a)

(ωµν) = (ωαβ)−1. (1.5.24b)

As it is well known, the foundations for quantization are given by the
Hamilton-Jacobi equations

∂A◦

∂t
= −H,

∂A◦

∂bµ
= R◦

µ, (1.5.25)

that can be written explicitly in the familiar forms

∂A◦

∂t
+ H = 0, (1.5.26a)

∂A◦

∂rk
− pk = 0, (1.5.26b)

∂A◦

∂pk
= 0, (1.5.26c)

The use of the naive quantization

A◦ → −i × h̄ × �n ψ, (1.5.27)

yields Schrödinger’s equations in a unique and unambiguous way

∂A◦

∂t
+ H = 0 → −i × h̄

∂ψ

∂t
− H × ψ = 0, (1.5.28a)

∂A◦

∂rk
= pk → −i × h̄ × ∂ψ

∂rk
− pk × ψ = 0, (1.5.28b)



54 ISODUAL THEORY OF ANTIMATTER

∂A◦

∂pk
= 0 → ∂ψ

∂pk
= 0. (1.5.28c)

The much more rigorous symplectic quantization yields exactly the same
results and, as such, it is not necessary for these introductory notes.

A feature crucial for quantization is Eq. (1.5.26c) from which it follows
that the canonical action A◦ is independent from the linear momentum
and, consequently,

A◦ = A◦(t, r). (1.5.29)

an occurrence generally (but not universally) referred in the literature
as characterizing a first-order action functional.

From the naive quantization it follows that, in the configuration rep-
resentation, the wave function originating from first-order action func-
tionals is independent from the linear momentum (and, vice-versa, in
the momentum representation it is independent from the coordinates),

ψ = ψ(t, r), (1.5.30)

which property is crucial for the axiomatic structure of quantum mechan-
ics, e.g., for the correct formulation of Heisenberg’s uncertainty principle,
causality, Bell’s inequalities, etc.

A serious knowledge of hadronic mechanics requires the understanding
of the reason why Birkhoffian mechanics cannot be assumed as a suitable
foundations for quantization. Birkhoff’s equations can indeed be derived
from the variational principle (see monograph [54b] for details)

δA = δ

∫
[Rµ(b) × dbµ − B × dt] = 0, (1.5.31)

where the new functions Rµ(b) have the general expression

(Rµ(b)) = (Ak(t, r, p), Bk(t, r, p)), (1.5.32)

subject to the regularity condition that Det. Ω �= 0, under which Birk-
hoff’s tensor assumes the realization

Ωµν(b) =
∂Rν

∂bµ
− ∂Rµ

∂bν
, (1.5.33a)

(Ωµν) = (Ω)αβ)−1, (1.5.33b)

with Birkhoffian Hamilton-Jacobi equations

∂A

∂t
= −B,

∂A

∂bµ
= Rµ. (1.5.34)

As one can see, Birkhoffian expressions (1.5.31)–(1.5.34) appear to be
greatly similar to the corresponding Hamiltonian forms (1.5.22)–(1.5.26).
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Nevertheless, there is a fundamental structural difference between the
two equations given by the fact that the Birkhoffian action does indeed
depend on the linear momenta,

A = A(t, r, p), (1.5.35)

a feature generally referred to as characterizing a second-order action
functional.

As a consequence, the “wavefunction” resulting from any quantization
of Birkhoffian mechanics also depends on the linear momentum,

ψ = ψ(t, r, p), (1.5.36)

resulting in an operator mechanics that is beyond our current technical
knowledge for quantitative treatment, since such a dependence would
require a dramatic restructuring of all quantum axioms.

In fact, the use of a naive quantization,

A(t, r, p) → −i × h̄ × �n ψ(t, r, p), (1.5.37)

characterizes the following maps

∂A

∂t
+ B = 0 → −i × h̄

∂ψ

∂t
− B × ψ = 0, (1.5.38a)

∂A

∂bµ
− Rµ = 0 → −i × h̄ × ∂ψ

∂bµ
− Rµ × ψ = 0, (1.5.38b)

A first problem is that the latter equations are generally nonlinear and,
as such, they cannot be generally solved in the r- and p-operators. This
causes the emergence of an operator mechanics in which it is impossible
to define basic physical quantities, such as the linear momentum or the
angular momentum, with consequential lack of currently known physical
relevance at this moment.

On more technical terms, in the lifting of Hamiltonian into Birkhof-
fian mechanics, there is the replacement of the r-coordinates with the
R-functions. In fact, the Birkhoffian action has the explicit dependence
on the R-functions, A = A[t, R(b)] = A′(t, r, p). As such, the Birkhof-
fian action can indeed be interpreted as being of first-order, but in the
R-functions, rather than in the r-coordinates.

Consequently, a correct operator image of the Birkhoffian mechanics is
given by the expressions first derived in Ref. [11b]. The correct operator
image of Birkhoffian mechanics is then given by the equations
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i × h̄ × ∂ψ[t, R(b)]
∂t

= B × ψ[t, R(b)], (1.5.39a)

−i × h̄ × ∂ψ[t, R(b)]
∂bµ

= Rµ(b) × ψ[t, R(b)]. (1.5.39b)

As we shall see in Chapter 3, the above equations characterize a cov-
ering of hadronic mechanics, in the sense of being structurally more
general, yet admitting hadronic mechanics as a particular case.

Even though mathematically impeccable, intriguing, and deserving
further studies, the mechanics characterized by Eq. (1.4.39) is exces-
sively general for our needs, and its study will be left to the interested
reader.

The above difficulties identify quite precisely the first basic problem
for the achievement of a physically consistent and effective formulation of
hadronic mechanics, consisting in the need of constructing a new math-
ematics capable of representing closed non-Hamiltonian systems via a
first-order variational principle (as required for consistent quantization),
admitting antisymmetric brackets in the time evolution (as required by
conservation laws), and possessing time invariant units and numerical
predictions (as required for physical value).

The need to construct a new mathematics is evident from the fact
that no pre-existing mathematics can fulfill the indicated needs. As we
shall see in Chapter 3, Santilli’s isomathematics has been constructed
precisely for and does indeed solve these specific problems.

The impossibility of assuming the Birkhoffian-admissible mechanics as
the foundation of operator formulation for open non-Hamiltonian sys-
tems is clearly established by the fact that said mechanics is not derivable
from a variational principle.19

The latter occurrence identifies a much more difficult task given by
the need to construct a yet broader mathematics capable of represent-
ing open non-Hamiltonian systems via a first-order variational principle
(as required for consistent quantization), admitting non-antisymmetric
brackets in the time evolution (as required by non-conservation laws),
and possessing time invariant units and numerical predictions (as re-
quired by physical value).

The lack of any pre-existing mathematics for the fulfillment of the
latter tasks is beyond credible doubt. Rather than adapting nature
to pre-existing mathematics, the author has constructed a yet broader
mathematics, today known as Santilli’s genomathematics, that does in-
deed achieve all indicated objectives, as outlined in Chapter 4.

Readers interested in the depth of knowledge are suggested to medi-
tate a moment on the implications of the above difficulties. In fact, these
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difficulties have caused the impossibility in the 20-th century to achieve
a meaningful operator formulation of contact, nonconservative and non-
potential interactions. A consequence has been the widespread belief
that nonpotential interactions “do not exist” in the particle world, a
view based on the lack of existence of their operator representation, with
negative implications at all levels of knowledge, such as the impossibility
of achieving a meaningful understanding of the origin of irreversibility.

As a consequence, the resolution of the difficulties in the quantization
of nonpotential interactions achieved by hadronic mechanics implies a
rather profound revision of most of the scientific views of the 20-th cen-
tury, as we shall see in Chapters 3, 4, and 5.

1.5.3 Catastrophic Inconsistencies of Nonunitary
Theories

Once the limitations of quantum mechanics are understood (and ad-
mitted), another natural tendency is to exit from the class of equivalence
of the theory via suitable generalizations, while keeping the mathemat-
ical methods used for quantum mechanics.

It is important for these studies to understand that these efforts are af-
flicted by catastrophic mathematical and physical inconsistencies equiv-
alent to those suffered by classical noncanonical formulations based on
the mathematics of canonical theories.

The author has dedicated his research life to the construction of ax-
iomatically consistent and invariant generalizations of quantum mechan-
ics for the treatment of nonlinear, nonlocal, and nonpotential effects
because they are crucial for the prediction and treatment of new clean
energies and fuels.

In this section we review the foundations of these studies with the
identification, most importantly, of the failed attempts in the hope of
assisting receptive colleagues in avoiding the waste of their time in the
study of theories that are mathematically significant, yet cannot possibly
have real physical value.

To begin, let us recall that a theory is said to be equivalent to quantum
mechanics when it can be derived from the latter via any possible unitary
transform on a conventional Hilbert space H over the field of complex
numbers C = C(c, +, ×),

U × U † = U † × U = I, (1.5.40)

under certain conditions of topological smoothness and regularity hereon
ignored for simplicity, where “×” represents again the conventional as-
sociative product of numbers or matrices, U × U † ≡ UU †.
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As a consequence, a necessary and sufficient condition for a theory to
be inequivalent to quantum mechanics is that it must be outside its class
of unitary equivalence, that is, the new theory is connected to quantum
mechanics via a nonunitary transform

U × U † �= I. (1.5.41)

generally defined on a conventional Hilbert space H over C.
Therefore, true generalized theories must have a nonunitary structure,

i.e., their time evolution must verify law (1.5.41), rather than (1.5.40).20

During his graduate studies in physics at the University of Torino,
Italy, and as part of his Ph. D. thesis, Santilli [61] published in 1967 the
following parametric deformation of the Lie product A×B −B ×A, the
first in scientific records

(A, B) = p × A × B − q × H × A

= m × (A × B − B × A) + n × (A × B + B × A)

= m × [A, B] + n × {A, B}, (1.5.42)

where p = m + n, q = n − m and p ± q are non-null parameters.
By remembering that the Lie product characterizes Heisenberg’s equa-

tions, the above generalized product was submitted as part of the fol-
lowing parametric generalization of Heisenberg’s equations in its finite
and infinitesimal forms [61–63]

A(t) = U × A(0) × U † = ei×H×q×t × A(0) × e−i×t×p×H , (1.5.43a)

i dA/dt = (A, H) = p×A×H − q×H×A, (1.5.43b)

with classical counterpart studied in Ref. [62]. After an extensive re-
search in European mathematics libraries (conducted prior to the pub-
lication of Ref. [61] with the results listed in the same publication), the
brackets (A, B) = p × A × B − q × B × A resulted to be Lie-admissible
according to A. A. Albert [60], that is, the brackets are such that their
attached antisymmetric product

[A,̂B] = (A, B) − (B, A) = (p + q) × [A, B], (1.5.44)

characterizes a Lie algebra.
Jointly, brackets (A, B) are Jordan admissible also according to Al-

bert, in the sense that their attached symmetric product,

{A,̂B} = (A, B) + (B, A) = (p + q) × {A, B}, (1.5.45)

characterizes a Jordan algebra.21
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At that time (1967), only three articles on this subject had appeared in
Lie- and Jordan-admissibility solely in the sole mathematical literature
(see Ref. [61]).

In 1978, when at Harvard University, Santilli proposed the following
operator deformation of the Lie product [Ref. [104], Eq. (4.15.34) and
(4.18.11)],

(A,̂B) = A � B − B � A

= A × P × B − B × Q × A

= (A×T×B − B×T×A) + (A×W×B + B×W×A)

= [A,̂B] + {A,̂B}, (1.5.46)

where P = T + W, Q = W − T and P ± Q are, this time, fixed non-null
matrices or operators.

Evidently, product (1.5.46) remains jointly Lie-admissible and Jordan-
admissible because the attached antisymmetric and symmetric brackets,

[A,̂B] = (A,̂B) − (B,̂A) = A × T × B − B × T × A, (1.5.47a)

{A,̂B} = (A,̂B) + (B,̂A) = A × W × B + B × W × A, (1.5.47b)

characterizes a Lie-Santilli and Jordan-Santilli isoalgebra (see Chapter 3
for details).

The reader should be aware that the following alternative versions of
product (1.5.46),

P × A × B − Q × B × A, (1.5.48a)

A × B × P − B × A × Q, (1.5.48b)

do not constitute an algebra since the former (latter) violates the left
(right) distributive and scalar laws.

The above operator deformations of the Lie product was also sub-
mitted for the following broader operator Lie-admissible and Jordan-
admissible generalization of Heisenberg’s equations in its finite and in-
finitesimal forms [104]

A(t) = U×A(0)×U † = ei×H×Q×t×A(0)×e−i×t×P×H , (1.5.49a)

i dA/dt = (A,̂H) = A � H − H � A

= A × P × H − H × Q × A, (1.5.49b)

P = Q†, (1.5.49c)

which equations, as we shall see in Chapter 3, are the fundamental equa-
tions of hadronic mechanics following proper mathematical treatment.
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It is an instructive exercise for the reader interested in learning the
foundation of hadronic mechanics to prove that:

1) Time evolutions (1.5.43) and (1.5.49) are nonunitary, thus being
outside the class of unitary equivalence of quantum mechanics;

2) The application of a nonunitary transform R × R† �= I to struc-
ture (1.5.43) yields precisely the broader structure (1.5.49) by essentially
transforming the parameters p and q into the operators

P = p × (R × R†)−1, Q = q × (R × R†)−1; (1.5.50)

3) The application of additional nonunitary transforms S × S† �= I
to structure (1.5.49) preserves its Lie-admissible and Jordan-admissible
character, although with different expressions for the P and Q operators.

The above properties prove the following:

LEMMA 1.5.2 [11b]: General Lie-admissible and Jordan-admissible
laws (1.5.49) are “directly universal” in the sense of containing as par-
ticular cases all infinitely possible nonunitary generalizations of quan-
tum mechanical equations (“universality”) directly in the frame of the
observer (“direct universality”), while admitting a consistent algebra in
their infinitesimal form.

The above property can be equally proven by noting that the prod-
uct (A,̂B) is the most general possible “product” of an “algebras” as
commonly understood in mathematics (namely, a vector space with a
bilinear composition law verifying the right and left distributive and
scalars laws).

In fact, the product (A,̂B) constitutes the most general possible com-
bination of Lie and Jordan products, thus admitting as particular cases
all known algebras, such as associative algebras, Lie algebras, Jordan
algebras, alternative algebras, supersymmetric algebras, Kac-Moody al-
gebras, etc.

Despite their unquestionable mathematical beauty, theories (1.5.43)
and (1.5.49) possess the following catastrophic physical and mathemat-
ical inconsistencies:

THEOREM 1.5.2 [53] (see also Refs. [70-77]): All theories possessing
a nonunitary time evolution formulated on conventional Hilbert spaces
H over conventional fields of complex numbers C(c, +, ×) do not admit
consistent physical and mathematical applications because:

1) They do not possess invariant units of time, space, energy, etc.,
thus lacking physically meaningful application to measurements;
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2) They do not conserve hermiticity in time, thus lacking physically
meaningful observables;

3) They do not possess unique and invariant numerical predictions;
4) They generally violate probability and causality laws; and
5) They violate the basic axioms of Galileo’s and Einstein’s relativities.
Nonunitary theories are also afflicted by catastrophic mathematical

inconsistencies.

The proof of the above theorem is essentially identical to that of The-
orem 1.5.1 (see Ref. [53] for details). Again, the basic unit is not an
abstract mathematical notion, because it embodies the most fundamen-
tal quantities, such as the units of space, energy, angular momentum,
etc.

The nonunitary character of the theories here considered then causes
the lack of conservation of the numerical values of such units with conse-
quential catastrophic inapplicability of nonunitary theories to measure-
ments.

Similarly, it is easy to prove that the condition of Hermiticity at the
initial time,

(〈φ| × H†) × |ψ〉 ≡ 〈φ| × (H × |ψ〉), H = H†, (1.5.51)

is violated at subsequent times for theories with nonunitary time evolu-
tion when formulated on H over C. This additional catastrophic incon-
sistency (known as Lopez’s lemma [71,72]), can be expressed by

[〈ψ| × U † × (U × U †)−1 × U × H × U †] × U |ψ〉

= 〈ψ| × U † × [(U × H × U †) × (U × U †)−1 × U |ψ〉]

= (〈ψ̂ × T × H ′†) × |ψ̂〉 = 〈ψ̂| × (Ĥ × T × |ψ̂〉), (1.5.52a)

|ψ̂〉 = U×|ψ〉, T = (U×U †)−1 = T †, (1.5.52b)

H ′† = T−1×Ĥ×T �= H. (1.5.52c)

As a result, nonunitary theories do not admit physically meaningful
observables.

Assuming that the preceding inconsistencies can be by-passed with
some manipulation, nonunitary theories still remain with additional ca-
tastrophic inconsistencies, such as the lack of invariance of numerical
predictions.

To illustrate this additional inconsistency, suppose that the considered
nonunitary theory is such that, at t = 0 sec, U×U †

[t=0] = 1, at t = 15 sec,
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U × U †
[t=15] = 15, and the theory predicts at time t = 0 sec, say, the

eigenvalue of 2 eV,

H|t=0 × |ψ >= 2 eV × |ψ > . (1.5.53)

It is then easy to see that the same theory predicts under the same
conditions the different eigenvalue 30 eV at t = 15 sec, thus having no
physical value of any type. In fact, we have

U × U †|t=0 = I, U × U †|t=15 = 15, (1.5.54a)

U×H×|ψ〉 = (U×H×U †)×(U×U †)−1×(U×|ψ〉)
= H ′×T×|ψ̂〉 = U×E×|ψ〉 = E×(U×|ψ〉) = E× |ψ̂〉,

H ′ = U×H×U †, T = (U×U †)−1,

(1.5.54b)

H ′ × |ψ̂〉 |t=0= 2 eV × |ψ̂〉 |t=0, T = 1 |t=0, (1.5.54c)

H ′ × |ψ̂〉 |t=15 2 eV ×(U×U †)×|ψ̂〉 |t=15

= 30 eV × |ψ̂〉 |t=15 .
(1.5.54d)

Probability and causality laws are notoriously based on the unitary
character of the time evolution and the invariant decomposition of the
unit.

Their violation for nonunitary theories is then evident. It is an in-
structive exercise for the reader interested in learning hadronic mechan-
ics, superconductivity and chemistry to identify a specific example of
nonunitary transforms for which the effect precedes the cause.

The violation by nonunitary theories of the basic axioms of Galileo’s
Einstein’s relativities is so evident to require no comment.

An additional, most fundamental inconsistency of the theories con-
sidered is their noninvariance, that can be best illustrated with the lack
of invariance of the general Lie-admissible and Jordan-admissible laws
(1.5.49).

In fact, under nonunitary transforms, we have, e.g., the lack of invari-
ance of the Lie-admissible and Jordan-admissible product,

U × U † �= I (1.5.55a)

U×(A,̂B)×U † = U×(A � B − B � A)×U † = (U×A×U †)

×[(U×U−1)×(U×P×U †)×(U×U †)−1]×(U×B×U †)

−(U×B×U †)×[(U×U−1)×(U×Q×U †)×(U×U †)−1]

×(U×A×U †) = A′×P ′×B′ − B′×Q′×A′
= A′ �′ B′ − B′ �′ A′.

(1.5.55b)
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The above rules confirm the preservation of a Lie-admissible structure
under the most general possible transforms, thus confirming the direct
universality of laws (1.4.49) as per Theorem 1.4.2. The point is that the
formulations are not invariant because

P ′ = (U × U−1) × (U × Q × U †) × (U × U †)−1 �= P, (1.5.56a)

Q′ = (U × U−1) × (U × Q × U †) × (U × U †)−1 �= Q, (1.5.56b)

that is, because the product itself is not invariant.
By comparison, the invariance of quantum mechanics follows from

the fact that the associative product “×” is not changed by unitary
transforms

U × U † = U † × U = I, (1.5.57a)

A × B → U × (A × B) × U †

= (U × A × U †) × (U × U †)−1 × (U × B × U †) = A′ × B′. (1.5.57b)

Therefore, generalized Lie-admissible and Jordan-admissible theories
(1.5.49) are not invariant because the generalized products “�” and “�”
are changed by nonunitary transformations, including the time evolution
of the theory itself. The same results also holds for other nonunitary
theories, as the reader is encouraged to verify.

The mathematical inconsistencies of nonunitary theories are the same
as those of noncanonical theories. Recall that mathematics is formulated
over a given field of numbers. Whenever the theory is nonunitary, the
first noninvariance is that of the basic unit of the field.

The lack of conservation of the unit then causes the loss of the basic
field of numbers on which mathematics is constructed. It then follows
that the entire axiomatic structure as formulated at the initial time, is
no longer applicable at subsequent times.

For instance, the formulation of a nonunitary theory on a conventional
Hilbert space has no mathematical sense because that space is defined
over the field of complex numbers.

The loss of the latter property under nonunitary transforms then im-
plies the loss of the former. The same result holds for metric spaces and
other mathematics based on a field.

In short, the lack of invariance of the fundamental unit under nonuni-
tary time evolutions causes the catastrophic collapse of the entire math-
ematical structure, without known exception.

The reader should be aware that the above physical and mathematical
inconsistencies apply not only for Eq. (1.5.49) but also for a large number
of generalized theories, as expected from the direct universality of the
former.
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It is of the essence to identify in the following at least the most repre-
sentative cases of physically inconsistent theories, to prevent their pos-
sible application (see Ref. [53] for details):

1) Dissipative nuclear theories [87] represented via an imaginary po-
tential in non-Hermitean Hamiltonians,

H = H0 = iV �= H† (1.5.58)

lose all algebras in the brackets of their time evolution (requiring a bi-
linear product) in favor of the triple system,

i × dA/dt = A × H − H† × A = [A, H, H†] (1.5.59)

This causes the loss of nuclear notions such as “protons and neutrons”
as conventionally understood, e.g., because the definition of their spin
mandates the presence of a consistent algebra in the brackets of the time
evolution.

2) Statistical theories with an external collision term C (see Ref. [88]
and literature quoted therein) and equation of the density

i dρ/dt = ρ � H = [ρ, H] + C, H = H†, (1.5.60)

violate the conditions for the product ρ�H to characterize any algebra,
as well as the existence of exponentiation to a finite transform, let alone
violating the conditions of unitarity.

3) The so-called “q-deformations” of the Lie product (see, e.g., [64–69]
and very large literature quoted therein)

A × B − q × B × A, (1.5.61)

where q is a non-null scalar, that are a trivial particular case of Santilli’s
(p, q)-deformations (1.5.42).

4) The so-called “k-deformations” [81–84] that are a relativistic ver-
sion of the q-deformations, thus also being a particular case of general
structures (1.4.42).

5) The so-called “star deformations” [89] of the associative product

A � B = A × T × B, (1.5.62)

where T is fixed, and related generalized Lie product

A � B − B � A, (1.5.63)

are manifestly nonunitary and coincide with Santilli’s Lie-isotopic alge-
bras [104].



INTRODUCTION 65

6) Deformed creation-annihilation operators theories [99,100].
7) Nonunitary statistical theories [92].
8) Irreversible black holes dynamics with Santilli’s Lie-admissible

structure (1.4.46) [93].
9) Noncanonical time theories [94–96].
10) Supersymmetric theories [101,102] with product

(A, B) = [A, B] + {A, B}

= (A × B − B × A) + (A × B + B × A), (1.5.64)

are an evident particular case of Santilli’s Lie-admissible product (1.4.46)
with T = W = I.

11) String theories [77] generally have a noncanonical structure due to
the inclusion of gravitation with additional catastrophic inconsistencies
when including supersymmetries.

12) The so-called squeezed states theories [85,86] due to their manifest
nonunitary character.

13) Kac-Moody superalgebras [105] are also nonunitary and a partic-
ular case of Santilli’s Lie-admissible algebra (1.5.46) with T = I and W
a phase factor.

Numerous additional theories are also afflicted by the catastrophic in-
consistencies of Theorem 1.5.2, such as quantum groups, quantum grav-
ity, and other theories the reader can easily identify from the departures
of their time evolution from the unitary law.

All the above theories have a nonunitary structure formulated via con-
ventional mathematics and, therefore, are afflicted by the catastrophic
physical and mathematical inconsistencies of Theorem 1.5.2.

Additional generalized theories were attempted via the relaxation of
the linear character of quantum mechanics [75]. These theories are es-
sentially based on eigenvalue equations with the structure

H(t, r, p, |ψ〉) × |ψ〉 = E × |ψ〉, (1.5.65)

(i.e., H depends on the wavefunction).
Even though mathematically intriguing and possessing a seemingly

unitary time evolution, these theories also possess rather serious physical
drawbacks, such as: they violate the superposition principle necessary
for composite systems such as a hadron; they violate the fundamental
Mackay imprimitivity theorem necessary for the applicability of Galileo’s
and Einstein’s relativities and possess other drawbacks [11b] so serious
to prevent consistent applications.
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Yet another type of broader theory is Weinberg’s nonlinear theory [90]
with brackets of the type

A � B − B � A =
∂A

∂ψ
× ∂B

∂ψ† − ∂B

∂ψ
× ∂A

∂ψ† , (1.5.66)

where the product A � B is nonassociative.
This theory violates Okubo’s No-Quantization Theorem [70], prohibit-

ing the use of nonassociative envelopes because of catastrophic physical
consequences, such as the loss of equivalence between the Schrödinger
and Heisenberg representations (the former remains associative, while
the latter becomes nonassociative, thus resulting in inequivalence).

Weinberg’s theory also suffers from the absence of any unit at all,
with consequential inability to apply the theory to measurements, the
loss of exponentiation to a finite transform (lack of Poincaré-Birkhoff-
Witt theorem), and other inconsistencies studied in Ref. [74].

These inconsistencies are not resolved by the adaptation of Weinberg’s
theory proposed by Jordan [91] as readers seriously interested in avoid-
ing the publication of theories known to be inconsistent ab initio are
encouraged to verify.

Several authors also attempted the relaxation of the local-differential
character of quantum mechanics via the addition of “integral potentials”
in the Hamiltonian,

V =
∫

dτΓ(τ, . . .). (1.5.67)

These theories are structurally flawed on both mathematical and physi-
cal grounds.

In fact, the nonlocal extension is elaborated via the conventional
mathematics of quantum mechanics which, beginning with its topology,
is strictly local-differential, thus implying fundamental mathematical in-
consistencies. Nonlocal interactions are in general of contact type, for
which the notion of a potential has no physical meaning, thus resulting
in rather serious physical inconsistencies.

In conclusion, by the early 1980’s Santilli had identified classical and
operator generalized theories [103,104] that are directly universal in their
fields, with a plethora of simpler versions by various other authors.

However, all these theories subsequently resulted in being mathemat-
ically significant, but having no physical meaning because they are non-
invariant when elaborated with conventional mathematics.

As we shall see in Chapter 3, 4 and 5, thanks to the construction of
new mathematics, hadronic mechanics does indeed solve all the above
inconsistencies. The clear difficulties in the solutions then illustrate the
value of the result.
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1.5.4 The Birth of Isomathematics,
Genomathematics and their Isoduals

As it is well known, the basic equations of quantum mechanics, Heisen-
berg’s time evolution of a (Hermitean) operator A (h̄ = 1),

i × dA

dt
= A × H − H × A = [A, H], (1.5.68a)

H = p2/2 × m + V (r), (1.5.68b)

can only represent the conservation of the total energy H (and other
quantities) under action-at-a-distance interactions derivable from a po-
tential V (r),

i × dH

dt
= [H, H] = H × H − H × H ≡ 0. (1.5.69)

Consequently, the above equations are basically insufficient to provide
an operator representation of closed non-Hamiltonian systems, namely,
systems of extended particles verifying conventional total conservation
laws yet possessing internal potential; and nonpotential interactions, as
it is the case for all interior problems, such as the structure of hadron,
nuclei and stars.

The central requirement for a meaningful representation of closed,
classical or operator interior systems of particles with internal contact
interactions is the achievement of a generalization of Lie’s theory in such
a way to admit broader brackets, hereon denoted [A,̂B], verifying the
following conditions:

1) The new brackets [A,̂B] must verify the distributive and scalars
laws (1.3.9) in order to characterize an algebra;

2) Besides the Hamiltonian, the new brackets should admit a new Her-
mitean operator, hereon denoted with T̂ = T̂ †, and we shall write [A,̂B]T̂ ,
as a necessary condition for the representation of all non-Hamiltonian
forces and effects.

3) The new brackets must be anti-symmetric in order to allow the
conservation of the total energy under contact nonpotential internal in-
teractions

i × dH

dt
= [H,̂H]T̂ ≡ 0; (1.5.70)

For the case of open, classical or operator irreversible interior sys-
tems of particles there is the need of a second generalization of Lie’s
theory characterizing broader brackets, hereon denoted (A,̂B) verifying
the following conditions:

1’) The broader brackets (A, B) must also verify the scalar and dis-
tributive laws (1.3.9) to characterize an algebra;



68 ISODUAL THEORY OF ANTIMATTER

2’) The broader brackets must include two non-Hermitean operators,
hereon denoted P̂ and Q̂, P̂ = Q̂† to represent the two directions of time,
and the new brackets, denoted P̂ (A,̂B)Q̂, must be neither antisymmetric
nor symmetric to characterize the time rate of variation of the energy
and other quantities,

i × dH

dt
= P̂ (H,̂H)Q̂ �= 0; (1.5.71)

3’) The broader brackets must admit the antisymmetric brackets [A,̂B]
and [A, B] as particular cases because conservation laws are particular
cases of nonconservation laws.

For the case of closed and open interior systems of antiparticles, it is
easy to see that the above generalizations of Lie’s theory will not apply
for the same reason that the conventional Lie theory cannot characterize
exterior systems of point-like antiparticles at classical level studied in
Section 1.1 (due to the existence of only one quantization channel, the
operator image of classical treatments of antiparticles can only yield
particles with the wrong sign of the charge, and certainly not their charge
conjugate).

The above occurrence requires a third generalization of Lie’s theory
specifically conceived for the representation of closed or open interior
systems of antiparticles at all levels of study, from Newton to second
quantization. As we shall see, the latter generalization is provided by
the isodual map.

In an attempt to resolve the scientific imbalances of the preceding
section, when at the Department of Mathematics of Harvard Univer-
sity, Santilli [103] proposed in 1978 an axiom-preserving generalization
of conventional mathematics verifying conditions 1), 2) and 3), that he
subsequently studied in various works (see monographs [11,54] and ref-
erences quoted therein).

The new mathematics is today known as Santilli’s isotopic and geno-
topic mathematics or isomathematics and genomathematics for short
[27–31], where the word “isotopic” or the prefix “iso” are used in the
Greek meaning of preserving the original axioms, and the word “geno”
is used in the sense of inducing new axioms.

Proposal [103] for the new isomathematics was centered in the gen-
eralization (called lifting) of the conventional, N -dimensional unit, I =
Diag.(1, 1, . . . , 1) into an N × N -dimensional matrix Î that is nowhere
singular, Hermitean and positive-definite, but otherwise possesses an
unrestricted functional dependence on local coordinates r, velocities v,
accelerations a, dimension d, density µ, wavefunctions ψ, their deriva-
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tives ∂ψ and any other needed quantity,

I = Diag.(1, 1, . . . , 1) > 0 → Î(r, v, a, d, µ, ψ, ∂ψ, . . .) = Î† = 1/T̂ > 0
(1.5.72)

while jointly lifting the conventional associative product A × B among
generic quantities A and B (numbers, vector fields, matrices, operators,
etc.) into the form

A × B → A×̂B = A × T̂ × B, (1.5.73)

under which Î, rather than I, is the correct left and right unit,

I × A = A × I ≡ A → Î×̂A = A×̂Î ≡ A, (1.5.74)

for all A of the set considered, in which case Î is called Santilli’s isounit,
and T̂ is called the isotopic element.

Eqs. (1.5.72)–(1.5.74) illustrate the isotopic character of the lifting.
In fact, Î preserves all topological properties of I; the isoproduct A×̂B
remains as associative as the original product A×B; and the same holds
for the preservation of the axioms for a left and right identity.

More generally, the lifting of the basic unit required, for evident rea-
sons of consistency, a corresponding compatible lifting of all mathemat-
ics used by special relativity and quantum mechanics, with no exception
known to this author, thus resulting in the new isonumbers, isospaces,
isofunctional analysis, isodifferential calculus, isotopologies, isogeome-
tries, etc. (for mathematical works see Refs. [54,105–108,19]).

Via the use of the above liftings, Santilli presented in the original
proposal [103] a step-by-step isotopic (that is, axiom-preserving) lifting
of all main branches of Lie’s theory, including the isotopic generalization
of universal enveloping associative algebras, Lie algebras, Lie groups
and the representation theory. The new theory was then studied in
various works and it is today known as the Lie-Santilli isotheory [28–
31]. Predictably, from Eq. (1.5.44) one can see that the new isobrackets
have the form

[A,̂B]T̂ = A×̂B − B×̂A

= A × T̂ × B − B × T̂ × A = [A,̂B], (1.5.75)

where the subscript T̂ shall be dropped hereon, whose verification of
conditions 1), 2), 3) is evident.

The point important for these introductory lines is that isomathe-
matics does allow a consistent representation of extended, nonspherical,
deformable and hyperdense particles under local and nonlocal, linear and
nonlinear, and potential as well as nonpotential interactions.
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In fact, all conventional linear, local and potential interactions can
be represented with a conventional Hamiltonian, while the shape and
density of the particles and their nonlinear, nonlocal and nonpotential
interactions can be represented with Santilli’s isounits via realizations of
the type

Î = Πk=1,2,...,nDiag(n2
k1, n

2
k2, n

2
k3, n

2
k4) × eΓ(ψ,ψ†)×

∫
d3rψ†(r)k×ψ(r)k ,

(1.5.76)
where: the n2

k1, n
2
k2, n

2
k3 allow the representation, for the first time, the

actual, extended, nonspherical and deformable shapes of the particles
considered (normalized to the values nk = 1 for the perfect sphere); n2

k4
allows one to represent, also for the first time, the density of the interior
medium (normalized to the value n4 = 1 for empty space); the function
Γ(ψ, ψ†) represents the nonlinear character of the interactions; and the
integral

∫
d3rψ†(r)k × ψ(r)k represents nonlocal interactions due to the

overlapping of particles or of their wave packets.
When the mutual distances of the particles are much greater than

10−13 cm = 1 F, the integral in Eq. (1.5.76) is identically null, and all
nonlinear and nonlocal effects are null. When, in addition, the particles
considered are reduced to points moving in vacuum, all the n-quantities
are equal to 1, generalized unit (1.3.22) recovers the trivial unit, and
isomathematics recovers conventional mathematics identically, uniquely
and unambiguously.

In the same memoir [103], in order to represent irreversibility, Santilli
proposed a broader genomathematics based on the following differen-
tiation of the product to the right and to the left with corresponding
generalized units

A > B = A × P̂ × B, Î> = 1/P̂ ; (1.5.77a)

A < B = A × Q̂ × B, <Î = 1/Q̂, (1.5.77b)

Î> =< Î†, (1.5.77c)

where evidently the product to the right, A > B, represents motion
forward in time and that to the left, A < B, represents motion backward
in time. Since A > B �= A < B, the latter mathematics represents
irreversibility from the most elemental possible axioms.

The latter mathematics was proposed under a broader lifting called
“genotopy” in the Greek meaning of inducing new axioms, and it is
known today as Santilli genotopic mathematics, or genomathematics for
short [28–31].

It is evident that genoliftings (1.5.77) require a step by step gen-
eralization of all aspects of isomathematics, resulting in genonumbers,
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genofields, genospaces, genoalgebras, genogeometries, genotopologies, etc.
[54,105–108,19].

Via the use of the latter mathematics, Santilli proposed also in the
original memoir [103] a genotopy of the main branches of Lie’s theory,
including a genotopic broadening of universal enveloping isoassociative
algebras, Lie-Santilli isoalgebras, Lie-Santilli isogroup, isorepresentation
theory, etc. and the resulting theory is today known as the Lie-Santilli
genotheory with basic brackets

P̂ (A,̂B)Q̂ = A < B − B > A

= A × P × B − B × Q × B = (A,̂B), (1.5.78)

and the subscripts P̂ and Q̂ shall be dropped from now on.
It should be noted that the main proposal of memoir [59] is geno-

mathematics, while isomathematics is presented as a particular case for

(A,̂B)P̂=Q̂=T̂ = [A,̂B]. (1.5.79)

as we shall see in Chapter 3, the isodual isomathematics and isodual
genomathematics for the treatment of antiparticles are given by the iso-
dual image (1.1.6) of the above iso- and geno-mathematics, respectively.

1.5.5 Hadronic Mechanics
Thanks to the prior discovery of isomathematics and genomathemat-

ics, in memoir [104] also of 1978 Santilli proposed a generalization of
quantum mechanics for closed and open interior systems, respectively,
under the name of hadronic mechanics, because hyperdense hadrons,
such as protons and neutrons, constitute the most representative (and
most difficult) cases of interior dynamical systems.

For the case of closed interior systems of particles, hadronic mechanics
is based on the following isotopic generalization of Heisenberg’s equations
(Ref. [104], Eqs. (4.15.34) and (4.18.11))

i × dA

dt
= [A,̂H] = A×̂H − H×̂A. (1.5.80)

while for the broader case of open interior systems hadronic mechanics is
based on the following genotopic generalization of Heisenberg’s equations
(Ref. [104], Eq. (4.18.16))

i × dA

dt
= (A,̂H) = A < H − H > A

= A × P × H − H × Q × A. (1.5.81)
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The isodual images of Eqs. (1.5.80) and (1.5.81) for antiparticles as we
as their multivalued hyperformulations significant for biological studies,
were added more recently [106].

A rather intense scientific activity followed the original proposal [104],
including five Workshops on Lie-admissible Formulations held at Har-
vard University from 1978 to 1982, fifteen Workshops on Hadronic Me-
chanics, and several formal conferences held in various countries, plus
a rather large number of research papers and monographs written by
various mathematicians, theoreticians and experimentalists, for an esti-
mated total of some 15,000 pages of research published refereed journals
(see the references at the end of Chapter 3).

As a result of these efforts, hadronic mechanics is today a rather di-
versified discipline conceived and constructed for quantitative treatments
of all classical and operator systems of particles according to Definition
1.3.1 with corresponding isodual formulations for antiparticles.

It is evident that in Chapter 3 we can review only the most salient
foundations of hadronic mechanics and have to defer the interested
reader to the technical literature for brevity.

As of today, hadronic mechanics has experimental verifications in par-
ticle physics, nuclear physics, atomic physics, superconductivity, chem-
istry, biology, astrophysics and cosmology [22].

Hadronic mechanics can be classified into sixteen different branches,
including: four branches of classical treatment of particles with corre-
sponding four branches of operator treatment also of particles, and eight
corresponding (classical and operator) treatments of antiparticles.

An effective classification of hadronic mechanics is that done via the
main topological features of the assumed basic unit, since the latter
characterizes all branches according to (see Figure 1.7):

I = 1 > 0:
HAMILTONIAN AND QUANTUM MECHANICS
Used for the description of closed and reversible systems of point-like

particles in exterior conditions in vacuum;

Id = −1 < 0:
ISODUAL HAMILTONIAN AND ISODUAL QUANTUM MECHAN-

ICS
Used for the description of closed and reversible systems of point-like

antiparticles in exterior conditions in vacuum;

Î(r, v, . . .) = Î† > 0:
CLASSICAL AND OPERATOR ISOMECHANICS
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Figure 1.7. The structure of hadronic mechanics.
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Used for the description of closed and reversible systems of extended
particles in interior conditions;

Îd(rd, vd, . . .) = Îd† < 0:
ISODUAL CLASSICAL AND OPERATOR ISOMECHANICS
Used for the description of closed and reversible systems of extended

antiparticles in interior conditions;

Î>(r>, v>, . . .) = (<Î)†:
CLASSICAL AND OPERATOR GENOMECHANICS
Used for the description of open and irreversible systems of extended

particles in interior conditions;

Îd>(rd>, vdv, . . .} = (<Î)d†:
ISODUAL CLASSICAL AND OPERATOR GENOMECHANICS
Used for the description of open and irreversible systems of extended

particles in interior conditions;

Î> = (Î>
1 , Î>

2 , . . .) = (<Î)†:
CLASSICAL AND OPERATOR HYPERMECHANICS
Used for the description of multivalued open and irreversible systems

of extended particles in interior conditions;

Îd> = {Î>
1 , Î>

2 , . . .} = (<Î)†:
ISODUAL CLASSICAL AND OPERATOR HYPERMECHANICS
Used for the description of multivalued open and irreversible systems

of extended antiparticles in interior conditions.

In summary, a serious study of antiparticles requires its study begin-
ning at the classical level and then following at all subsequent levels,
exactly as it is the case for particles.

In so doing, the mathematical and physical treatments of antiparticles
emerge as being deeply linked to that of particles since, as we shall see,
the former are an anti-isomorphic image of the latter.

Above all, a serious study of antiparticles requires the admission of
their existence in physical conditions of progressively increasing com-
plexity, that consequently require mathematical and physical methods
with an equally increasing complexity, resulting in the various branches
depicted in Figure 1.7.

All in all, young minds of any age will agree that, rather than having
reached a terminal character, our knowledge of nature is still at its first
infancy and so much remains to be discovered.
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Notes

1 In the early 1980s, when the absence of a mathematics suitable for the
classical treatment of antimatter was identified, the author was (as
a theoretical physicist) a member of the Department of Mathemat-
ics at Harvard University. When seeing the skepticism of colleagues
toward such an absence, the author used to suggest that colleagues
should go to Harvard’s advanced mathematics library, select any de-
sired volume, and open any desired page at random. The author
then predicted that the mathematics presented in that page resulted
to be fundamentally inapplicable to the classical treatment of anti-
matter, as it did indeed result to be the case without exceptions. In
reality, the entire content of advanced mathematical libraries of the
early 1980s did not contain the mathematics needed for a consistent
classical treatment of antimatter.

2 In 1996, the author was requested to make a 20 minutes presentation
at a mathematical meeting held in Sicily. The presentation initiated
with a transparency solely containing the number −1 and the state-
ment that such a number was assumed as the basic left and right unit
of the mathematics to be presented. Unfortunately, this first trans-
parency created quite a reaction by most participants who bombarded
the author with questions advancing his presentation, questions often
repeated with evident waste of precious time without the author hav-
ing an opportunity to provide a technical answer. This behavior con-
tinued for the remaining of the time scheduled for the talk to such an
extent that the author could not present the subsequent transparen-
cies proving that isodual numbers verify all axioms of a field (see
Chapter 2). The case illustrates that the conviction of absolute gen-
erality is so engraved among most mathematicians to prevent their
minds from admitting the existence of new mathematics.

3 The ordinary associative product AB of functions, matrices, opera-
tors, etc. will be denoted throughout this monograph with the symbol
× to distinguish it with various other products we shall introduce,
such as the isoproduct ×̂, the genoproduct to the rights >, that to
the left < and their isoduals ×d, ×̂d

, >d and <d.
4 It should be indicated that the name “Einstein’s special relativity”

is political, since a scientifically correct name should be “Lorentz-
Poincaré-Einstein relativity”. Also, it is appropriate to recall that
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Einstein ended up divorcing his first wife Mileva Maric because she
was instrumental in writing the celebrated paper on special relativity
of 1905 and, for that reason, she had been originally listed as a co-
author of that article, co-authorship that was subsequently removed
when the article appeared in print. In fact, Einstein donated all funds
received from his Nobel Prize on that article to Mileva. Similarly, it
should be recalled that Einstein contacted Poincaré prior to his arti-
cle of 1905, but abstained from quoting Poincaré work in said article
in documented knowledge that Poincaré had preceded him in vari-
ous features of special relativity (see, e.g., the historical account by
Logunov [37]). For an instructive reading of these historical aspects,
one may inspect, e.g., Ref. [38].

5 Recall that Newton had to discover first the differential calculus as
a condition to formulate his celebrated equations. A similar case oc-
curred for antimatter, because the correct formulation of Newton’s
equations for antimatter required the prior discovery of the new iso-
dual differential calculus [12]. As we shall see in the subsequent
chapters, additional broadening of Newton’s equations required the
prior identification of yet broader forms of the differential calculus.

6 We assume the reader admits that absolute rigidity exists in academia
but not in the physical reality.

7 We should perhaps recall here that different hadrons generally have
different masses and approximately the same size with radius of about
1 F, thus generally having different densities. While a representation
of these different densities is irrelevant for the point-like abstract
of hadrons and of their constituents, their representation is instead
crucial for contact interactions due to deep mutual penetrations, as
we shall see in Chapter 3.

8 Contrary to popular belief, the celebrated Jacobi theorem was formu-
lated precisely for the general analytic equations with external terms,
while treatises on mechanics of the 20-th century generally present
the reduced version of the Jacobi theorem for the equations without
external terms. Consequently, the reading of the original work by
Jacobi is strongly recommended over that of simplified versions (see,
again, Ref. [54a] for historical accounts and references).

9 There are serious rumors that a famous physicist from a leading insti-
tution visited NASA in 1998 to propose a treatment of the trajectory
of the space shuttle during re-entry essentially based on the trun-
cated Hamilton equations, and that NASA engineers kindly pushed
that physicist through the door.
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10 The author begs supersymmetry enthusiasts not to mention their
theories at this point because, to achieve any credibility, they have
first to prove the existence of an additional zoo of predicted particles
none of which appears to be detected or detectable in reality.

11 This is another reason the author has stated several times in his writ-
ings that the most ascientific process of contemporary society
is the current scientific process.

12 The literature on general relativity accumulated during the 20-th
century is so vast to discourage discriminatory quotations.

13 We should clarify that with the terms “Einstein’s gravitation” we
specifically refer to the conception of gravitation as entirely rep-
resented with curvature without source because the dubbing of
Eq. (1.4.2) as “Einstein field equations” is purely political since, on
scientifically correct grounds, the same equations are called Einstein-
Hilbert field equations. In fact, Hilbert published the same equations
prior to Einstein, who consulted Hilbert without quoting his work
in his gravitational paper of 1915, as Einstein had done in other
cases. It is appropriate to recall that the publication of his paper
on gravitation caused Einstein the divorce from his second wife, Elsa
Lowenstein for essentially the same reason of his first divorce. Un-
like Einstein who had no advanced mathematical training, Elsa was
a mathematician, had trained Einstein on the Riemannian geometry
(a topic for pure mathematicians at that time), and was supposed to
be a co-author of his paper on gravitation, a co-authorship Einstein
denied as he did it with the suppression of co-authorship with his first
wife Mileva for his 1905 paper on special relativity indicated earlier.
For instructive readings on these historical aspects one may consult
Refs. [38–40].

14 In another important footnote, Pauli [45] quotes another historical
paper that was also completely ignored during the 20-th century be-
cause not aligned with the academic interests of the time. We are
referring to a seminal paper by Lorentz in which he presents the first
studies on scientific record to extend his celebrated symmetry from
the case of the speed of light in vacuum c◦ to the speed of light
within physical media, c = c◦/n, which latter problem is a central
objective of hadronic mechanics and its underlying new mathematics
(see Chapter 3).

15 The indication by colleagues of additional studies on the Freud iden-
tify not quoted herein would be appreciated.

16 We continue to denote the conventional associative multiplication of
numbers, vector fields, operators, etc. with the notation A×B rather
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than the usual form AB, because the new mathematics necessary
to resolve the catastrophic inconsistencies studied in this chapter is
based on various different generalizations of the multiplication. As
a consequence, the clear identification of the assumed multiplication
will soon be crucial for the understanding of the equations of this
monograph.

17 For several additional different but equivalent definitions of canonical
transformations one may consult Ref. [54a] Pages 187–188.

18 The truncated Hamilton equations admit analytic representations of
nonconservative systems but only in one dimension, which systems
are essentially irrelevant for serious physical applications.

19 Because conventional variations δ can only characterize antisymmet-
ric tensors of type ωµν or Ωµν and cannot characterize non-anti-
symmetric tensors such as the Lie-admissible tensor Sµν .

20 The reader should be aware that there exist in the literature numerous
claims of “generalizations of quantum mechanics” although they have
a unitary time evolution and, consequently, do not constitute true
generalizations. All these “generalizations” will be ignored in this
monograph because they will not resist the test of time.

21 In 1985, Biederharn [64] and MacFairlane [65] published their papers
on the simpler q-deformations

A × B − q × B × A

without a quotation of the origination of the broader form p×A×B−
q×B×A by Santilli [61] in 1967. Regrettably, Biedenharn and Mac-
Fairlane abstained from quoting Santilli’s origination despite their
documented knowledge of such an origination. For instance, Bieden-
harn and Santilli had applied for a DOE grant precisely on the same
deformations two years prior to their paper of 1985, and Santilli had
personally informed MacFairlaine of said deformations years before
his paper of 1985. The lack of quotation of Santilli’s origination of
q-deformations resulted in a large number of subsequent papers by
numerous other authors that also abstained from quoting said orig-
ination (see representative contributions [66–69]), for which reason
Santilli has been often referred to as the “most plagiarized physi-
cist of the 20-th century”. Ironically, at the time Biedenharn and
MacFairlane published their paper on q-deformations, Santilli had
already abandoned them because of their catastrophic mathematical
and physical inconsistencies studied in this Section.
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Chapter 2

ISODUAL THEORY OF
POINT-LIKE ANTIPARTICLES

2.1 ELEMENTS OF ISODUAL
MATHEMATICS

2.1.1 Isodual Unit, Isodual Numbers and
Isodual Fields

Since the isodual mathematics has been subjected to a number of
developments following its first presentation in papers [1] of 1985, it is
important to review it in sufficient details to render this monograph
selfsufficient.

In this section, we identify only those aspects of isodual mathematics
that are essential for the understanding of the physical profiles presented
in the subsequent sections of this chapter. We begin with a study of the
most fundamental elements of all mathematical and physical formula-
tions, units, numbers and fields, from which all remaining formulations
can be uniquely and unambiguously derived via simple compatibility ar-
guments. To avoid un-necessary repetitions, we assume the reader has a
knowledge of the basic mathematics used for the classical and operator
treatment of matter.

DEFINITION 2.1.1: Let F = F (a,+,×) be a field (of characteristic
zero), namely a ring with elements given by real number a = n, F =
R(n, +,×), complex numbers A = c, F = C(c,+,×), or quaternionic
numbers a = q, F = Q(q, +,×), with conventional sum a + b verifying
the commutative law

a + b = b + a = c ∈ F, (2.1.1)
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the associative law

(a + b) + c = a + (b + c) = d ∈ F, (2.1.2)

conventional product a × b verifying the associative law

(a × b) × c = a × (b × c) = e ∈ F, (2.1.3)

(but not necessarily the commutative law, a × b �= b × a since the latter
is violated by quaternions), and the right and left distributive laws

(a + b) × c = a × c + b × c = f ∈ F, (2.1.4a)

a × (b + c) = a × b + a × c = g ∈ F, (2.1.4b)

left and right additive unit 0,

a + 0 = 0 + a = a ∈ F, (2.1.5)

and left and right multiplicative unit I,

a × I = I × a = a ∈ F, (2.1.6)

∀a, b, c ∈ F . Santilli’s isodual fields (first introduced in Refs. [1] and
then presented in details in Ref. [2]) are rings F d = F d(ad, +d,×d)
with elements given by isodual numbers

ad = −a†, ad ∈ F, (2.1.7)

with associative and commutative isodual sum

ad +d bd = −(a + b)† = cd ∈ F d, (2.1.8)

associative and distributive isodual product

ad ×d bd = ad × (Id)−1 × bd = cd ∈ F d, (2.1.9)

additive isodual unit 0d = 0,

ad +d 0d = 0d +d ad = ad, (2.1.10)

and multiplicative isodual unit Id = −I†,

ad ×d Id = Id ×d ad = ad,∀ad, bd ∈ F d. (2.1.11)

The proof of the following property is elementary.
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LEMMA 2.1.1 [1,2]: Isodual fields are fields, namely, if F is a field,
its image F d under the isodual map is also a field.

The above lemma establishes the property (first identified in Ref. [1])
that the axioms of a field do not require that the multiplicative unit be
necessarily positive-definite, because the same axioms are also verified
by negative-definite units. The proof of the following property is equally
simple.

LEMMA 2.1.2 [1,2]: Fields F and their isodual images F d are anti-
isomorphic to each other.

Lemmas 2.1.1 and 1.2.2 illustrate the origin of the name “isodual
mathematics”. In fact, to represent antimatter the needed mathematics
must be a suitable “dual” of conventional mathematics, while the prefix
“iso” is used in its Greek meaning of preserving the original axioms.

It is evident that for real numbers we have

nd = −n, (2.1.12)

while for complex numbers we have

cd = (n1 + i × n2)d = −n1 + i × n2 = −c̄, (2.1.13)

with a similar formulation for quaternions.
It is also evident that, for consistency, all operations on numbers must

be subjected to isoduality when dealing with isodual numbers. This im-
plies: the isodual powers

(ad)nd
= ad ×d ad ×d ad . . . (2.1.14)

(n times, with n an integer); the isodual square root

ad(1/2)d
= −

√
−a†

†
, ad(1/2)d ×d ad(1/2)d

= ad, 1d(1/2)d
= −i; (2.1.15)

the isodual quotient

ad/dbd = −(a†/b†) = cd, bd ×d cd = ad; (2.1.16)

etc.
An important property for the characterization of antimatter is the

following:

LEMMA 2.1.3. [2]: isodual fields have a negative–definite norm, called
isodual norm,

|ad|d = |a†| × Id = −(aa†)1/2 < 0, (2.1.17)
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where | . . . | denotes the conventional norm.

For isodual real numbers we therefore have the isodual isonorm

|nd|d = −|n| < 0, (2.1.18)

and for isodual complex numbers we have

|cd|d = −|c̄| = −(cc̄)1/2 = −(n2
1 + n2

2)
1/2. (2.1.19)

LEMMA 2.1.4 [2]: All quantities that are positive–definite when re-
ferred to positive units and related fields of matter (such as mass, energy,
angular momentum, density, temperature, time, etc.) became negative–
definite when referred to isodual units and related isodual fields of anti-
matter.

As recalled Chapter 1, antiparticles have been discovered in the negati-
ve-energy solutions of Dirac’s equation and they were originally thought
to evolve backward in time (Stueckelberg, Feynman, and others, see
Refs. [1,2] of Chapter 1). The possibility of representing antiparticles
via isodual methods is therefore visible already from these introductory
notions.

The main novelty is that the conventional treatment of negative–
definite energy and time was (and still is) referred to the conventional
unit +1. This leads to a number of contradictions in the physical be-
havior of antiparticles.

By comparison, negative-definite physical quantities of isodual theories
are referred to a negative–definite unit Id < 0. This implies a mathemati-
cal and physical equivalence between positive–definite quantities referred
to positive–definite units, characterizing matter, and negative–definite
quantities referred to negative–definite units, characterizing antimatter.
These foundations then permit a novel characterization of antimatter
beginning at the Newtonian level, and then persisting at all subsequent
levels.

DEFINITION 2.1.2 [2]: A quantity is called isoselfdual when it coin-
cides with its isodual.

It is easy to verify that the imaginary unit is isoselfdual because

id = −i† = −ī = −(−i) = i. (2.1.20)
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This property permits a better understanding of the isoduality of
complex numbers that can be written explicitly

cd = (n1 + i×n2)d = nd
1 + id ×d nd

2 = −n1 + i×n2 = −c̄. (2.1.21)

The above property will be important to prove the equivalence of isod-
uality and charge conjugation at the operator level.

As we shall see, isoselfduality is a new fundamental view of nature
with deep physical implications, not only in classical and quantum me-
chanics but also in cosmology. For instance we shall see that Dirac’s
gamma matrices are isoselfdual, thus implying a basically new inter-
pretation of this equation that has remained unidentified for about one
century. We shall also see that, when applied to cosmology, isoselfdual-
ity implies equal distribution of matter and antimatter in the universe,
with identically null total physical characteristic, such as identically null
total time, identically null total mass, etc.

We assume the reader is aware of the emergence here of new num-
bers, those with a negative unit, that have no connection with ordinary
negative numbers and are the true foundations of the isodual theory of
antimatter.

2.1.2 Isodual Functional Analysis
All conventional and special functions and transforms, as well as func-

tional analysis at large, must be subjected to isoduality for consistent
applications, resulting in the simple, yet unique and significant isodual
functional analysis, studied by Kadeisvili [3], Santilli [4] and others.

We here mention the isodual trigonometric functions

sind θd = − sin(−θ), cosd θd = − cos(−θ), (2.1.22)

with related basic property

cosd 2d θd +d sind 2d θd = 1d = −1, (2.1.23)

the isodual hyperbolic functions

sinhd wd = − sinh(−w), coshd wd = − cosh(−w), (2.1.24)

with related basic property

coshd 2d wd −d sinhd 2d wd = 1d = −1, (2.1.25)

the isodual logarithm and the isodual exponentiation defined respectively
by

logd nd = − log(−n), (2.1.26a)
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eX
d

d
= 1d + Xd/d1!d + Xd2d

/d2!d + . . . = −eX , (2.1.26b)

etc. Interested readers can then easily construct the isodual image of
special functions, transforms, distributions, etc.

2.1.3 Isodual Differential and Integral Calculus
Contrary to a rather popular belief, the differential calculus is indeed

dependent on the assumed unit. This property is not so transparent in
the conventional formulation because the basic unit is the trivial number
+1. However, the dependence of the unit emerges rather forcefully under
its generalization.

The isodual differential calculus, first introduced by Santilli in Ref. [5a],
is characterized by the isodual differentials

ddxk = Id × dxk = −dxk, ddxk = −dxk, (2.1.27)

with corresponding isodual derivatives

∂d/d∂dxk = −∂/∂xk, ∂d/d∂dxk = −∂/∂x, (2.1.28)

and related isodual properties.
Note that conventional differentials are isoselfdual, i.e.,

(dxk)d = ddxkd ≡ d xk, (2.1.29)

but derivatives are not isoselfdual,

[∂f/∂xk]d = −∂dfd/d∂dxkd. (2.1.30)

The above properties explain why the isodual differential calculus re-
mained undiscovered for centuries.

Other notions, such as the isodual integral calculus, can be easily de-
rived and shall be assumed as known hereon.

2.1.4 Lie-Santilli Isodual Theory
Let L be an n–dimensional Lie algebra in its regular representa-

tion with universal enveloping associative algebra ξ(L), [ξ(L)]− ≈ L,
n-dimensional unit I = Diag.(1, 1, . . . , 1), ordered set of Hermitean
generators X = X† = {Xk}, k = 1, 2, . . . , n, conventional associative
product Xi × Xj , and familiar Lie’s Theorems over a field F (a,+,×).

The Lie-Santilli isodual theory was first submitted in Ref. [1] and then
studied in Refs. [4–7] as well as by other authors [23–31]. The isodual
universal associative algebra [ξ(L)]d is characterized by the isodual unit
Id, isodual generators Xd = −X, and isodual associative product

Xd
i ×d Xd

j = −Xi × Xj , (2.1.31)
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with corresponding infinite–dimensional basis characterized by the Po-
incaré-Birkhoff-Witt-Santilli isodual theorem

Id, Xd
i ×d Xd

j , i ≤ j; Xd
i ×d Xd

j × Xd
k , i ≤ j ≤ k, . . . (2.1.32)

and related isodual exponentiation of a generic quantity Ad

edAd

= Id + Ad/d1!d + Ad ×d Ad/d2!d + . . . = −eA†
, (2.1.33)

where e is the conventional exponentiation.
The attached Lie-Santilli isodual algebra Ld ≈ (ξd)− over the isodual

field F d(ad, +d,×d) is characterized by the isodual commutators [1]

[Xd
i ,d Xd

j ] = −[Xi, Xj ] = Ckd

ij ×d Xd
k (2.1.34)

with classical realizations given in Section 2.2.6.
Let G be a conventional, connected, n–dimensional Lie transforma-

tion group on a metric (or pseudo-metric) space S(x, g, F ) admitting L
as the Lie algebra in the neighborhood of the identity, with generators
Xk and parameters w = {wk}.

The Lie-Santilli isodual transformation group Gd admitting the isod-
ual Lie algebra Ld in the neighborhood of the isodual identity Id is the
n–dimensional group with generators Xd = {−Xk} and parameters
wd = {−wk} over the isodual field F d with generic element [1]

Ud(wd) = edid×dwd×dXd

= −ei×(−w)×X = −U(−w). (2.1.35)

The isodual symmetries are then defined accordingly via the use of the
isodual groups Gd and they are anti–isomorphic to the corresponding
conventional symmetries, as desired. For additional details, one may
consult Ref. [4,5b].

In this chapter we shall therefore use the conventional Poincaré, in-
ternal and other symmetries for the characterization of matter, and the
Poincaré-Santilli, internal and other isodual symmetries for the charac-
terization of antimatter.

2.1.5 Isodual Euclidean Geometry
Conventional (vector and) metric spaces are defined over conventional

fields. It is evident that the isoduality of fields requires, for consistency, a
corresponding isoduality of (vector and) metric spaces. The need for the
isodualities of all quantities acting on a metric space (e.g., conventional
and special functions and transforms, differential calculus, etc.) becomes
then evident.
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DEFINITION 2.1.3: Let S = S(x, g, R) be a conventional N -dimen-
sional metric or pseudo-metric space with local coordinates x = {xk},
k = 1, 2, . . . , N , nowhere degenerate, sufficiently smooth, real–valued and
symmetric metric g(x, . . .) and related invariant

x2 = (xi × gij × xj) × I, (2.1.36)

over the reals R. The isodual spaces, first introduced in Ref. [1] (see also
Refs. [4,5] and, for a more recent account, Ref. [22]), are the spaces
Sd(xd, gd, Rd) with isodual coordinates xd = xd = −xt (where t stands
for transposed), isodual metric

gd(xd, . . .) = −g†(−x†, . . .) = −g(−xt, . . .), (2.1.37)

and isodual interval

(x − y)d2 d
= [(x − y)id ×d gd

ij ×d (x − y)jd] × Id

= [(x − y)i × gd
ij × (x − y)j ] × Id, (2.1.38)

defined over the isodual field Rd = Rd(nd, +d,×d) with the same isodual
isounit Id.

The basic nonrelativistic space of our analysis is the three–dimensional
isodual Euclidean space [1,9],

Ed(rd, δd, Rd) : rd = {rkd} = {−rk} = {−x,−y,−z}, (2.1.39a)

δd = −δ = diag.(−1,−1,−1),

Id = −I = Diag.(−1,−1,−1). (2.1.39b)

The isodual Euclidean geometry is the geometry of the isodual space
Ed over Rd and it is given by a step–by–step isoduality of all the various
aspects of the conventional geometry (see monograph [5a] for details).

By recalling that the norm on Rd is negative–definite, the isodual
distance among two points on an isodual line is also negative definite
and it is given by

Dd = D × Id = −D, (2.1.40)

where D is the conventional distance. Similar isodualities apply to all
remaining notions, including the notions of parallel and intersecting iso-
dual lines, the Euclidean axioms, etc.

The isodual sphere with radius Rd = −R is the perfect sphere on Ed

over Rd and, as such, it has negative radius (Figure 2.1),

Rd2d = (xd2d + yd2d + zd2d) × Id
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= (x2 + y2 + z2) × I = R2. (2.1.41)

Note that the above expression coincides with that for the conven-
tional sphere. This illustrates the reasons, following about one century
of studies, the isodual rotational group and symmetry where identified
for the first time in Ref. [1]. Note, however, that the latter result re-
quired the prior discovery of new numbers, those with a negative unit.

A similar characterization holds for other isodual shapes characteriz-
ing antimatter in our isodual theory.

LEMMA 2.1.5: The isodual Euclidean geometry on Ed over Rd is
anti–isomorphic to the conventional geometry on E over R.

The group of isometries of Ed over Rd is the isodual Euclidean group
Ed(3) = Rd(θd) ×d T d(3) where Rd(θ) is the isodual group of rotations
first introduced in Ref. [1], and T (3) is the isodual group of translations
(see also Ref. [5a] for details).

2.1.6 Isodual Minkowskian Geometry
Let M(x, η, R) be the conventional Minkowski spacetime with local

coordinates x = (rk, t) = (xµ), k = 1, 2, 3, µ = 1, 2, 3, 4, metric η =
Diag.(1, 1, 1,−1) and basic unit I = Diag.(1, 1, 1, 1) on the reals R =
R(n, +,×).

The Minkowski-Santilli isodual spacetime, first introduced in Ref. [7]
and studied in details in Ref. [8], is given by

Md(xd, ηd, Rd) : xd = {xµd} = {xµ×Id} = {−r,−cot}×I, (2.1.42)

with isodual metric and isodual unit

ηd = −η = diag.(−1,−1,−1, +1), (2.1.43a)

Id = Diag.(−1,−1,−1,−1). (2.1.43b)

The Minkowski-Santilli isodual geometry [8] is the geometry of isod-
ual spaces Md over Rd. The new geometry is also characterized by a
simple isoduality of the conventional Minkowskian geometry as studied
in details in memoir.

The fundamental symmetry of this chapter is given by the group of
isometries of Md over Rd, namely, the Poincaré-Santilli isodual symme-
try [7,8]

P d(3.1) = Ld(3.1) × T d(3.1) (2.1.44)

where Ld(3.1) is the Lorentz-Santilli isodual group and T d(3.1) is the
isodual group of translations.
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Figure 2.1. A schematic view of the isodual sphere on isodual Euclidean spaces over
isodual fields. The understanding of the content of this chapter requires the knowledge
that the isodual sphere and the conventional sphere coincide when inspected by an
observer either in the Euclidean or in the isodual Euclidean space, due to the identity
of the related expressions (2.1.36) and (2.1.38). This identity is at the foundation
of the perception that antiparticles “appear” to exist in our space, while in reality
they belong to a structurally different space coexisting within our own, thus setting
the foundations of a “multidimensional universe” coexisting in the same space of our
sensory perception. The reader should keep in mind that the isodual sphere is the
idealization of the shape of an antiparticle used in this monograph.

2.1.7 Isodual Riemannian Geometry
Consider a Riemannian space �(x, g, R) in (3 + 1) dimensions [32]

with basic unit I = Diag.(1, 1, 1, 1), nowhere singular and symmetric
metric g(x) and related Riemannian geometry in local formulation (see,
e.g., Ref. [27]).

The Riemannian-Santilli isodual spaces (first introduced in Ref. [11])
are given by

�d(xd, gd, Rd) : xd = {−xµ},
gd = −g(x), g ∈ �(x, g, R),

Id = Diag.(−1,−1,−1,−1) (2.1.45)

with interval
x2d = [xdt ×d gd(xd) ×d xd] × Id

= [xt × gd(xd) × x] × Id ∈ Rd, (2.1.46)

where t stands for transposed.
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The Riemannian-Santilli isodual geometry [8] is the geometry of spaces
�d over Rd, and it is also given by step–by–step isodualities of the con-
ventional geometry, including, most importantly, the isoduality of the
differential and exterior calculus.

As an example, an isodual vector field Xd(xd) on �d is given by
Xd(xd) = −Xt(−xt). The isodual exterior differential of Xd(xd) is
given by

DdXkd(xd) = ddXkd(xd)+Γd
i
k
j ×dXid×dddxjd = DXk(−x), (2.1.47)

where the Γd’s are the components of the isodual connection. The isodual
covariant derivative is then given by

Xid(xd)|dk = ∂dXid(xd)/d∂dxkd + Γdi
jk ×d Xjd(xd) = −Xi(−x)|k .

(2.1.48)
The interested reader can then easily derive the isoduality of the re-

maining notions of the conventional geometry.
It is an instructive exercise for the interested reader to work out in

detail the proof of the following:

LEMMA 2.1.6 [8]: The isodual image of a Riemannian space
�d(xd, gd, Rd) is characterized by the following maps:

Basic Unit

I → Id = −I,

Metric

g → gd = −g, (2.1.49a)

Connection Coefficients

Γklh → Γd
klh = −Γklh, (2.1.49b)

Curvature Tensor

Rlijk → Rd
lijk = −Rlijk, (2.1.49c)

Ricci Tensor

Rµν → Rd
µν = −Rµν , (2.1.49d)

Ricci Scalar

R → Rd = R, (2.2.49e)

Einstein − Hilbert Tensor

Gµν → Gd
µν = −Gµν , (2.1.49f)



96 ISODUAL THEORY OF ANTIMATTER

Electromagnetic Potentials

Aµ → Ad
µ = −Aµ, (2.1.49g)

Electromagnetic F ield

Fµν → F d
µν = −Fµν , (2.1.49h)

ElmEnergy − Momentum Tensor

Tµν → T d
µν = −Tµν , (2.1.49i)

In summary, the geometries significant for this study are: the conven-
tional Euclidean, Minkowskian and Riemannian geometries used for the
characterization of matter; and the isodual Euclidean, Minkowskian and
Riemannian geometries used for the characterization of antimatter.

The reader can now begin to see the achievement of axiomatic com-
patibility between gravitation and electroweak interactions that is per-
mitted by the isodual theory of antimatter. In fact, the latter is treated
via negative-definite energy-momentum tensors, thus being compatible
with the negative-energy solutions of electroweak interactions, therefore
setting correct axiomatic foundations for a true grand unification studied
in the next chapter.

2.2 CLASSICAL ISODUAL THEORY OF
POINT-LIKE ANTIPARTICLES

2.2.1 Basic Assumptions
Thanks to the preceding study of isodual mathematics, we are now

sufficiently equipped to resolve the scientific impasse caused by the ab-
sence of a classical theory of antimatter studied in Section 1.1.

As it is well known, the contemporary treatment of matter is charac-
terized by conventional mathematics, here referred to ordinary numbers,
fields, spaces, etc. with positive units and norms, thus having positive
characteristics of mass, energy, time, etc.

In this chapter we study the characterization of antimatter via isod-
ual numbers, fields, spaces, etc., thus having negative–definite units and
norms. In particular, all characteristics of matter (and not only charge)
change sign for antimatter when represented via isoduality.

The above characterization of antimatter evidently provides the cor-
rect conjugation of the charge at the desired classical level. However, by
no means, the sole change of the sign of the charge is sufficient to ensure
a consistent classical representation of antimatter. To achieve consis-
tency, the theory must resolve the main problematic aspect of current
classical treatments, the fact that their operator image is not the correct
charge conjugate state (Section 2.1).
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The above problematic aspect is indeed resolved by the isodual theory.
The main reason is that, jointly with the conjugation of the charge, iso-
duality also conjugates all other physical characteristics of matter. This
implies two channels of quantization, the conventional one for matter
and a new isodual quantization for antimatter (see Section 2.3) in such
a way that its operator image is indeed the charge conjugate of that of
matter.

In this section, we study the physical consistency of the theory in its
classical formulation. The novel isodual quantization, the equivalence of
isoduality and charge conjugation and related operator issues are studied
in the next section.

Beginning our analysis, we note that the isodual theory of antimatter
resolves the traditional obstacles against negative energies and masses.
In fact, particles with negative energies and masses measured with neg-
ative units are fully equivalent to particles with positive energies and
masses measured with positive units. This result has permitted the elim-
ination of sole use of second quantization for the characterization of an-
tiparticles because antimatter becomes treatable at all levels, including
second quantization.

The isodual theory of antimatter also resolves the additional, well
known, problematic aspects of motion backward in time. In fact, time
moving backward measured with a negative unit is fully equivalent on
grounds of causality to time moving forward measured with a positive
unit.

This confirms the plausibility of the first conception of antiparticles
by Stueckelberg and others as moving backward in time (see the histor-
ical analysis in Ref. [1] of Chapter 1), and creates new possibilities for
the ongoing research on the so-called “spacetime machine” studied in
Chapter 5.

In this section, we construct the classical isodual theory of antimat-
ter at the Newtonian, Lagrangian, Hamiltonian, Galilean, relativistic
and gravitational levels; we prove its axiomatic consistency; and we ver-
ify its compatibility with available classical experimental evidence (that
dealing with electromagnetic interactions only). Operator formulations
and their experimental verifications will be studied in the next section.

2.2.2 Need for Isoduality to Represent All Time
Directions

It is popularly believed that time has only two directions, the cele-
brated Eddington’s time arrows. In reality, time has four different direc-
tions depending on whether motion is forward or backward and occurs in
the future or in the past, as illustrated in Figure 2.2. In turn, the correct
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Figure 2.2. A schematic view of the “four different directions of time”, depending on
whether motion is forward or backward and occurs in the future or in the past. Due
to the sole existence of one time conjugation, time reversal, the theoretical physics of
the 20-th century missed two of the four directions of time, resulting in fundamental
insufficiencies ranging from the lack of a deeper understanding of antiparticles to basic
insufficiencies in biological structures and excessively insufficient cosmological views.
It is evident that isoduality can indeed represent the two missing time arrows and
this illustrates a basic need for the isodual theory.

use of all four different directions of time is mandatory, for instance, in
serious studies of bifurcations, as we shall see.

It is evident that theoretical physics of the 20-th century could not ex-
plain all four directions of time, since it possessed only one conjugation,
time reversal, and this explains the reason the two remaining directions
of time were ignored.

It is equally evident that isoduality does indeed permit the represen-
tation of the two missing directions of time, thus illustrating its need.

We assume the reader is now familiar with the differences between
time reversal and isoduality. Time reversal changes the direction of
time while keeping the underlying space and units unchanged, while
isoduality changes the direction of time while mapping the underlying
space and units into different forms.

Unless otherwise specified, through the rest of this volume time t
will be indicate motion forward toward in future times, −t will indicate
motion backward in past times, td will indicate motion backward from
future times, and −td will indicate motion forward from past times.

2.2.3 Experimental Verification of the Isodual
Theory of Antimatter in Classical Physics

The experimental verification of the isodual theory of antimatter at
the classical level is provided by the compliance of the theory with the
only available experimental data, those on Coulomb interactions.
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For that purpose, let us consider the Coulomb interactions under the
customary notation that positive (negative) forces represent repulsion
(attraction) when formulated in conventional Euclidean space.

Under such an assumption, the repulsive Coulomb force among two
particles of negative charges −q1 and −q2 in Euclidean space E(r, δ, R)
is given by

F = K × (−q1) × (−q2)/r × r > 0, (2.2.1)

where K is a positive constant whose explicit value (here irrelevant)
depends on the selected units, the operations of multiplication × and
division / are the conventional ones of the underlying field R(n, +,×).

Under isoduality to Ed(rd, δd, Rd) the above law is mapped into the
form

F d = Kd ×d (−q1)d ×d (−q2)d/drd ×d rd = −F < 0, (2.2.2)

where ×d = −× and /d = −/ are the isodual operations of the underly-
ing field Rd(nd, +,×d).

But the isodual force F d = −F occurs in the isodual Euclidean space
and it is, therefore, defined with respect to the unit −1. This implies
that the reversal of the sign of a repulsive force measured with a negative
unit also describes repulsion. As a result, isoduality correctly represents
the repulsive character of the Coulomb force for two antiparticles with
positive charges, a result first achieved in Ref. [9].

The formulation of the cases of two particles with positive charges and
their antiparticles with negative charges is left to the interested reader.

The Coulomb force between a particle and an antiparticle can only be
computed by projecting the antiparticle in the conventional space of the
particle or vice-versa. In the former case we have

F = K × (−q1) × (−q2)d/r × r < 0, (2.2.3)

thus yielding an attractive force, as experimentally established. In the
projection of the particle in the isodual space of the antiparticle, we have

F d = Kd ×d (−q1) ×d (−q2)d/drd ×d rd > 0. (2.2.4)

But this force is now measured with the unit −1, thus resulting in being
again attractive.

The study of Coulomb interactions of magnetic poles and other clas-
sical experimental data is left to the interested reader.

In conclusion, the isodual theory of antimatter correctly represents all
available classical experimental evidence in the field.
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2.2.4 Isodual Newtonian Mechanics
A central objective of this section is to show that the isodual theory of

antimatter resolves the scientific imbalance of the 20-th century between
matter and antimatter, by permitting the study of antimatter at all levels
as occurring for matter. Such an objective can only be achieved by first
establishing the existence of a Newtonian representation of antimatter
subsequently proved to be compatible with known operator formulations.

As it is well known, the Newtonian treatment of N point-like par-
ticles is based on a 7N–dimensional representation space given by the
Kronecker products of the Euclidean spaces of time t, coordinates r and
velocities v (for the conventional case see Refs. [33,34]),

S(t, r, v) = E(t, Rt) × E(r, δ, Rr) × E(v, δ, Rv), (2.2.5)

where
r = (rk

a) = (r1
a, r

2
a, r

3
a) = (xa, ya, za), (2.2.6a)

v = (vka) = (v1a, v2a, v3a) = (vxa, vua, vza) = dr/dt, (2.2.6b)

δ = Diag.(1, 1, 1), k = 1, 2, 3, a = 1, 2, 3, . . . , N, (2.2.6c)

and the base fields are trivially identical, i.e., Rt = Rr = Rv, since all
units are assumed to have the trivial value +1, resulting in the trivial
total unit

Itot = It × Ir × Iv = 1 × 1 × 1 = 1. (2.2.7)

The resulting basic equations are then given by the celebrated Newton’s
equations for point-like particles

ma × dvka/dt = Fka(t, r, v), k = 1, 2, 3, a = 1, 2, 3, . . . , N. (2.2.8)

The basic space for the treatment of n antiparticles is given by the
7N–dimensional isodual space [9]

Sd(td, rd, vd) = Ed(td, Rd
t ) × Ed(rd, δd, Rd) × Ed(vd, δd, Rd), (2.2.9)

with isodual unit and isodual metric

Id
Tot = Id

t × Id
r × Id

v , (2.2.10a)

Id
t = −1, Id

r = Id
v = Diag.(−1,−1,−1), (2.2.10b)

δd = Diag.(1d, 1d, 1d) = Diag.(−1,−1,−1). (2.2.10c)

We reach in this way the basic equations of this chapter, today known
as the Newton-Santilli isodual equations for point-like antiparticles, first
introduced in Ref. [4],1

md
a ×d ddvd

ka/
dddtd = F d

ka(t
d, rd, vd), (2.2.11)
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k = x, y, z, a = 1, 2, . . . , n.

whose experimental verification has been provided in the preceding sec-
tion.

It is easy to see that the isodual formulation is anti-isomorphic to
the conventional version, as desired, to such an extent that the two
formulations actually coincide at the abstract, realization-free level.

Despite this axiomatic simplicity, the physical implications of the iso-
dual theory of antimatter are rather deep. To begin their understanding,
note that throughout the 20-th century it was believed that matter and
antimatter exist in the same spacetime. In fact, as recalled earlier, charge
conjugation is a map of our physical spacetime into itself.

One of the first physical implications of the Newton-Santilli isodual
equations is that antimatter exists in a spacetime co-existing, yet differ-
ent than our own. In fact, the isodual Euclidean space Ed(rd, δd, Rd)
co-exist within, but it is physically distinct from our own Euclidean
space E(r, δ, R), and the same occurs for the full representation spaces
Sd(td, rd, vd) and S(t, r, v).

The next physical implication of the Newton-Santilli isodual equations
is the confirmation that antimatter moves backward in time in a way as
causal as the motion of matter forward in time (again, because negative
time is measured with a negative unit). In fact, the isodual time td

is necessarily negative whenever t is our ordinary time. Alternatively,
we can say that the Newton-Santilli isodual equations provide the only
known causal description of particles moving backward in time.

Yet another physical implication is that antimatter is characterized by
negative mass, negative energy and negative magnitudes of other phys-
ical quantities. As we shall see, these properties have the important
consequence of eliminating the necessary use of Dirac’s “hole theory.”

The rest of this chapter is dedicated to showing that the above novel
features are necessary to achieve a consistent representation of antimat-
ter at all levels of study, from Newton to second quantization.

As we shall see, the physical implications are truly at the edge of imag-
ination, such as: the existence of antimatter in a new spacetime different
from our own constitutes the first known evidence of multi-dimensional
character of our universe despite our sensory perception to the contrary;
the achievement of a fully equivalent treatment of matter and antimatter
implies the necessary existence of antigravity for antimatter in the field
of matter (and vice-versa); the motion backward in time implies the ex-
istence of a causal spacetime machine (although restricted for technical
reasons only to isoselfdual states); and other far reaching advances.
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2.2.5 Isodual Lagrangian Mechanics
The second level of treatment of matter is that via the conventional

classical Lagrangian mechanics. It is, therefore, essential to identify the
corresponding formulation for antimatter, a task first studied in Ref. [4]
(see also Ref. [9]).

A conventional (first–order) Lagrangian L(t, r, v) = 1
2 ×m× vk × vk

+V (t, r, v) on configuration space (2.2.5) is mapped under isoduality
into the isodual Lagrangian

Ld(td, rd, vd) = −L(−t,−r,−v), (2.2.12)

defined on isodual space (2.2.9).
In this way we reach the basic analytic equations of this chapter, today

known as Lagrange-Santilli isodual equations, first introduced in Ref. [4]

dd

ddtd
d
∂dLd(td, rd, vd)

∂dvkd
d − ∂dLd(td, rd, vd)

∂drkd
d = 0, (2.2.13)

All various aspects of the isodual Lagrangian mechanics can then be
readily derived.

It is easy to see that isodual equations (2.3.13) provide a direct ana-
lytic representation (i.e., a representation without integrating factors or
coordinate transforms) of the isodual equations (2.2.11),

dd

ddtd
d
∂dLd(td, rd, vd)

∂dvkd
d − ∂dLd(td, rd, vd)

∂dxkd
d

= md
k ×d ddvd

k/dddtd − F d SA

k (t, r, v) = 0. (2.2.14)

The compatibility of the isodual Lagrangian mechanics with the prim-
itive Newtonian treatment then follows.

2.2.6 Isodual Hamiltonian Mechanics
The isodual Hamiltonian is evidently given by [4,9]

Hd = pd
k ×d pdk/d2d ×d md + V d(td, rd, vd) = −H. (2.2.15)

It can be derived from (nondegenerate) isodual Lagrangians via a
simple isoduality of the Legendre transforms and it is defined on the
7N–dimensional isodual phase space (isocotangent bundle)

Sd(td, rd, pd) = Ed(td, Rd
t ) × Ed(rd, δd, Rd) × Ed(pd, δd, Rd). (2.2.16)

The isodual canonical action is given by [4,9]

A◦d =
∫ t2

t1
(pd

k ×d ddrkd − Hd ×d ddtd)
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=
∫ t2

t1
[R◦d

µ (bd) ×d ddbµd − Hd ×d ddtd], (2.2.17a)

R◦ = {p, 0}, b = {x, p}, µ = 1, 2, . . . , 6. (2.2.17b)

Conventional variational techniques under simple isoduality then yield
the fundamental canonical equations of this chapter, today known as
Hamilton-Santilli isodual equations [4,24–31] that can be written in the
disjoint r and p notation

ddxkd

ddtd
=

∂dHd(td, xd, pd)
∂dpd

k

,
ddpd

k

ddtd
= −∂dHd(td, xd, pd)

∂dxdk
, (2.2.18)

or in the unified notation

ωd
µν ×d ddbdν

ddtd
=

∂dHd(td, bd)
∂dbdµ

, (2.2.19)

where ωd
µν is the isodual canonical symplectic tensor

(ωd
µν) = (∂dR◦d

ν /d∂dbdµ − ∂dR◦d
µ /d∂dbdν)

=
(

0 I
−I 0

)
= (ωµν). (2.2.20)

Note that isoduality maps the canonical symplectic tensor into the
canonical Lie tensor, with intriguing geometric and algebraic implica-
tions.

The Hamilton-Jacobi-Santilli isodual equations are then given by [4,9]

∂dA◦d/d∂dtd + Hd = 0, (2.2.21a)

∂dA◦d/d∂dxd
k − pd

k = 0, ∂dA◦d/d∂dpd
k ≡ 0. (2.2.21b)

The Lie-Santilli isodual brackets among two isodual functions Ad and
Bd on Sd(td, xd, pd) then become

[Ad,d Bd] =
∂dAd

∂dbdµ
d ×d ωdµν ×d ∂dBd

∂dbdν
d = −[A, B] (2.2.22)

where
ωdµν = (ωµν), (2.2.23)

is the Lie-Santilli isodual tensor (that coincides with the conventional
canonical tensor). The direct representation of isodual equations in first–
order form is self–evident.

In summary, all properties of the isodual theory at the Newtonian
level carry over at the level of isodual Hamiltonian mechanics.
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2.2.7 Isodual Galilean Relativity
As it is well known, the Newtonian, Lagrangian and Hamiltonian

treatment of matter are only the pre-requisites for the characterization
of physical laws via basic relativities and their underlying symmetries.
Therefore, no equivalence in the treatment of matter and antimatter can
be achieved without identifying the relativities suitable for the classical
treatment of antimatter.

To begin this study, we introduce the Galilei-Santilli isodual symme-
try Gd(3.1) [7,5,9,22–31] as the step-by-step isodual image of the con-
ventional Galilei symmetry G(3.1) (herein assumed to be known2). By
using conventional symbols for the Galilean symmetry of a Keplerian
system of N point particles with non-null masses ma, a = 1, 2, . . . , n,
Gd(3.1) is characterized by isodual parameters and generators

wd = (θd
k, r

kd
o , vkd

o , tdo) = −w, (2.2.24a)

Jd
k =

∑
aijkr

d
ja ×d pk

ja = −Jk (2.2.24b)

P d
k =

∑
ap

d
ka = −Pk, (2.2.24c)

Gd
k =

∑
a(md

a ×d rd
ak − td × pd

ak), (2.2.24d)

Hd =
1
2

d

×d
∑

ap
d
ak ×d pkd

a + V d(rd) = −H, (2.2.24e)

equipped with the isodual commutator

[Ad,d Bd] =
∑

a,k[(∂dAd/d∂drkd
a ) ×d (∂dBd/d∂dpd

ak)

−(∂dBd/d∂drkd
a ) ×d (∂dAd/d∂dpd

ak)]. (2.2.25)

In accordance with rule (2.1.34), the structure constants and Casimir
invariants of the isodual algebra Gd(3.1) are negative–definite. If g(w)
is an element of the (connected component) of the Galilei group G(3.1),
its isodual is characterized by

gd(wd) = ed−id×dwd×dXd

= −ei×(−w)×X = −g(−w) ∈ Gd(3.1). (2.2.26)

The Galilei-Santilli isodual transformations are then given by

td → t′d = td + tdo = −t′, (2.2.27a)

rd → r′d = rd + rd
o = −r′ (2.2.27b)

rd → r′d = rd + vd
o ×d tdo = −r′, (2.2.27c)
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rd → r′d = Rd(θd) ×d rd = −R(−θ) × r. (2.2.27d)

where Rd(θd) is an element of the isodual rotational symmetry first stud-
ied in the original proposal [1].

The desired classical nonrelativistic characterization of antimatter is
therefore given by imposing the Gd(3.1) invariance to the considered
isodual equations. This implies, in particular, that the equations admit
a representation via isodual Lagrangian and Hamiltonian mechanics.

We now confirm the classical experimental verification of the above
isodual representation of antimatter already treated in Section 2.2.2.
Consider a conventional, classical, massive particle and its antiparticle
in exterior dynamical conditions in vacuum. Suppose that the particle
and antiparticle have charge −e and +e, respectively (say, an electron
and a positron), and that they enter into the gap of a magnet with
constant magnetic field B.

As it is well known, visual experimental observation establishes that
particles and antiparticles under the same magnetic field have spiral tra-
jectories of opposite orientation. But this behavior occurs for the repre-
sentation of both the particle and its antiparticle in the same Euclidean
space. The situation under isoduality is different, as described by the
following:

LEMMA 2.2.1 [5a]: The trajectories under the same magnetic field of
a charged particle in Euclidean space and of the corresponding antipar-
ticle in isodual Euclidean space coincide.

Proof: Suppose that the particle has negative charge −e in Euclidean
space E(r, δ, R), i.e., the value −e is defined with respect to the posi-
tive unit +1 of the underlying field of real numbers R = R(n, +,×).
Suppose that the particle is under the influence of the magnetic field B.

The characterization of the corresponding antiparticle via isoduality
implies the reversal of the sign of all physical quantities, thus yielding
the charge (−e)d = +e in the isodual Euclidean space Ed(rd, δd, Rd),
as well as the reversal of the magnetic field Bd = −B, although now
defined with respect to the negative unit (+1)d = −1.

It is then evident that the trajectory of a particle with charge −e
in the field B defined with respect to the unit +1 in Euclidean space
and that for the antiparticle of charge +e in the field −B defined with
respect to the unit −1 in isodual Euclidean space coincide (Figure 2.3).
q.e.d.

An aspect of Lemma 2.2.1, which is particularly important for this
monograph, is given by the following:
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Figure 2.3. A schematic view of the trajectories of an electron and a positron with
the same kinetic energy under the same magnetic field. The trajectories “appear”
to be the reverse of each other when inspected by one observer, such as that in our
spacetime (top and central views). However, when the two trajectories are represented
in their corresponding spacetimes they coincide, as shown in the text (top and bottom
views).

COROLLARY 2.2.1A: Antiparticles reverse their trajectories when
projected from their own isodual space into our own space.

Lemma 2.2.1 assures that isodualities permit the representation of
the correct trajectories of antiparticles as physically observed, despite
their negative energy, thus providing the foundations for a consistent
representation of antiparticles at the level of first quantization studied
in the next section. Moreover, Lemma 2.2.1 tells us that the trajectories
of antiparticles appear to exist in our space while in reality they belong
to an independent space.
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2.2.8 Isodual Special Relativity
We now introduce isodual special relativity for the classical relativis-

tic treatment of point-like antiparticles (for the conventional case see
Ref. [32]).

As it is well known, conventional special relativity is constructed on
the fundamental 4-dimensional unit of the Minkowski space

I = Diag.(1, 1, 1, 1),

representing the dimensionless units of space, e.g., (+1cm, +1cm,+1cm),
and the dimensionless unit of time, e.g., +1 sec, and constituting the ba-
sic unit of the conventional Poincarè symmetry P (3.1) (hereon assumed
to be known).

It then follows that isodual special relativity is characterized by the
map

I = Diag.({1, 1, 1}, 1) > 0

→ Id = Diag.({−1,−1,−1},−1) < 0. (2.2.28)

namely, the antimatter relativity is based on negative units of space and
time, e.g., Id = Diag.(−1cm,−1cm,−1cm,−1sec). This implies the
reconstruction of the entire mathematics of the special relativity with
respect to the common, isodual unit Id, including: the isodual field Rd =
Rd(nd, +d,×d) of isodual numbers nd = n × Id; the isodual Minkowski
spacetime Md(xd, ηd, Rd) with isodual coordinates xd = x× Id, isodual
metric ηd = −η and basic invariant over Rd

(x − y)d2d
= [(xµ − yµ) × ηd

µν × (xν − yν)] × Id ∈ Rd. (2.2.29)

This procedure yields the central symmetry of this chapter indicated
in Section 2.2.6, today known as the Poincaré-Santilli isodual symme-
try [7]

P d(3.1) = Ld(3.1) ×d T d(3.1), (2.2.30)

where Ld(3.1) is the Lorentz-Santilli isodual symmetry, ×d is the isodual
direct product and T d(3.1) represents the isodual translations.

The algebra of the connected component P ↑d
+ (3.1) of P d(3.1) can be

constructed in terms of the isodual parameters wd = {−wk} =
{−θ,−v,−a} and isodual generators Xd = −X = {−Xk} =
{−Mµν ,−Pµ}. The isodual commutator rules are given by [7]

[Md
µν ,

d Mαβ ]d

= id×d (ηd
να×dMd

µβ−ηd
µα×dMd

νβ−ηd
νβ×dMd

µα+ηd
µβ×dM̂d

αν), (2.2.31a)



108 ISODUAL THEORY OF ANTIMATTER

[Md
µν ,

d pd
α] = id ×d (ηd

µα ×d pd
ν − ηd

να ×d pd
µ), (2.2.31b)

[pd
α, pd

β ]d = 0. (2.3.31c)

The Poincarè-Santilli isodual transformations are given by3

x1d′ = x1d = −x1, (2.2.32a)

x2d′ = x2d = −x2, (2.2.32b)

x3d′ = γd ×d (x3d − βd ×d x4d) = −x3′, (2.2.32c)

x4d′ = γd ×d (x4d − βd ×d x3d) = −x4′, (2.2.32d)

xdµ′ = xdµ + adµ = −xµ′, (2.3.32e)

where

βd = vd/dcd
◦ = −β, βd2d = −β2, γd = −(1 − β2)−1/2. (2.2.33)

and the use of the isodual operations (quotient, square roots, etc.), is
assumed.

The isodual spinorial covering

Pd(3.1) = SLd(2.Cd) ×d T d(3.1) (2.2.34)

can then be constructed via the same methods.
The basic postulates of the isodual special relativity are also a sim-

ple isodual image of the conventional postulates [7]. For instance, the
maximal isodual causal speed in vacuum is the speed of light in Md, i.e.,

V d
max = cd

◦ = −c◦, (2.2.35)

with the understanding that it is measured with a negative–definite unit,
thus being fully equivalent to the conventional maximal speed co referred
to a positive unit. A similar situation occurs for all other postulates.

The isodual light cone is evidently given by (Figure 2.4)

xd 2 d
= (xµd ×d ηd

µν ×d xνd) × Id

= (−x × x − y × y − z × z + t × c2
◦ × t) × (−I) = 0. (2.2.36)

As one can see, the above cone formally coincides with the conven-
tional light cone, although the two cones belong to different spacetimes.
The isodual light cone is used in these studies as the cone of light emitted
by antimatter in empty space (exterior problem).

Note that the two Minkowskian metrics η = Diag.(+1, +1, +1,−1)
and η = Diag.(−1,−1,−1, +1) have been popular since Minkowski’s
times, although both referred to the same unit I. We have learned here
that these two popular metrics are connected by isoduality.
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Figure 2.5. A schematic view of the “isodual cube,” here defined as a conventional
cube with two observers, an external observer in our spacetime and an internal ob-
server in the isodual spacetime. The first implication of the isodual theory is that
the same cube coexist in the two spacetimes and can, therefore, be detected by both
observers. A most intriguing implication of the isodual theory is that each observer
sees the other becoming younger. This occurrence is evident for the behavior of the
internal observer with respect to the exterior one, since the former evolves according
to a time opposite that of the latter. The same occurrence is less obvious for the
opposite case, the behavior of the external observer with respect to the internal one,
and it is due to the fact that the projection of our positive time into the isodual
spacetime is indeed a motion backward in that spacetime.

Figure 2.4. A schematic view of the “isodual backward light cone” as seen by an
observer in our own spacetime with a time evolution reversed with respect to the
“conventional forward light cone.”
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We finally introduce the isodual electromagnetic waves and related
isodual Maxwell’s equations [9]

F d
µν = ∂dAd

µ/d∂dxνd − ∂dAd
ν/

d∂dxdµ, (2.2.37a)

∂d
λF d

µν + ∂d
µF d

νλ + ∂d
νF d

λµ = 0, (2.2.37b)

∂d
µF dµν = −Jdν . (2.2.37c)

As we shall see, the nontriviality of the isodual special relativity is
illustrated by the fact that isodual electromagnetic waves experience
gravitational repulsion when in the field of matter.

2.2.9 Inequivalence of Isodual and Spacetime
Inversions

As it is well known (see, the fundamental spacetime symmetries of the
20-th century are the continuous (connected) component of the Poincaré
symmetry plus discrete symmetries characterized by space reversal (also
called parity) and time reversal.

As noted earlier, antiparticles are assumed in the above setting to
exist in the same representation spacetime and to obey the same sym-
metries as those of particles. On the contrary, according to the isodual
theory, antiparticles are represented in a spacetime and possess symme-
tries distinct from those of particles, although connected to the latter
by the isodual transform.

The latter occurrence requires the introduction of the isodual space-
time inversions, that is, the isodual images of space and time inversions,
first identified in Ref. [9], that can be formulated in unified coordinate
form as follows

xdµ′ = πd ×d xd = −π × x

= (−r, x4), τd ×d xd = −τ × x = −(r,−x4), (2.2.38)

with field theoretical extension (here expressed for simplicity for a scalar
field)

πd ×d φd(xd) ×d πd† = φd(x′d, x′d = (−rd, td) = (r,−t), (2.2.39a)

τd ×d φd(xd) ×d τd† = φ̄d(x”d, x”d = (rd,−td) = (−r, t), (2.2.39b)

where rd(= −r) is the isodual coordinate on space Ed(rd, δd, Rd), and td

is the isodual time on Ed(td, 1, Rd
t ).

LEMMA 2.2.2 [9]: Isodual inversions and spacetime inversions are
inequivalent.
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Figure 2.6. A schematic view of the additional peculiar property that the projection
in our spacetime of the isodual space inversion appears as a time inversion and vice
versa. In fact, a point in the isodual spacetime is given by (xd, td) = (−x,−t). The
projection in our spacetime of the isodual space inversion (xd, td) → (−xd, td) is then
given by (x,−t), thus appearing as a time (rather than a space) inversion. Similarly,
the projection in our spacetime of the isodual time inversion (xd, td) → (xd,−td)
appears as (−x, t), that is, as a space (rather than time) inversion. Despite its sim-
plicity, the above occurrence has rather deep implications for all discrete symmetries
in particle physics indicated later on.

Proof. Spacetime inversions are characterized by the change of sign
x → −x by always preserving the original metric measured with positive
units, while isodual inversions imply the map x → xd = −x but now
measured with an isodual metric ηd = −η with negative units Id = −I,
thus being inequivalent. q.e.d.

Despite their simplicity, isodual inversions (or isodual discrete sym-
metries) are not trivial (Figure 2.6). In fact, all measurements are done
in our spacetime, thus implying the need to consider the projection of
the isodual discrete symmetries into our spacetime which are manifestly
different than the conventional forms.

In particular, they imply a sort of interchange, in the sense that the
conventional space inversion (r, t) → (−r, t) emerges as belonging to the
projection in our spacetime of the isodual time inversion, and vice-versa.
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Note that the above “interchange” of parity and time reversal of iso-
dual particles projected in our spacetime could be used for experimental
verifications, but this aspect is left to interested readers.

In closing this subsection, we point out that the notion of isodual
parity has intriguing connections with the parity of antiparticles in the
(j, 0) + (0, j) representation space more recently studied by Ahluwalia,
Johnson and Goldman [10]. In fact, the latter parity results in being op-
posite that of particles which is fully in line with isodual space inversion
(isodual parity).

2.2.10 Isodual Thermodynamics of Antimatter
An important contribution to the isodual theory has been made by

J. Dunning-Davies [11] who introduced in 1999 the first, and only known
consistent thermodynamics for antimatter with intriguing results and
implications.

As conventionally done in the field, let us represent heat with Q, in-
ternal energy with U , work with W , entropy with S, and absolute tem-
perature with T . Dunning-Davies isodual thermodynamics of antimatter
is evidently defined via the isodual quantities

Qd = −Q, Ud = −U, W d = −W, Sd = −S, T d = −T (2.2.40)

on isodual spaces over the isodual field of real numbers Rd =
Rd(nd, +d,×d) with isodual unit Id = −1.

Recall from Section 2.1.3 that differentials are isoselfdual (that is,
invariant under isoduality). Dunning-Davies then has the following:

Proof. For the First Law of thermodynamics we have

dQ = dU − dW ≡ ddQd = ddUd − ddW d. (2.2.41)

Similarly, for the Second Law of thermodynamics we have

dQ = T × dS ≡ ddQd = T d ×d Sd, (2.2.42)

and the same occurs for the remaining laws. q.e.d.

implications. First, the identity of thermodynamical laws, by no means,
implies the identity of the thermodynamics of matter and antimatter.
In fact, in Dunning-Davies isodual thermodynamics the entropy must
always decrease in time, since the isodual entropy is always negative
and is defined in a space with evolution backward in time with respect

THEOREM 2.2.1 [11]: Thermodynamical laws are isoselfdual.

Despite their simplicity, Dunning-Davies results [11] have rather deep
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to us. However, these features are fully equivalent to the conventional
increase of the entropy tacitly referred to positive units.

Also, Dunning-Davies results indicate that antimatter galaxies and
quasars cannot be distinguished from matter galaxies and quasars via
the use of thermodynamics, evidently because their laws coincide, in
a way much similar to the identity of the trajectories of particles and
antiparticles of Lemma 2.2.1.

This result indicates that the only possibility known at this writing to
determine whether far-away galaxies and quasars are made up of matter
or of antimatter is that via the predicted gravitational repulsion of the
light emitted by antimatter called isodual light (see next section and
Chapter 5).

2.2.11 Isodual General Relativity
For completeness, we now introduce the isodual general relativity for

the classical gravitational representation of antimatter. A primary moti-
vation for its study is the incompatibility with antimatter of the positive-
definite character of the energy-momentum tensor of the conventional
general relativity studied in Chapter 1.

The resolution of this incompatibility evidently requires a structural
revision of general relativity [33] for a consistent treatment of antimatter.
The only solution known to the author is that offered by isoduality.4

It should be stressed that this study is here presented merely for com-
pleteness, since the achievement of a consistent treatment of negative-
energies, by no means, resolves the serious inconsistencies of gravitation
on a Riemannian space caused by curvature, as studied in Section 1.2,
thus requiring new geometric vistas beyond those permitted by the Rie-
mannian geometry (see Chapters 3 and 4).

As studied in Section 2.1.7, the isodual Riemannian geometry is de-
fined on the isodual field Rd(nd, +d,×d) for which the norm is negative–
definite, Eq. (2.1.18). As a result, all quantities that are positive in
Riemannian geometry become negative under isoduality, thus including
the energy-momentum tensor.

In fact, the energy-momentum tensor of isodual electromagnetic waves
(2.2.37) is negative-definite [8,9]

T d
µν = (4 × π)−1d ×d (F d

µα ×d F d
αν

+ (1/4)−1d ×d gd
µν ×d F d

αβ ×d F dαβ).
(2.2.43)

The Einstein-Hilbert isodual equations for antimatter in the exterior
conditions in vacuum are then given by [6, 9]

Gd
µν = Rd

µν − 1
2

d

×d gd
µν ×d Rd = kd ×d T d

µν , (2.2.44)
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The rest of the theory is then given by the use of the isodual Riemannian
geometry of Section 2.1.7.

The explicit study of this gravitational theory of antimatter is left to
the interested reader due to the indicated inconsistencies of gravitational
theories on a Riemannian space for the conventional case of matter (Sec-
tion 1.2). These inconsistencies multiply when treating antimatter, as
we shall see.

2.3 OPERATOR ISODUAL THEORY OF
POINT-LIKE ANTIPARTICLES

2.3.1 Basic Assumptions
In this section we study the operator image of the classical isodual

theory of the preceding section; we prove that the operator image of
isoduality is equivalent to charge conjugation; and we show that isodual
mathematics resolves all known objections against negative energies.

A main result of this section is the identification of a simple, struc-
turally new formulation of quantum mechanics known as isodual quan-
tum mechanics or, more properly, as the isodual branch of hadronic me-
chanics first proposed by Santilli in Ref. [5]. Another result of this
section is the fact that all numerical predictions of operator isoduality
coincide with those obtained via charge conjugation on a Hilbert space,
thus providing the experimental verification of the isodual theory of an-
timatter at the operator level.

Despite that, the isodual image of quantum mechanics is not trivial
because of a number of far reaching predictions we shall study in this
section and in the next chapters, such as: the prediction that antimatter
emits a new light distinct from that of matter; antiparticles in the grav-
itational field of matter experience antigravity; bound states of particles
and their antiparticles can move backward in time without violating the
principle of causality; and other predictions.

Other important results of this section are a new interpretation of
the conventional Dirac equation that escaped detection for about one
century, as well as the indication that the isodual theory of antimatter
originated from the Dirac equation itself, not so much from the negative-
energy solutions, but more properly from their two-dimensional unit that
is indeed negative-definite, I2×2 = Diag.(−1,−1).

As we shall see, Dirac’s “hole theory”, with the consequential restric-
tion of the study of antimatter to the sole second quantization and re-
sulting scientific imbalance indicated in Section 1.1, were due to Dirac’s
lack of knowledge of a mathematics based on negative units.
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Intriguingly, had Dirac identified the quantity I2×2 = Diag.(−1,−1)
as the unit of the mathematics treating the negative energy solutions
of his equation, the physics of the 20-th century would have followed a
different path because, despite its simplicity, the unit is indeed the most
fundamental notion of all mathematical and physical theories.

2.3.2 Isodual Quantization
The isodual Hamiltonian mechanics (and its underlying isodual sym-

plectic geometry [5a] not treated in this chapter for brevity) permit the
identification of a new quantization channel, known as the naive isod-
ual quantization [6] that can be readily formulated via the use of the
Hamilton-Jacobi-Santilli isodual equations (2.2.21) as follows

A◦d → −id ×d h̄d ×d Lndψd(td, rd), (2.3.1a)

∂dA◦d/d∂dtd + Hd = 0 → id ×d ∂dψd/d∂dtd

= Hd ×d ψd = Ed ×d ψd, (2.3.1b)

∂dA◦d/d∂dxdk − p̂k = 0 → pd
k ×d ψd = −id ×d ∂d

kψd, (2.3.1c)

∂dA◦d/d∂dpd
k = 0 → ∂dψd/d∂dpd

k = 0. (2.3.1d)

Recall that the fundamental unit of quantum mechanics is Planck’s
constant h̄ = +1. It then follows that the fundamental unit of the
isodual operator theory is the new quantity

h̄d = −1. (2.3.2)

It is evident that the above quantization channel identifies the new
mechanics known as isodual quantum mechanics, or the isodual branch
of hadronic mechanics.

2.3.3 Isodual Hilbert Spaces
Isodual quantum mechanics can be constructed via the anti-unitary

transform
U × U † = h̄d = Id = −1, (2.3.3)

applied, for consistency, to the totality of the mathematical and physical
formulations of quantum mechanics. We recover in this way the isodual
real and complex numbers

n → nd = U × n × U † = n × (U × U †) = n × Id, (2.3.4)

isodual operators
A → U × A × U † = Ad, (2.3.5)
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the isodual product among generic quantities A, B (numbers, operators,
etc.)

A × B → U × (A × B) × U †

= (U × A × U †) × (U × U †)−1 × (U × B × U †) = Ad ×d Bd, (2.3.6)

and similar properties.
Evidently, isodual quantum mechanics is formulated in the isodual

Hilbert space Hd with isodual states [6]

|ψ >d= −|ψ >†= − < ψ|, (2.3.7)

where < ψ| is a conventional dual state on H, and isodual inner product

< ψ|d × (−1) × |ψ >d ×Id, (2.3.8)

with isodual expectation values of an operator Ad

< Ad >d= (< ψ|d ×d Ad ×d |ψ >d /d < ψ|d ×d |ψ >d), (2.3.9)

and isodual normalization

< ψ|d ×d |ψ >d= −1. (2.3.10)

defined on the isodual complex field Cd with unit −1 (Section 2.1.1).
The isodual expectation values can also be reached via anti-unitary

transform (2.3.3),

< ψ| × A × |ψ >→ U × (< ψ| × A × |ψ >) × U †

= (< ψ| × U †) × (U × U †)−1 × (U × A × U †) × (U × U †)−1

×(U × |ψ >) × (U × U †) =< ψ|d ×d Ad ×d |ψ >d ×Id. (2.3.11)

The proof of the following property is trivial.

LEMMA 2.3.1 [5b]: The isodual image of an operator A that is Her-
mitean on H over C is also Hermitean on Hd over Cd (isodual Hermitic-
ity).

It then follows that all quantities that are observables for particles are
equally observables for antiparticles represented via isoduality.

LEMMA 2.3.2 [5b]: Let H be a Hermitean operator on a Hilbert space
H over C with positive-definite eigenvalues E,

H × |ψ >= E × |ψ >, H = H†, E => 0. (2.3.12)
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Then, the eigenvalues of the isodual operator Hd on the isodual Hilbert
space Hd over Cd are negative-definite,

Hd ×d |ψ >d= Ed ×d |ψ >d, Hd = Hd†d, Ed < 0. (2.3.13)

This important property establishes an evident compatibility between
the classical and operator formulations of isoduality.

We also mention the isodual unitary laws

Ud ×d Ud† = Ud† ×d Ud = Id, (2.3.14)

the isodual trace
TrdAd = (TrAd) × Id ∈ Cd, (2.3.15a)

Trd(Ad ×d Bd) = TrdAd ×d TrdBd, (2.3.15b)

the isodual determinant

DetdAd = (DetAd) × Id ∈ Cd, (2.3.16a)

Detd(Ad ×d Bd) = Detd ×d DetdBd, (2.3.16b)

the isodual logarithm of a real number n

Logdnd = −(Log nd) × Id, (2.3.17)

and other isodual operations.
The interested reader can then work out the remaining properties of

the isodual theory of linear operators on a Hilbert space.

2.3.4 Isoselfduality of Minkowski’s Line Elements
and Hilbert’s Inner Products

A most fundamental new property of the isodual theory, with im-
plications as vast as the formulation of a basically new cosmology, is
expressed by the following lemma whose proof is a trivial application of
transform (2.3.3).

LEMMA 2.3.3 [23]: Minkowski’s line elements and Hilbert’s inner
products are invariant under isoduality (or they are isoselfdual according
to Definition 2.1.2),

x2 = (xµ × ηµν × xν) × I

≡ (xdµ ×d ηd
µν ×d xdν) × Id = xd2d

, (2.3.18a)

< ψ| × |ψ > × I ≡ < ψ|d ×d |ψ >d × Id. (2.3.18b)
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As a result, all relativistic and quantum mechanical laws holding for
matter also hold for antimatter under isoduality. The equivalence of
charge conjugation and isoduality then follows, as we shall see shortly.

Lemma 2.3.3 illustrates the reason why isodual special relativity and
isodual Hilbert spaces have escaped detection for about one century.
Note, however, that invariances (2.3.18) require the prior discovery of
new numbers, those with negative unit.

2.3.5 Isodual Schrödinger and Heisenberg’s
Equations

The fundamental dynamical equations of isodual quantum mechanics
are the isodual images of conventional dynamical equations. They are
today known as the Schrödinger-Santilli isodual equations [4] (where we
assume hereon h̄d = −1, thus having ×dh̄d = 1)

id ×d ∂|ψ >d /d∂dtd = Hd ×d |ψ >d, (2.3.19a)

pd
k ×d |ψ >d= −id ×d ∂d|ψ >d /d∂drd, (2.3.19b)

and the Heisenberg-Santilli isodual equations

id ×d ddAd/dddtd = Ad ×d Hd − Hd ×d Ad = [Ad, Hd]d, (2.3.20a)

[rd
i , p

d
j ]

d = id ×d δdi
j , [rd, rdj ]d = [pd

i , p
d
j ]

d = 0. (2.3.20b)

Note that, when written explicitly, Eq. (2.3.19a) is based on an asso-
ciative modular action to the left,

− < ψ| ×d Hd = (∂d < ψ|∂dtd) ×d id, (2.3.21)

It is an instructive exercise for readers interested in learning the
new mechanics to prove the equivalence of the isodual Schrödinger and
Heisenberg equations via the anti-unitary transform (2.3.3).

2.3.6 Isoselfdual Re-Interpretation of Dirac’s
Equation

Isoduality has permitted a novel interpretation of the conventional
Dirac equation (we shall here used the notation of Ref. [12]) in which
the negative-energy states are reinterpreted as belonging to the isodual
images of positive energy states, resulting in the first known consistent
representation of antiparticles in first quantization.

This result should be expected since the isodual theory of antimatter
applies at the Newtonian level, let alone that of first quantization. Need-
less to say, the treatment via isodual first quantization does not exclude
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that via isodual second quantization. The point is that the treatment of
antiparticles is no longer restricted to second quantization, as a condi-
tion to resolve the scientific imbalance between matter and antimatter
indicated earlier.

Consider the conventional Dirac equation [2]

[γµ × (pµ − e × Aµ/c) + i × m] × Ψ(x) = 0, (2.3.22)

with realization of Dirac’s celebrated gamma matrices

γk =
(

0 −σk

σk 0

)
, γ4 = i ×

(
I2×2 0,

0 −I2×2

)
, (2.3.23a)

{γµ, γ̃ν} = 2×ηµν , Ψ = i ×
(

Φ
−Φ†

)
, (2.3.23b)

At the level of first quantization here considered, the above equation
is rather universally interpreted as representing an electron under an
external electromagnetic field.

The above equations are generally defined in the 6-dimensional space
given by the Kronecker product of the conventional Minkowski spacetime
and an internal spin space

MTot = M(x, η, R) × Sspin, (2.3.24)

with total unit
ITot = Iorb × Ispin

= Diag.(1, 1, 1, 1) × Diag.(1, 1), (2.3.25)

and total symmetry

P (3.1) = SL(2.C) × T (3.1). (2.3.26)

The proof of the following property is recommended to interested
readers.

THEOREM 2.3.1 [5b]: Pauli’s sigma matrices and Dirac’s gamma
matrices are isoselfdual,

σk ≡ σd
k, (2.3.27a)

γµ ≡ γd
µ. (2.3.27b).

The above properties imply an important re-interpretation of
Eq. (2.3.22), first identified in Ref. [9] and today known as the Dirac-
Santilli isoselfdual equation, that can be written

[γ̃µ × (pµ − e × Aµ/c) + i × m] × Ψ̃(x) = 0, (2.3.28)
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with re-interpretation of the gamma matrices

γ̃k =
(

0 σd
k

σk 0

)
, γ̃4 = i

(
I2×2 0,

0 Id
2×2

)
, (2.3.29a)

{γ̃µ, γ̃ν} = 2d×dηd
µν , Ψ̃ = −γ̃4 × Ψ = i ×

(
Φ
Φd

)
, (2.3.29b)

By recalling that isodual spaces coexist with, but are different from
conventional spaces, we have the following:

THEOREM 3.3.2 [9]: The Dirac-Santilli isoselfdual equation is de-
fined on the 12-dimensional isoselfdual representation space

MTot = {M(x, η, R) × Sspin} × {Md(xd, ηd, Rd) ×d Sd
spin}, (2.3.30)

with isoselfdual total 12-dimensional unit

ITot = {Iorb × Ispin} × {Id
orb ×d Id

spin}, (2.3.31)

and its symmetry is given by the isoselfdual product of the Poincaré
symmetry and its isodual

STot = P(3.1) × Pd(3.1)

= {SL(2.C) × T (3.1)} × {SLd(2.Cd) ×d T d(3.1)}. (2.3.32)

A direct consequence of the isoselfdual structure can be expressed as
follows.

COROLLARY 2.3.2a [9]: The Dirac-Santilli isoselfdual equation pro-
vides a joint representation of an electron and its antiparticle (the posi-
tron) in first quantization,

Dirac Equation = Electron × Positron. (2.3.33)

In fact, the two-dimensional component of the wave function with
positive-energy solution represents the electron and that with negative-
energy solutions represent the positron without any need for second
quantization, due to the physical behavior of negative energies in iso-
dual treatment established earlier.

Note the complete democracy and equivalence in treatment of the
electron and the positron in equation (2.3.28), in the sense that the
equation can be equally used to represent an electron or its antiparti-
cle. By comparison, according to the original Dirac interpretation, the
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equation could only be used to represent the electron [12], since the
representation of the positron required the “hole theory”.

It has been popularly believed throughout the 20-th century that
Dirac’s gamma matrices provide a “four-dimensional representation of
the SU(2)-spin symmetry”. This belief is disproved by the isodual the-
ory, as expressed by the following

THEOREM 3.3.3 [5b]: Dirac’s gamma matrices characterize the di-
rect product of an irreducible two-dimensional (regular) representation
of the SU(2)-spin symmetry and its isodual,

Dirac′s Spin Symmetry : SU(2) × SUd(2). (2.3.34)

In fact, the gamma matrices are characterized by the conventional,
2-dimensional Pauli matrices σk and related identity I2×2 as well as
other matrices that have resulted in being the exact isodual images σd

k
with isodual unit Id

2×2.
It should be recalled that the isodual theory was born precisely out of

these issues and, more particularly, from the incompatibility between
the popular interpretation of gamma matrices as providing a “four-
dimensional” representation of the SU(2)-spin symmetry and the lack
of existence of such a representation in Lie’s theory.

The sole possibility known to the author for the reconciliation of Lie’s
theory for the SU(2)-spin symmetry and Dirac’s gamma matrices was to
assume that −I2×2 is the unit of a dual-type representation. The entire
theory studied in this chapter then followed.

It should also be noted that, as conventionally written, Dirac’s equa-
tion is not isoselfdual because not sufficiently symmetric in the two-
dimensional states and their isoduals.

In summary, Dirac’s was forced to formulate the “hole theory” for
antiparticles because he referred the negative energy states to the con-
ventional positive unit, while their reformulation with respect to negative
units yields fully physical results.

It is easy to see that the same isodual reinterpretation applies for
Majorana’s spinorial representations [13] (see also [14,15]) as well as
Ahluwalia’s broader spinorial representations (1/2, 0)+(0, 1/2) [16] (see
also the subsequent paper [17]), that are reinterpreted in the isoselfdual
form (1, 2, 0) + (1, 2, 0)d, thus extending their physical applicability to
first quantization.

In the latter reinterpretation the representation (1/2,0) is evidently
done conventional spaces over conventional fields with unit +1, while
the isodual representation (1/2, 0)d is done on the corresponding isodual
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spaces defined on isodual fields with unit −1. As a result, all quantities
of the representation (1/2,0) change sign under isoduality.

It should be finally indicated that Ahluwalia treatment of Majorana
spinors has a deep connection with isoduality because the underlying
Class II spinors have a negative norm [16] precisely as it is the case for
isoduality. As a result, the isodual reinterpretation under consideration
here is quite natural and actually warranted for mathematical consis-
tency, e.g., to have the topology characterized by a negative norm be
compatible with the underlying fields.

2.3.7 Equivalence of Isoduality and charge
conjugation

We come now to another fundamental point of this chapter, the proof
that isoduality is equivalent to charge conjugation. This property is
crucial for the experimental verification of isoduality at the particle level
too. This equivalence was first identified by Santilli in Ref. [6] and can
be easily expressed today via the following:

LEMMA 2.3.4 [6,5b,18]: The isodual transform is equivalent to charge
conjugation.

Proof. Charge conjugation is characterized by the following trans-
form of wavefunctions (see, e.g., Ref. [12], pages 109 and 176)

Ψ(x) → CΨ(x) = c × Ψ†(x), (2.3.35)

where
|c| = 1, (2.3.36)

thus being manifestly equivalent to the isodual transform

Ψ(x) → Ψd(xd) = −Ψ†(−xt), (2.3.37)

where t denotes transpose.
A reason why the two transforms are equivalent, rather than identical,

is the fact that charge conjugation maps spacetime into itself, while
isoduality maps spacetime into its isodual. q.e.d.

Let us illustrate Lemma 2.3.4 with a few examples. As well known,
the Klein-Gordon equation for a free particle

∂µ∂µΨ − m2 × Ψ = 0, (2.3.38)

is invariant under charge conjugation, in the sense that it is turned into
the form

c × [Ψ̄∂µ∂µ − Ψ̄ × m2] = 0, |c| = 1, (2.3.39)
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where the upper bar denotes complex conjugation (since Ψ̄ is a scalar),
while the Lagrangian density

L = −(h̄ × h̄/2 × m) × {∂µΨ̄ − i × e × Aµ/h̄ × c) × Ψ̄]

×[∂Ψ + (i × e × Aµ/h̄ × c) × Ψ] + m × m × Ψ̄ × Ψ, (2.3.40)

is left invariant and the four-current

Jµ = −(i × h̄/2 × m) × [ψ̄ × ∂µΨ − (∂µΨ̄) × Ψ], (2.3.41)

changes sign
Jµ → CJµ = −Jµ. (2.3.42)

By recalling the selfduality of ordinary derivatives, Eq. (2.1.30), under
isoduality the Klein-Gordon equation becomes

[∂µ∂µΨ − m2 × Ψ]d = Ψd∂dµ∂d
µ − Ψd ×d md ×d md

= −[Ψ̄∂µ∂µ − Ψ̄ × m2] = 0, (2.3.43)

thus being equivalent to Eq. (2.3.39), while the Lagrangian changes sign
and the four-current changes sign too,

Jd
µ = −(i × h̄/2 × m) × [Ψ̄ × ∂µΨ − (∂µΨ̄) × Ψ]d

= (i × h̄/2 × m) × [Ψ̄ × ∂µΨ − (∂µΨ̄) × Ψ], (2.3.44)

(where we have used the isoselfduality of the imaginary number i).
The above results confirm Lemma 2.3.4 because of the equivalent be-

havior of the equations of motion and the four-current, while the change
of sign of the Lagrangian does not affect the numerical results.

As it is also well known, the Klein-Gordon equation for a particle
under an external electromagnetic field [12]

[(∂µ + i × e × Aµ/h̄ × c)

×(∂µ + i × e × Aµ/h̄ × c) − m2] × Ψ = 0, (2.3.45)

is equally invariant under charge conjugation in which either e or Aµ

change sign, in view of the known invariance

C(i × e × Aµ/h̄ × c) = i × e × Aµ/h̄ × c, (2.3.46)

while the four-current also changes sign. By noting that the preceding
invariance persists under isoduality,

(i × e × Aµ/h̄ × c)d = i × e × Aµ/h̄ × c, (2.3.47)
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Eq. (2.3.45) remains invariant under isoduality, while the Lagrangian
density changes sign and the four-current, again, changes sign.

Similarly, consider Dirac equation (see also Ref. [12], pp. 176–177)

[γµ × (∂µΨ − (i × e × Aµ/h̄ × c) × Ψ + m × Ψ = 0, (2.3.48)

with Lagrangian density

L = (h̄ × c/2) × {Ψ̃ × γµ × [∂µΨ + (i × e × Aµ/h̄ × c) × Ψ]

−(∂µΨ̃ − (i × e × Aµ/h̄ × c) × Ψ̃] × γµ − m × Ψ̃ × Ψ (2.3.49a)

Ψ̃ = Ψ† × γ4, (2.3.49b)

and four-current

Jµ = i × c × Ψ̃ × γµ × Ψ = i × c × Ψ† × γ4 × γµ × Ψ (2.3.50)

The charge conjugation for Dirac’s equations is given by the trans-
form [12]

Ψ → CΨ = c × S−1
C × Ψ̃t (2.3.51)

where SC is a unitary matrix such that

γµ → −γt
µ = SC × γµ × S−1

c , (2.3.52)

and there is the change of sign either of e or of Aµ, under which the
equation is transformed into the form

[∂µΨ̃ − (i × e × Aµ/h̄ × c) × Ψ̃] × γµ − m × Ψ̃ = 0, (2.3.53)

while the Lagrangian density changes sign and the four-current remains
the same,

L → CL = −L, Jµ → CJµ = Jµ. (2.3.54)

It is easy to see that isoduality provides equivalent results. In fact,
for Eq. (2.3.48) we have

{[γµ × (∂µΨ − i × e × Aµ/h̄ × c) × Ψ + m × Ψ}d

= [∂µΨ† − (i × e × Aµ/h̄ × c) × Ψ†] × γµ − m × Ψ† = 0, (2.3.55)

that, when multiplied by γ4 reproduces Eq. (2.3.53) identically. Simi-
larly, by recalling that Dirac’ s gamma matrices are isoselfdual (Theorem
2.3.1), and by noting that

Ψ̃d = (Ψ† × γ4)d = γ4 × Ψ, (2.3.56)
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we have
Ld = L (2.3.57)

while for the four-current we have

Jd
µ = −i × c × Ψ† × γµ × γ4 × ψ. (2.3.58)

But the γµ and γ4 anticommute. As a consequence, the four-current
does not change sign under isoduality as in the conventional case.

Note that the lack of change of sign under isoduality of Dirac’s four-
current Jµ confirms reinterpretation (2.3.28) since, for the latter equa-
tion, the total charge is null.

The equivalence between isoduality and charge conjugation of other
equations, such as those by Weyl, Majorana, etc., follows the same lines.

2.3.8 Experimental Verification of the Isodual
Theory of Antimatter in Particle Physics

In Section 2.2.3. we have established the experimental verification of
the isodual theory of antimatter in classical physics. That in particle
physics requires no detailed elaboration since it is established by the
equivalence of charge conjugation and isoduality (Lemma 2.3.4), and we
can write:

LEMMA 2.3.5 [6,5b,18], [7]: All experimental data currently available
for antiparticles represented via charge conjugation are equally verified
by the isodual theory of antimatter.

2.3.9 Elementary Particles and their Isoduals
We assume the reader is familiar with the conventional definition of

elementary particles as irreducible unitary representations of the spinor-
ial covering of the Galilei symmetry G(3.1) for nonrelativistic treatments
and those of the Poincaré symmetry P (3.1) for relativistic treatments.
We therefore introduce the following:

DEFINITION 2.3.1: Elementary isodual particles (antiparticles) are
given by irreducible unitary representations of the spinorial covering of
the Galilei-Santilli’s isodual symmetry Gd(3.1) for nonrelativistic treat-
ments and those of the Poincaré-Santilli isodual symmetry P d(3.1) for
relativistic treatments.

A few comments are now in order. First, one should be aware that
“isodual particles” and “antiparticles” do not represent the same notion,
evidently because of the negative mass, energy and time of the former
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compared to positive mass, energy and time of the latter. In the rest
of this chapter, unless otherwise stated, the word “antiparticle” will be
referred to the “isodual particle.”

For instance the word “positron” e+ is more appropriately intended
to represent the “isodual electron” with symbol e−d. Similarly the, “an-
tiproton” p− is intended to represent the “isodual proton” p+d.

Second, the reader should note the insistence on the elementary char-
acter of the antiparticles here admitted. The reason is that the anti-
gravity studied in Chapter 4 is specifically formulated for “elementary”
isodual particles, such as the isodual electron, due to a number of un-
settled aspects pertaining to composite particles.

Consider, as an illustration, the case of mesons. If the π◦ is a bound
state of a particle and its isodual, the state is isoselfdual and, as such,
it cannot experience antigravity, as illustrated in the next section. A
number of ambiguities then follow for the study of the gravity of the
charged mesons π±, such as the problem of ascertaining which of the
two mesons is a particle and which is its isodual or, whether the selected
antiparticle is indeed the isodual image of the particle as a necessary
condition for meaningful study of their gravity.

Note that essentially the same ambiguities prohibit the use of muons
for a serious theoretical and experimental studies of the gravity of an-
tiparticles, again, because of unsettled problems pertaining to the struc-
ture of the muons themselves. Since the muons are naturally unstable,
they cannot be credibly believed to be elementary. Therefore, serious
theoretical and experimental studies on the gravity of muons require the
prior identification of their constituents with physical particles.

Finally, the reader should be aware that Definition 2.3.1 excludes
the use of quark conjectures for the gravitational studies of this mono-
graph. This is due to the well-known basic inconsistency of quark con-
jecture of not admitting any gravitation at all (see, e.g., the Appendix
of Ref. [18]). In fact, gravity can only be defined in our spacetime while
quarks can only be defined in their mathematical unitary internal space
with no known connection with our spacetime due to the O’Rafearthaigh
theorem.5

Also, the only “masses” that can be credibly claimed as possessing
inertia are the eigenvalues of the second-order Casimir invariant of the
Poincaré symmetry pµ × pµ = m2. Quarks cannot be characterized
via such a fundamental symmetry, as well known. It then follows that
“quark masses” are mere mathematical parameters defined in the math-
ematical internal complex-unitary space that cannot possibly be used as
serious basis for gravitational tests.
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2.3.10 Photons and their Isoduals
As it is well known, photons have no charge and, therefore, they

are invariant under charge conjugation, as transparent from the simple
plane-wave representation

Ψ(t, r) = N × ei×(k×r−E×t), N ∈ R, (2.3.59)

with familiar relativistic form

Ψ(x) = N × ei×kµ×xµ
, (2.3.60)

and familiar expression for the energy

E = h × ν. (2.3.61)

As a result, matter and antimatter have been believed throughout
the 20-th century to emit the same light. In turn, this belief has left
fundamentally unsettled basic questions in astrophysics and cosmology,
such as the lack of quantitative studies as to whether far-away galaxies
and quasars are made up of matter or of antimatter.

One of the most intriguing and far reaching implications of the iso-
dual theory is that, while remaining evidently invariant under charge
conjugation, the photon is not invariant under isoduality, thus admit-
ting a conjugate particle first submitted by Santilli in Ref. [18] under
the name of isodual photon. In particular, the isodual photon emerges
as having physical characteristics that can be experimentally measured
as being different from those of the photon.

Therefore, the isodual theory offers the first known possibilities of
quantitative theoretical and experimental studies as to whether a far-
away galaxy or quasar is made of matter or of antimatter due to de-
tectable physical differences of their emitted light.

Note that the term “antiphoton” could be misleading because the
prefix “anti” is generally assumed as referring to charge conjugation.
For this reason the name of “isodual photon” appears to be preferable,
also because it represents, more technically, the intended state.

In fact, the photon is mapped by isoduality into a new particle pos-
sessing all negative-definite physical characteristics, with the following
simple isodual plane-wave representation

Ψd(td, rd) = Nd ×d e
id×d(kd×drd−Ed×dtd)
d , Nd ∈ Rd, (2.3.62)

with relativistic expression on isodual Minkowski space

Ψd(xd) = Nd ×d e
id×dkd

µ×dxdµ

d , (2.3.63)
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and isodual expression for the energy

Ed = hd ×d νd, (2.3.64)

where ed is the isodual exponentiation (2.1.26b).
Note that, since i is isoselfdual, Eq. (2.1.20), the exponent of the

plane-wave representation is invariant under both charge conjugation
and isoduality, as illustrated by the following expression

id ×d (kd ×d rd − Ed ×d td) ≡ i × (k × r − E × t), (2.3.65)

or its relativistic counterpart

id ×d kd
µ ×d xdµ ≡ i × kµ × xµ. (2.3.66)

thus confirming the lack of contradiction between charge conjugation
and isoduality.

Moreover, both the photon and the isodual photon travel in vacuum
with the same (absolute) speed |c|, for which we have the additional
identity

kd
µ ×d kdµ ≡ kµ × kµ = 0. (2.3.67)

Despite the above identities, energy and time are positive-definite for
the photon, while they are negative-definite for the isodual photon. As
we shall see, the latter property implies that photons are attracted by
the gravitational field of matter while isodual photons are repelled, thus
providing a physically detectable difference.

Additional differences between light emitted by matter and that emit-
ted by antimatter, such as those pertaining to parity and other discrete
symmetries, require additional study.

2.3.11 Electrons and their Isoduals
The next truly elementary particles and antiparticles are the electron

e− and its antiparticle, the positron e+ or the isodual electron e−d. The
differences between the “positron” and the “isodual electron” should be
kept in mind. In fact, the former has positive rest energy and moved
forward in time, while the latter has negative rest energy and moves
backward in time.

Also, the electron is known to experience gravitational attraction in
the field of matter, as experimentally established. As conventionally de-
fined, the positron too is predicted to experience gravitational attraction
in the field of matter (because its energy is positive).

However, as we shall see in Chapter 4, the isodual electron is predicted
to experience antigravity when immersed in the field of matter, and this
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illustrates again the rather profound physical differences between the
“positron” and the “isodual electron”.

Note that, in view of their truly elementary character, isodual elec-
trons are the ideal candidates for the measurement of the gravitational
field of antiparticles.

2.3.12 Protons and their Isoduals
The next particles demanding comments are the proton p+, the an-

tiproton p− and the isodual proton p+d. In this case the differences
between the “antiproton” and the “isodual proton” should be kept in
mind to avoid major inconsistencies with the isodual theory, such as the
study of the possible antigravity for antiprotons in the field of matter
which antigravity cannot exist for the isodual theory (due, again, to the
positive mass of the antiproton).

Note that these particles are not elementary and, as such, they are
not admitted by Definition 2.3.1. moreover, as stressed earlier [18], when
represented in term of quark conjectures both the proton and the an-
tiproton cannot admit any gravity at all, let alone antigravity. As a
result, extreme scientific care should be exercised before extending to all
antimatter any possible gravitational measurements for antiprotons.

2.3.13 The Hydrogen Atom and its Isodual
The understanding of this chapter requires the knowledge that studies

conducted on the antihydrogen atom (see, e.g., the various contributions
in Proceedings [19]), even though evidently interesting per se, they have
no connection with the isodual hydrogen atom, because the antihydrogen
atom has positive mass, for which antigravity is prohibited, and emits
conventional photons. Therefore, it is important to inspect the differ-
ences between these two formulations of the simplest possible atom of
antimatter.

We assume as exactly valid the conventional quantum mechanical the-
ory of bound states of point-like particles at large mutual distances, 6 as
available in quantum mechanical books so numerous to discourage even
a partial listing.

For the case of two particles denoted with the indices 1, 2, the total
state in the Hilbert space is the familiar tensorial product of the two
states

|ψ >= |ψ1 > ×|ψ2 > . (2.3.68)

The total Hamiltonian H is the sum of the kinetic terms of each
state plus the familiar interaction term V (r) depending on the mutual
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distance r,

H = p1 × p1/2 × m1 + p2 × p2/2 × m2 + V (r). (2.3.69)

The total angular momentum is computed via the familiar expressions
for angular momenta and spins

J = J1 × I + I × J2, S = S1 × I + I × S2, (2.3.70)

where the I ′s are trivial units, with the usual rules for couplings, addi-
tion, etc. One should note that the unit for angular momenta is three-
dimensional while that for spin has a generally different dimension.

A typical example of two-body bound states of particles is the hydro-
gen atom that experiences attraction in the gravitational field of matter
with the well established emission of conventional photons.

The study of bound states of point-like isodual particles at large mu-
tual distances is an important part of isodual quantum mechanics. These
bound states can be studied via an elementary isoduality of the corre-
sponding bound states for particles, that is, via the use of the isodual
Hilbert spaces Hd studied earlier.

The total isodual state is the tensorial product of the two isodual states

|ψd(rd) >d= |ψd
1(rd) >d ×d|ψd

2(rd) >d= − < ψ1(−r)|× < ψ2(−r)|.
(2.3.71)

The total isodual Hamiltonian is the sum of the isodual kinetic terms of
each particle plus the isodual interaction term depending on the isodual
mutual distance,

Hd = pd
1 ×d pd

1/
d2d ×d md

1 + pd
2 ×d pd

2/
d2d ×d md

2 + V d(rd). (2.3.72)

The total isodual angular momentum is based on the expressions for
isodual angular momenta and spin

Jd = Jd
1 ×d Id + Id ×d Jd

2 , (2.3.73a)

Sd = Sd
1 ×d Id + Id ×d Sd

2 , (2.3.73b)

The remaining aspects (couplings, addition theory of angular mo-
menta, etc.) are then given by a simple isoduality of the conventional
theory that is here omitted for brevity.

Note that all eigenvalues that are positive for the conventional case
measured with positive units become negative under isoduality, yet mea-
sured with negative units, thus achieving full equivalence between par-
ticle and antiparticle bound states.

The simplest possible application of the above isodual theory is that
for the isodual hydrogen atom (first worked out in Ref. [18]). The novel
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predictions of isoduality over that of the antihydrogen atom is that the
isodual hydrogen atom is predicted to experience antigravity in the field
of matter and emits isodual photons that are also repelled by the gravi-
tational field of matter.

2.3.14 Isoselfdual Bound States
Some of the most interesting and novel bound states predicted by the

isodual theory are the isoselfdual bound states, that is, bound states that
coincide with their isodual image. The simplest case is the bound state
of one elementary particle and its isodual, such as the positronium.

The condition of isoselfduality requires that the basic symmetry must
be itself isoselfdual, e.g., for the nonrelativistic case the total symmetry
must be

GTot = G(3.1) × Gd(3.1), (2.3.74)

where × is the Kronecker product (a composition of states thus being
isoselfdual), with a simple relativistic extension here assumed as known
from the preceding sections.

The total unit must also be isoselfdual,

ITot = I × Id, (2.3.75)

where I represents the space, time and spin units.
The total Hilbert space and related states must also be isoselfdual,

HTot = H×Hd, (2.3.76a)

|ψ >Tot= |ψ > +|ψ >d= |ψ > − < ψ|, (2.3.76b)

and so on.
A main feature is that isoselfdual states exist in both the spacetime

of particles and that of antiparticles. Therefore, the computation of the
total energy must be done either in H, in which case the total energy is
positive, or in Hd, in which case the total energy is negative.

Suppose that a system of one elementary particle and its isodual is
studied in our laboratory of matter. In this case the eigenvalues for both
particle and its isodual must be computed in H, in which case we have
the equation

i × ∂t|ψ >= (p × p/2 × m) × |ψ >

+(pd ×d pd/d2s ×d md) ×d |ψ > +V (r) × |ψ >

= [p × p/2 × m + V (r)] × |ψ >= E × |ψ >, (2.3.77)

under which the total energy E is evidently positive.
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When the same isoselfdual state is detected in the spacetime of anti-
matter, it must be computed with respect to Hd, in which case the total
energy is negative, as the reader is encouraged to verify.

The total angular momentum and other physical characteristics are
computed along similar lines and they also result in having positive
values when computed in H, as occurring for the conventional charge
conjugation.

As we shall see shortly, the positive character of the total energy of
bound states of particles and their antiparticles is crucial for the removal
of the inconsistencies of theories with negative energy.

The above properties of the isoselfdual bound states have the following
implications:

1) Isoselfdual bound states of elementary particles and their isoduals
are predicted to be attracted in both, the gravitational field of matter
and that of antimatter because their total energy is positive in our world
and negative in the isodual world. This renders necessary an experimen-
tal verification of the gravitational behavior of isoselfdual bound states,
independently from that of individual antiparticles. Note that the pre-
diction holds only for bound states of truly elementary particles and
their isoduals, such as the positronium. No theoretical prediction for
the muonium and the pionium is today feasible because the unsettled
nature of their constituents.

2) Isoselfdual bound states are predicted to have a null internal total
time t+td = 0 and therefore acquires the time of the matter or antimatter
in which they are immersed, although the physical time t of the observer
(i.e., of the bound state equation) is not null. This is readily understood
by noting that the quantity t of Eq. (2.3.77) is our own time, i.e., we
merely study the behavior of the state with respect to our own time.
A clear understanding illustrated previously with the “isodual cube” of
Section 2.1 is that the description of a state with our own time, by no
means, implies that its intrinsic time necessarily coincides with our own.
Note that a similar situation occurs for the energy because the intrinsic
total energy of the positronium is identically null, E + Ed = 0. Yet
the energy measured by us is Epart. − Ed

antipart. = 2E > 0. A similar
situation occurs for all other physical quantities.

3) Isoselfdual bound states may result in being the microscopic image
of the main characteristics of the entire universe. Isoselfduality has in
fact stimulated a new cosmology, the isoselfdual cosmology [21] stud-
ied in Chapter 5, that is patterned precisely along the structure of the
positronium or of Dirac’s equation in our isoselfdual re-interpretation.
In this case the universe results in having null total physical character-
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istics, such as null total energy, null total time, etc., thus implying no
discontinuity at its creation.

2.3.15 Resolution of the Inconsistencies of
Negative Energies

The treatment of antiparticles with negative energies was rejected by
Dirac because incompatible with their physical behavior. Despite sev-
eral attempts made during the 20-th century, the inconsistencies either
directly or indirectly connected to negative energies have remained un-
resolved.

The isodual theory of antimatter resolves these inconsistencies for
the reason now familiar, namely, that the inconsistencies emerge when
one refers negative energies to conventional numbers with positive units,
while the same inconsistencies cannot be evenly formulated when nega-
tive energies are referred to isodual numbers and their negative units.

A good illustration is given by the known objection according to which
the creation of a photon from the annihilation of an electron-positron
pair, with the electron having a positive energy and the positron having
a negative energy, would violate the principle of conservation of the
energy.

In fact, such a pair could be moved upward in our gravitational field
without work and then annihilated in their new upward position. The
resulting photon would then have a blueshift in our gravitational field
of Earth, thus having more energy than that of the original photon.

Presumed inconsistencies of the above type cannot be even formu-
lated within the context of the isodual theory of antimatter because, as
shown in the preceding section, the electron-positron state is isoselfdual,
thus having a non-null positive energy when observed in our spacetime.
Consequently, the lifting upward of the pair does indeed require work
and no violation of the principle of conservation of the energy can be
expected.

A considerable search has established that all other presumed incon-
sistencies of negative energy known to the author cannot even be for-
mulated within the context of the isodual theory of antimatter. Never-
theless, the author would be particularly grateful to any colleague who
bring to its attention inconsistencies of negative energies that are really
applicable under negative units.
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Notes

1 Note as necessary pre-requisites of the new Newton’s equations, the
prior discovery of isodual numbers, spaces and differential calculus.

2 The literature on the conventional Galilei and special relativities and
related symmetries is so vast to discourage discriminatory quotations.

3 It should be indicated that, contrary to popular beliefs, the conven-
tional Poincaré symmetry will be shown in Chapter 3 to be eleven
dimensional, the 11-th dimension being given by a new invariant un-
der change of the unit. Therefore, the isodual symmetry P d(3.1) is
also 11-dimensional.

4 The author would be grateful to colleagues who care to bring to
his attention other “classical” gravitational theories of antimatter
compatible with the negative-energy solutions needed by antimatter.

5 The possible connection between internal and spacetime symmetries
offered by supersymmetric theories cannot be credibly used for grav-
itational tests due to their highly unsettled character and the predic-
tion of a zoo of new particles none of which has been experimentally
detected to the author’s best knowledge.

6 We are here referring to the large mutual distances as occurring in
the atomic structure and exclude the short mutual distances as oc-
curring in the structure of hadrons, nuclei and stars since a serious
study of the latter is dramatically beyond the capabilities of quantum
mechanics, as shown beyond scientific doubt in Chapter 3.
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Chapter 3

LIE-ISOTOPIC AND LIE-ADMISSIBLE
TREATMENTS OF EXTENDED
PARTICLES AND THEIR ISODUALS FOR
EXTENDED ANTIPARTICLES

3.1 INTRODUCTION
3.1.1 The Forgotten Legacy of Newton, Lagrange

and Hamilton
The mathematics and physics of the 20-th century essentially per-

formed the reduction of the entire universe to exterior dynamical systems
(Definition 1.3.1), consisting of closed, isolated and reversible systems
of constituents abstracted as being point-like while moving in vacuum
under sole action-at-a-distance potential interactions.

More technically, we can say that exterior dynamical systems are char-
acterized by the exact invariance of the Galilean symmetry for the non-
relativistic case and the Poincaré symmetry for relativistic treatments,
with the consequential verification of the well known ten total conserva-
tion laws.

While the existence of systems admitting an effective abstraction of
their constituents as being point like, is beyond doubt, as proved by
historical advances in planetary and atomic structures, the reduction of
the entire universe to systems of the indicated type was implemented
by disregarding the historical legacy of Newton [1], Lagrange [2] and
Hamilton [3].

In fact, Newton proposed his celebrated equations for systems of real
life, today carrying his name, that is, with forces that are partially of
action-at-a-distance type, thus derivable from a potential V (r) and to-
day known as variationally self-adjoint forces (SA) [48], and partially of
contact, zero-range type, thus not derivable from a potential and today
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known as variationally nonself-adjoint forces (NSA) [48],

ma ×
dvak

dt
= FSA

ak (t, r, v) + FNSA
ak (t, r, v, . . .), (3.1.1)

FSA
ak = − ∂V

∂rk
a

, FNSA
ak �= − ∂V

∂rk
a

, (3.1.1b)

a = 1, 2, 3, . . . , N ; k = 1, 2, 3.

By following Newton’s teaching ad litteram, Lagrange proposed his
celebrated equations, not in the form generally used in the 20-th cen-
tury, but via two quantities, a quantity L(t, r, v), today called the La-
grangian, for the representation of the kinetic energy and all potential
forces, as well as external terms for the representation of Newton’s non-
potential forces, according to the expression known as the true Lagrange
equations,1

d

dt

∂L(t, r, v)
∂vk

a

− ∂L(t, r, v)
∂rk

a

= FNSA
ak (t, r, v, . . .), (3.1.2a)

L = Σa
1
2
× ma × v2

a − V (t, r, v), (3.1.2b)

V = ΣaU(t, r)ak × vk
a + Uo(t, r), (3.1.2c)

Hamilton also followed Newton’s teaching ad litteram, and formulated
his celebrated equations via two quantities, the first for the representa-
tion of the total energy inclusive of the potential, today known as the
Hamiltonian, and the second being given precisely by the external terms
representing Newton’s nonpotential forces, according to the equations
known as the true Hamilton’s equations

drk
a

dt
=

∂H(t, r, p)
∂pak

,
dpak

dt
= −∂H(t, r, p)

∂rk
a

+ Fak(t, r, p), (3.1.3a)

H = Σa
pak × pak

2 × ma
+ V (t, r, p), (3.1.3b)

F (t, r, v) = F (t, r, p/m). (3.1.3c)

When faced with the above so vast and compelling historical teaching,
a general attitude by 20-th century physicists is that Newton’s nonpo-
tential forces as well as Lagrange and Hamilton external terms are “illu-
sory” (sic) because, in their view, when the Newtonian system is reduced
to its elementary constituents, all nonpotential forces “disappear” (sic)
and the systems becomes entirely representable with the “conventional”
Lagrange and Hamilton equations, those without external terms.
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Particularly when proffered by experts, the above belief is purely
political-nonscientific, because essentially intended to adapt nature to
Einsteinian doctrines, since the latter are dramatically violated by ex-
ternal terms beginning with the underlying topology, loss of all algebras,
let alone of all possible Lie algebras, the loss of Einsteinian physical laws,
etc., as studied in detail in Chapter 1.

In fact, it is expected to be known by experts to qualify as such and, in
any case, it can be proved by a first year graduate student, that a New-
tonian system with nonpotential forces cannot be consistently reduced
to a finite number of elementary particles all under potential interactions
and, vice-versa, a finite ensemble of elementary particles solely under po-
tential interactions cannot consistently reproduce a Newtonian systems
with nonpotential forces (Theorem 1.3.1).

Consequently, rather then being “illusory”, Newton’s nonpotential
interactions originates at the ultimate level of nature, precisely that of
elementary particles.

This monograph is devoted to the pursue of scientific knowledge and
not of political academic lines. Consequently, we shall ignored the trun-
cated Lagrange and Hamilton equations so much preferred in the 20-th
century, and solely study the true analytic equations, those with exter-
nal terms, in full awareness beginning from these introductory lines, of
the consequential need of surpassing Einsteinian doctrines and quantum
mechanics in favor of broader theories.

3.1.2 Structural Differences between Exterior
and Interior Dynamical Systems of
Particles and of Antiparticles

With reference to our fundamental classification of dynamical systems
of Definition 1.3.1, a primary scope of this chapter is the study of close-
reversible or open-irreversible interior dynamical systems of extended
particles and, separately, of extended antiparticles, admitting internal
force of linear and nonlinear type, local-differential and nonlocal-integral
type and potential as well as nonpotential type, where the latter orig-
inate from actual contact and/or mutual penetration of particles, as it
is the case for the structure of planets at the classical level, and the
structure of hadrons, nuclei, stars, molecules, Cooper pairs and other
systems and other systems at the operator level.

The most important methodological differences between exterior and
interior systems of for both particles and antiparticles are the following:

1) Exterior systems are completely represented with the knowledge of
only one quantity, the Lagrangian or the Hamiltonian, while the repre-
sentation of interior systems requires the knowledge of the Lagrangian
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Figure 3.1. A view of Jupiter, a most representative interior dynamical system, where
one can see with a telescope the dramatic differences with exterior systems, such as
internal exchanges of linear and angular momentum always in such a way to verify
total conservation laws. As repeatedly stated in the literature on hadronic mechanics,
the structure of Jupiter has been assumed as fundamental for the construction of new
structure models of hadrons, nuclei and stars, and the development of new clean
energies and fuels.

or the Hamiltonian for the potential forces, plus additional quantities for
the representation of nonpotential forces, as done in the true analytic
equations (3.1.2) and (3.1.3).

Consequently, by their very conception, interior systems are struc-
turally beyond the representational capability of classical and quantum
Hamiltonian mechanics, in favor of covering disciplines (Figure 3.1).

2) Exterior systems are of Keplerian type, while interior systems are
not, since they do not admit a Keplerian center (see Section 1.3). Con-
sequently, by their very conception, interior systems cannot be charac-
terized by the Galilean and Poincaré symmetries in favor of covering
symmetries (Figure 3.2).

3) Exterior systems are local-differential, that is, they describe a finite
set of isolated points, thus being fully treatable with the mathematics of
the 20-th century, beginning with conventional local-differential topol-
ogy. By contrast, interior systems are nonlocal-integral, that is, they
admit internal interactions over finite surfaces or volumes that, as such,
cannot be consistently reduced to a finite set of isolated points. Con-
sequently, interior systems cannot be consistently treated via the math-
ematics of classical and quantum Hamiltonian mechanics in favor of a
basically new mathematics.
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Figure 3.2. A schematic view of nuclei as they are in the physical reality, bound states
of extended particles in conditions of partial mutual penetration without a Keplerian
center, under which conditions quantum mechanics cannot possibly be exact due to
the breaking of the fundamental Galilean and Poincaré symmetries caused by the lack
of a Keplerian center. Therefore, the mere inspection of the main features of nuclear
structures establishes the said need for covering theories. Even though these breakings
are small (because nucleons are in conditions of mutual penetration in nuclei of about
10−3 parts of their volumes), said breakings permit the prediction and industrial
development of new clean energies and fuels that are prohibited by the exact validity
of quantum mechanics [58–61].

4) The time evolution of the Hamiltonian treatment of exterior sys-
tems characterizes a canonical transformation at the classical level, and
a unitary transformation at the operator level, that we shall write in the
unified form

U × U † = U † × U = I, (3.1.4)

where × represents the usual (associative) multiplication.2 By contrast,
the time evolution of interior systems, being non-Hamiltonian, character-
izes noncanonical transformations at the classical level and nonunitary
transformations at the operator level, that we shall jointly write

U × U † �= I. (3.1.5)

In particular, the noncanonical-nonunitary character is necessary to exit
from the class of equivalence of classical and quantum Hamiltonian the-
ories.

5) The invariance (rather than “covariance”) of exterior systems un-
der the Galilean or Poincaré symmetry has the fundamental implication
of preserving the basic units, predicting the same numerical values un-
der the same conditions at different times, and admitting all conditions
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needed for consistent applications of the theory to experimental mea-
surements.

By comparison, the loss of the Galilean and Poincaré invariance, com-
bined with the necessary noncanonical-nonunitary structure of interior
systems activate the theorems of catastrophic mathematical and physical
inconsistencies studied in the next section (whenever treated with the
mathematics of canonical-unitary theories).

In this chapter we report the rather long scientific journey that lead
to a mathematically and physically consistent, classical and operator
treatments of interior dynamical systems. Our main methods are the
Lie-isotopic and Lie-admissible branches of hadronic mechanics for ex-
tended particles, and the isodual Lie-isotopic and isodual Lie-admissible
branches for extended antiparticles.

Besides a number of experimental verifications, the achievement of a
consistent treatment of interior systems offers basically new structure
models of hadrons, nuclei, stars, Cooper pairs, molecules and other inte-
rior structures. In turn, these new models permit quantitative studies of
new clean energies and fuels already under industrial, let alone scientific
development [58–61].

Stated in a nutshell, a primary aim of this chapter is to show that
the assumption of a final character of special relativity and quantum
mechanics beyond the conditions of their original conception (isolated
point particles in exterior conditions in vacuum) is a primary origin of
the current alarming environmental problems [58].

The reader should be aware that, nowadays, the literature on hadro-
nic mechanics is rather vast, having surpassed the mark of 15,000 pages
of published research. As such, to avoid a prohibitive length, the pre-
sentation in this chapter is restricted to an outline of the origination of
each topic and of the most important developments. Scholars interested
in additional aspects are suggested to inspect the quoted literature.

Also to avoid a prohibitive length, the presentation of this chapter is
restricted to studies of direct relevance for hadronic mechanics, namely,
research fundamentally dependent on a generalization of the basic unit.
Related studies not fundamentally dependent on the generalization of
the basic unit cannot be reviewed for brevity.

3.1.3 Closed Non-Hamiltonian Systems of
Extended Particles and Extended
Antiparticles

It is generally admitted that particles at short mutual distances with
contact nonconservative interactions can characterize an open and irre-
versible interior system.
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A basic step in the study of interior systems is the dispelling of the
belief that total conservation laws necessarily restrict all internal forces
to be conservative or, equivalently, that nonconservative internal forces
do not permit total conservation laws.

This belief was disproved, apparently for the first time, by Santilli in
monographs [48,51]. Ref. [48] presented a comprehensive treatment of
the integrability conditions for the existence of a potential or a Hamil-
tonian, Helmholtz’s conditions of variational selfadjointness indicated
earlier.

Ref. [51] presented the broadest possible realization of the conditions
of variational selfadjointness via analytic equations derivable from a vari-
ational principle, and included the first known identification of closed
non-Hamiltonian systems (Ref. [51], pages 233–236), namely, systems
that violate the integrability conditions for the existence of a Hamil-
tonian, yet they verify all ten total conservation laws of conventional
Hamiltonian systems.

We should also recall for clarity that, to be Newtonian as currently
understood, a force should solely depend on time t, coordinates r and
velocity v = dr/dt or momenta p = m × v, F = F (t, r, v) or F (t, r, p).
Consequently, forces depending on derivatives of the coordinates of order
bigger than the first, such as forces depending on the acceleration F =
F (t, r, v, a), a = dv/dt, are not generally considered to be Newtonian
forces.

Let us begin by recalling the following well known property:

THEOREM 3.1.1: Necessary and sufficient conditions for a system
of N particles to be closed, that is, isolated from the rest of the universe,
are that the following ten conservation laws are verified along an actual
path

dXi(t, r, p)
dt

=
∂Xi

∂bµ
× dbµ

dt
+

∂Xi

∂t
= 0, (3.1.6a)

X1 = Etot = H = T + V, (3.1.6b)

(X2, X3, X4) = PTot = Σapa, (3.1.6c)

(X5, X6, X7) = Jtot = Σara ∧ pa, (3.1.6d)

(X8, X9, X10) = GTot = Σa(ma × ra − t × pa), (3.1.6e)

i = 1, 2, 3, . . . , 10; k = 1, 2, 3; a = 1, 2, 3, . . . , N.

The isodual version of the above quantities then characterize a closed
system of antiparticles.
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It is also well known that Galilean or Poincaré invariant systems do
verify the above conservation laws since the Xi quantities are the gener-
ators of the indicated symmetries. However, in this case all acting forces
are derivable from a potential and the systems are Hamiltonian.

Assume now the most general possible dynamical systems, those ac-
cording to the true Lagrange’s and Hamilton equations (3.1.3) where
the selfadjoint forces are represented with the Lagrangian or the Hamil-
tonian and the nonselfadjoint forces are external.

DEFINITION 3.1.1 [51]: Closed-isolated non-Hamiltonian systems of
particles are systems of N ≥ 2 particles with potential and nonpotential
forces characterized by the following equations of motion

dbµ
a

dt
=

(
drk

a/dt
dpka/dt

)
=

(
pak/ma

FSA
ka + FNSA

ka

)
, (3.1.7)

verifying all conditions (3.1.5), where the term “non-Hamiltonian” de-
notes the fact that the systems cannot be entirely represented with the
Hamiltonian, thus requiring additional quantities, such as the external
terms.

The case n = 2 is exceptional, yet it admits solutions, and closed non-
Hamiltonian systems with N = 1 evidently cannot exist (because a single
free particle is always Hamiltonian).

Closed non-Hamiltonian systems can be classified into:
CLASS α: systems for which Eqs (3.1.5) are first integrals;
CLASS β: systems for which Eq. (3.1.5) are invariant relations;
CLASS γ: systems for which Eq. (3.1.5) are subsidiary constraints.
The case of closed non-Hamiltonian systems of antiparticles are de-

fined accordingly via isoduality.

The study of closed non-Hamiltonian systems of Classes β and γ is
rather complex. For the limited scope of this presentation it is sufficient
to see that interior systems of Class α exist.

THEOREM 3.1.2 [51]: Necessary and sufficient conditions for the
existence of a closed non-Hamiltonian system of Class α are that the
nonselfadjoint forces verify the following conditions:

∑
a

FNSA
a ≡ 0, (3.1.8a)

∑
a

pa × FNSA
a ≡ 0, (3.1.8b)
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∑
a

ra ∧ FNSA
a ≡ 0. (3.1.8c)

Proof. Consider first the case N > 2 and assume first for simplicity
that FSA

a = 0. Then, the first nine conservation laws are verified when

∂Xi

∂pka
× FNSA

ka ≡ 0 (3.1.9)

in which case the 10-th conservation law, Eq. (3.1.6e), is automatically
verified, and this proves the necessity of conditions (3.1.8) for N > 2.

The sufficiency of the conditions is established by the fact that
Eq. (3.1.7) consist of seven conditions on 3N unknown functions FNSA

ka .
Therefore, a solution always exists for N ≥ 3.

The case N = 2 is special inasmuch as motion occurs in a plane, in
which case Eq. (3.1.8) reduce to five conditions on four functions FNSA

ka ,
and the system appears to be overdetermined. Nevertheless, solutions
always exist because the verification of the first four conditions (3.1.6)
automatically implies the verification of the last one, Eq. (3.1.6e).

As shown in Ref. [51], Example 6.3, pages 272–273, a first solution is
given by the non-Newtonian force

FNSA
1 = −FNSA

2 = K × a = K × dv

dt
, (3.1.10)

where K is a constant. Another solution is given by

FNSA
1 = −FNSA

2

= M × dr

dt
× φ(M × ṙ + V ), M =

m1 × m2

m1 + m2
. (3.1.11)

Other solutions can be found by the interested reader. The addition of
a non-null selfadjoint force leaves the above proof unchanged. q.e.d.

The search for other solutions is recommended to readers interested
in acquiring a technical knowledge of hadronic mechanics because such
solutions are indeed useful for applications. A general solution of Eq.
(3.1.8), as well as of their operator counterpart and of their isodual
images for antimatter will be identified later on in this chapter after the
identification of the applicable mathematics.

It should be noted that the proof of Theorem 3.1.2 is not necessary
because the existence of closed non-Hamiltonian systems is established
by visual observations, such as that of Jupiter. At any rate, the represen-
tation of Jupiter’s structure via one single function, the Lagrangian or
the Hamiltonian, necessarily implies the belief in the perpetual motion
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within physical media, due to the necessary condition that constituents
move inside Jupiter with conserved energy, linear momentum and angu-
lar momentum.

3.1.4 Ultimate Elemental Origin of Nonpotential
Interactions

As recalled in Chapter 1, whenever exposed to departures from closed
Hamiltonian systems, a widespread posture is the claim that the non-
potential interactions are “illusory” (sic) because, when the systems are
reduced to their elementary constituents, all nonpotential forces “dis-
appear” (sic) and conventional Hamiltonian disciplines are recovered in
full.

This belief is disproved by Theorem 1.3.1 (whose knowledge is hereon
assumed) because, as expected to be known by experts to qualify as
such, a classical system with nonpotential forces cannot be consistently
reduced to a finite number of particles all in conservative conditions,
and, vice-versa, a finite ensemble of particles all under sole potential
interactions cannot consistently reproduce a nonconservative classical
system under the correspondence or any other principle.

Rather than being “illusory”, nonpotential effect originate at the deep-
est and most elemental level of nature, that of elementary particles or
of antiparticles. The property also establishes the need for the identi-
fication of methods suitable for the invariant treatment of classical and
operator non-Hamiltonian systems in such a way to constitute a covering
of conventional Hamiltonian treatments.

3.1.5 Basic Conditions to be verified by the
Applicable Mathematics

By following the main guidelines of hadronic mechanics, rather than
adapting nature to preferred mathematics, we adapt the mathematics
to nature. For this purpose, we shall seek a mathematics capable of
representing the following main features of interior dynamical systems:

1) Points have no dimension and, consequently, can only have action-
at-a-distance potential interactions. Therefore, the first need for the
new mathematics is the representation of the actual, extended, generally
nonspherical shape of the wavepackets and/or of the charge distribution
of the particles considered, that we shall assume in this monograph for
simplicity to have the shape of spheroidal ellipsoids with diagonal form

Shapea = Diag.(n2
a1, n

2
a2, n

2
a3), a = 1, 2, 3, . . . , N, (3.1.12)

with more general non-diagonal expressions not considered for simplicity,
where n2

a1, n
2
a2, n

2
a3 represent the semiaxes of the spheroidal ellipsoids
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assumed as deviation from, or normalized with respect to the perfect
spheridicity

n2
a1 = n2

a2 = n2
a3 = 1. (3.1.13)

The n’s are called characteristic quantities of the particle considered.
It should be stressed that, contrary to a rather popular belief, the n-
quantities are not parameters because they represent the actual shape as
derived from experimental measurements.

To clarify this important point, by definition a “parameter” can as-
sume any value as derived form the fit of experimental data, while this
is not the case for the characteristic quantities here considered. As an
example, the value n = 10−20 cm to represent a proton would have no
physical value because the proton charge distribution is a spheroidal
ellipsoid of the order of 10−13 cm= 1 F.

2) Once particles are assumed as being extended, there is the conse-
quential need to represent their density. This task can be achieved via
a fourth set of quantities

Densitya = n2
a4, (3.1.14)

representing the deviation of the density of the particle considered from
the density of the vacuum here assumed to be one,

n2
V acuum,4 = 1. (3.1.15)

Again, n4 is not a free parameter because its numerical value is fixed by
experimental data. As an example for the case of a hadron of mass m
and radius r = 1 F we have the density

n2
4 =

m × c2

4
3 × π × r3

, (3.1.16)

thus establishing that na4 is not a free parameter capable of assuming
any desired value.

Predictably, most nonrelativistic studies can be conducted with the
sole use of the space components characterizing the shape. Relativistic
treatments require the additional use of the density as the forth compo-
nent, resulting in the general form

(Shape − Density)a = Diag.(n2
a1, n

2
a2, n

2
a3, n

2
a4), a = 1, 2, 3, . . . , N,

(3.1.17)
3) Perfectly rigid bodies exist in academic abstractions, but not in the

physical reality. Therefore, the next need is for a meaningful representa-
tion of the deformation of shape as well as variation of density that are
possible under interior conditions. This is achieved via the appropriate
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functional dependence of the characteristic quantities on the energy Ea,
linear momentum pa, pressure P and other characteristics, and we shall
write

nak = nak(E, p, P, . . .), k = 1, 2, 3, 4. (3.1.18)

The reader is suggested to meditate a moment on the fact that La-
grangian or Hamiltonian theories simply cannot represent the actual
shape and density of particles. The impossibility of representing defor-
mations of shapes and variations of density are well known, since the
pillar of contemporary relativities, the rotational symmetry, is notori-
ously incompatible with the theory of elasticity.

4) Once particles are represented as they are in the physical reality
(extended, nonspherical and deformable), there is the emergence of the
following new class of interactions nonexistent for point-particles (for
which reason these interactions have been generally ignored throughout
the 20-th century), namely, interactions of:

I) contact type, that is, due to the actual physical contact of extended
particle; consequently, of

II) zero range type, since all contacts are dimensionless; consequently
of

III) nonpotential type, that is, not representable with any possible
action-at-a-distance potential; consequently, of

IV) non-Hamiltonian type, that is, not representable with any Hamil-
tonian; consequently, of

V) noncanonical type at the classical level and nonunitary type at the
operator level; as well as of

VI) nonlinear type, that is, represented via nonlinear differential equa-
tions, such as depending on power of the wavefunction greater than one;
and, finally, of

VII) nonlocal-integral type. Interactions among point-particles are
local-differential, that is, reducible to a finite set of isolated points, while
contact interactions among extended particles and/or their wavepackets
are, by conception, nonlocal-integral in the sense of being dependent on
a finite surface or volume that, as such, cannot be reduced to a finite set
of isolated points (see Figure 3.3).

5) Once the above new features of interior systems have been identi-
fied, there is the need not only of their mathematical representation, but
above all of their invariant representation in order to avoid the theorem
of catastrophic inconsistencies of Chapter 1.

As an illustration, Coulomb interactions have reached their towering
position in the physics of the 20-th century because the Coulomb poten-
tial is invariant under the basic symmetries of physics, thus predicting
the same numerical values under the same conditions at different times
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Figure 3.3. A schematic view of the fundamental interactions studied in this mono-
graph, those originating from deep wave-overlappings of the charge distribution as
well as of the wavepackets of particles, including particles with point-like charge, as
occurring in electron valence bonds, Cooper pairs in superconductivity, Pauli’s ex-
clusion principle, and other basic structures. These interactions have been ignored
throughout the 20-th century, resulting in the problematic aspects or sheer inconsis-
tencies identified in Chapter 1. As we shall see in this chapter, the representation of
the new interactions here depicted with generalized units of type (3.2.4) permits the
achievement of the first known, exact and invariant representation of various data in
particle physics, nuclear physics, chemistry, astrophysics and other fields [58–61] that
have escaped an exact and invariant representation via quantum mechanics for about
one century. In addition, the representation of the interactions herein considered
permits convergent perturbative series when conventionally convergent.

with consequentially consistent physical applications. The same occurs
for other interactions derivable from a potential (except gravitation rep-
resented with curvature as shown in Section 1.4).

Along the same lines, any representation of the extended, nonspheri-
cal and deformable character of particles, their densities and their novel
nonlinear, nonlocal and nonpotential interactions cannot possibly have
physical value unless it is also invariant, and not “covariant”, again,
because the latter would activate the theorems of catastrophic inconsis-
tencies of Section 1.5.
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3.1.6 Iso-, Geno-, and Hyper-Formulations for
Particles and their Isoduals for
Antiparticles

Following the identification of closed non-Hamiltonian systems, the
author conducted an extensive search during the period 1978–1983 in the
advanced libraries of Cambridge, Massachusetts. This search identified
numerous integral geometries and other nonlocal mathematics. However,
none of them verifies all the following conditions necessary for physical
consistency:

CONDITION 1: The new nonlocal-integral mathematics must admit
the conventional local-differential mathematics as a particular case under
a well identified limit procedure, because new physical advances must be
a covering of preceding results. This condition alone is not verified by
any integral mathematics the author could identify.

CONDITION 2: The new nonlocal-integral mathematics must permit
the clear separation of the contributions of the new nonlocal-integral in-
teractions from those of local-differential interactions. This second con-
dition too was not met by any of the integral mathematics the author
could identify.

CONDITION 3: The new nonlocal-integral mathematics must permit
the invariant formulation of the new interactions. This latter condition
was also violated by all integral mathematics the author could identify,
thus ruling them out in a final form for consistent physical applications.

After clarifying that the mathematics needed for the correct treatment
of interior systems was absent, the author was left with no other choice
than that of constructing the needed mathematics.

After extensive search, Santilli [23] suggested in 1978 as the only pos-
sible or otherwise known solution, the invariant representation of non-
linear, nonlocal and nonpotential interactions via a generalization of the
trivial unit of conventional theories. The selection was based on the fact
that, whether conventional or generalized, the unit is the basic invariant
of any theories. We reach in this way the following:

FUNDAMENTAL ASSUMPTION OF HADRONIC MECHANICS
[54,55]: Interior, closed-reversible and open irreversible systems of ex-
tended particles or of extended antiparticles can be represented with two
quantities, a conventional Hamiltonians H(t, r, p) for the invariant rep-
resentation of all action-at-a-distance potential interactions, and a gen-
eralization of the trivial N -dimensional unit of Hamiltonian theories,
I = Diag.(1, 1, . . . , 1) into a sufficiently smooth and nowhere singu-
lar matrix Î(t, r, p, ψ, ∂ψ, . . .), of the same dimension with an arbitrary
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functional dependance on all needed local quantities for the invariant
representation of the extended, nonspherical and deformable shape of
particles, their variable densities and their nonlinear, nonlocal and non-
potential interactions. All conventional mathematical and physical meth-
ods are then lifted into a form admitting Î, rather than I, as the correct
left and right unit at all levels. Isounits can then be classified as follows:

I. HERMITEAN AND POSITIVE-DEFINITE UNITS Î > 0,
CALLED ISOUNITS, AND THEIR ISODUALS Îd < 0, CALLED ISO-
DUAL ISOUNITS, characterizing the Lie-isotopic representation of in-
terior, closed and reversible systems of extended particles and extended
antiparticles, respectively;

II. NONHERMITEAN UNITS Î �= Î†, CALLED GENOUNITS, AND
THEIR ISODUALS Îd �= Îd†, CALLED ISODUAL GENOUNITS, char-
acterizing the Lie-admissible representation of interior, open and irre-
versible systems of extended particles and extended antiparticles, re-
spectively;

III. NONHERMITEAN MULTIVALUED UNITS Î �= Î†, CALLED
HYPERUNITS, AND THEIR ISODUALS Îd �= Îd†, CALLED ISOD-
UAL HYPERUNITS, characterizing the Lie-admissible representation
of interior, open, irreversible and multi-valued systems of extended par-
ticles and extended antiparticles, respectively.

In this chapter we review the long and laborious scientific journey
by mathematicians, theoreticians and experimentalists (see the bibliog-
raphy of Chapter 3) for the achievement of maturity of formulation of
hadronic mechanics, its experimental verification, and its novel indus-
trial applications.

3.2 ISOMATHEMATICS FOR EXTENDED
PARTICLES AND ITS ISODUAL FOR
EXTENDED ANTIPARTICLES

3.2.1 Isounits and their Isoduals
The new mathematics specifically constructed for quantitative invari-

ant treatments of closed non-Hamiltonian systems is today known under
the name of Santilli isotopic mathematics or isomathematics for short
(where, as indicated earlier, the prefix “iso” denotes the preservation of
conventional axioms). Isomathematics was first proposed by R. M. San-
tilli in Ref. [23] of 1978 and subsequently studied in various works (see
Santilli’s monographs [51,59,61], monographs [62–68] by independent au-
thors and references quoted therein).
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The main assumption of isomathematics is the lifting of the conven-
tional unit of current formulations, generally given by an N -dimensional
unit matrix I = Diag.(1, 1, . . . , 1) > 0, into a quantity Î, called San-
tilli isounit, possessing all topological properties of I (such as positive-
definiteness, same dimensionality, etc.), while having an arbitrary func-
tional dependence on time t, mutual distances r, velocities v, wavefunc-
tions ψ, their derivatives ∂xψ, and any other needed variable [23,51],

I = Diag.(1, 1, . . . , 1) > 0 → Î(t, r, v, ψ, ∂xψ, . . .)

= 1/T̂ (t, r, v, ψ, ∂xψ, . . .) > 0. (3.2.1)

The conventional associative and distributive product A × B among
generic quantities A, B (such as numbers, vector fields, operators, etc.)
is jointly lifted into the more general form

A × B → A×̂B = A × T̂ × B (3.2.2)

that remains associative and distributive, thus being called isoproduct,
under which Î is the correct left and right unit,

I × A = A × I = A → Î×̂A = A×̂Î = A, (3.2.3)

for all elements A of the set considered.
As an illustration, a closed non-Hamiltonian systems of two particles,

such as the structure of light mesons, the Cooper pair in superconduc-
tivity or the structure of bi-atomic molecules can be characterized by
a conventional Hamiltonian for the representation of potential interac-
tions, plus the following nowhere singular, sufficiently smooth, positive-
definite, and integro-differential isounit

Î = Î† = Î1−2 = Diag.(n2
11, n

2
12, n

2
13, n

2
14)

×Diag.(n2
21, n

2
22, n

2
23, n

2
24)

×eΓ(t,r,ψ,ψ†,...)×
∫

dr3×ψ†(r)×ψ(r) = 1/T̂ > 0, (3.2.4)

with trivial generalizations to multiparticle and nondiagonal forms, where
the n2

ak represents the semiaxes of the spheroidal shape of particle a, n2
a4

represents its density, the expression Γ(t, r, ψ, ψ†, . . .) represents the non-
linearity of the interaction and

∫
dr3 × ψ†(r) × ψ(r) provides a simple

representation of its nonlocality.
Antiparticles are then characterized by the isodual map yielding the

isodual isounit

Î(t, r, ψ, . . .) → Îd(td, rd, ψd, . . .) = −Î(−t,−r,−ψ†, . . .), (3.2.5)
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where the Hermiticity of Î is assumed. Mixed states of particles and an-
tiparticles are represented by the tensorial product of the corresponding
units and their isoduals.

As we shall see, the entire structure of hadronic mechanics follows
uniquely and unambiguously from the assumption of the above basic
unit.

The main features of hadronic mechanics can already be derived from
the above basic assumption. For instance, Santilli isounit Î identifies
in full the covering nature of isoformulations over conventional formula-
tions, as well as the type of resulting covering.

In fact, at sufficiently large mutual distances of particles the integral
in the exponent of Eq. (3.2.4) is null

Limr�1 Fm

∫
dr3 × ψ†(r) × ψ(r) = 0. (3.2.6)

In this case, the actual size of the particles is irrelevant because terms
such as Diag.(n−2

11 , n−2
12 , n−2

13 , n−2
14 ) factor out of all equations, resulting

in reduced form

Limr�1 Fm Î = I = Diag.(1, 1, 1, 1). (3.2.7)

under which limit hadronic mechanics recovers conventional quantum
mechanics identically and uniquely.

The above limits also identify the important feature according to
which hadronic mechanics coincides with quantum mechanics for all
mutual distances of particles sufficiently bigger than their charge distri-
butions and/or their wavepackets, while at mutual distances below that
value hadronic mechanics provides generally small corrections to quan-
tum mechanics.

Numerous additional examples of isounits exist in the literature. Note
that the features represented by the isounits are strictly outside any
representational capability by the Hamiltonian.

3.2.2 Isonumbers, Isofields and their Isoduals
The first implication of the lifting of the unit is the need for a cor-

responding generalization of numbers and fields that can be introduced
via the following:

DEFINITION 3.2.1: Let F = F (a,+,×) be a field as per Definition
2.1.1. Santilli’s isofields, first introduced in Ref. [12] are rings F̂ =
F̂ (â, +̂, ×̂) whose elements are the isonumbers

â = a × Î , (3.2.8)
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with associative, distributive and commutative isosum

â+̂b̂ = (a + b) × Î = ĉ ∈ F̂ , (3.2.9)

associative and distributive isoproduct

â×̂b̂ = â × T̂ × b̂ = ĉ ∈ F̂ , (3.2.10)

additive isounit
0̂ = 0, â+̂0̂ = 0̂+̂â = â, (3.2.11)

and multiplicative isounit

Î = 1/T̂ > 0, â×̂Î = Î×̂â = â, ∀â, b̂ ∈ F̂ , (3.2.12)

where Î is not necessarily an element of F. Isofields are called of the first
(second) kind when Î = 1/T̂ > 0 is (is not) an element of F.

LEMMA 3.2.1 [12]: Isofields of first and second kind are fields (namely,
isofields verify all axioms of a field with characteristic zero).

The above property establishes the fact (first identified in Ref. [12])
that, by no means, the axioms of a field require that the multiplicative
unit be the trivial unit +1, because the unit can be a negative-definite
quantity as for the isodual mathematics, as well as an arbitrary positive-
definite quantity, such as a matrix or an integrodifferential operator for
isonumbers.

Needless to say, the liftings of the unit and of the product requires a
corresponding lifting of all conventional operations of a field. In fact, we
have the isopowers

ân̂ = â×̂â×̂ . . . , ×̂â (n times) = an × Î , (3.2.13)

with particular case
Î n̂ = Î; (3.2.14)

the isosquare root
â

ˆ1/2 = a1/2 × Î; (3.2.15)

the isoquotient
â/̂b̂ = (â/b̂) × Î = (a/b) × Î; (3.2.16)

the isonorm
|̂â̂| = |a| × Î , (3.2.17)

where |a| is the conventional norm; etc.
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Despite their simplicity, the above liftings imply a generalization of
the conventional number theory particularly for the case of the first kind
(in which Î ∈ F ) with implications for all aspects of the theory. As an
illustration, the use of the isounit Î = 1/3 implies that “2 multiplied by
3” = 18, while 4 becomes a prime number.

A comprehensive study of Santilli’s isonumber theory has been con-
ducted by C.-X. Jiang in monograph [68] with numerous novel devel-
opments and applications. Additional studies on isonumbers have been
done by N. Kamiya et al. [156] and others (see proceedings [69–109]).

3.2.3 Isofunctional Analysis, Isodifferential
Calculus and their Isoduals

The lifting of fields into isofields requires a corresponding lifting of
functional analysis into a form known as isofunctional analysis studied
by J. V. Kadeisvili [132,133], A. K. Aringazin et al. [144] and other
authors. A review of isofunctional analysis up to 1995 with various
developments has been provided by Santilli in monographs [54,55]. We
here merely recall the isofunctions

f̂(x̂) = f(x × I) × Î; (3.2.18)

the isologarithm

ˆlogêa = Î × logea, ˆlogêê = Î , ˆlogêÎ = 0; (3.2.19)

and the isoexponentiation,

êÂ = Î+̂Â/̂1̂!+̂Â×̂Â/̂2̂!+̂ . . . = (eÂ×T̂ ) × Î = Î × (eT̂×Â). (3.2.20)

Particularly important are the isotrigonometric functions that cannot
be reviewed here for brevity [55]. The reader should be aware that any
isocalculation done via conventional functions leads to huge inconsisten-
cies similar to those that would result if quantum mechanical calculations
are done via isofunctions.

The conventional differential calculus must also be lifted, for consis-
tency, into the isodifferential calculus first identified by Santilli in memoir
[14] of 1996, with isodifferential

d̂x̂ = T̂ × dx̂ = T̂ × d(x × Î), (3.2.21)

that, for the case when Î does not depend on x, coincides with the
conventional differential

d̂x̂ = dx; (3.2.22)
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the isoderivatives

∂̂f̂(x̂)/∂̂x̂ = Î × [∂f(x̂)/∂x̂], (3.2.23)

and other similar properties.
The reader interested in learning isomathematics should prove that

isodifferentials commute when formulated in their isospaces over isofields
but they do not generally commute when projected on conventional
spaces over conventional fields.

The indicated invariance of the differential under isotopy, d̂x̂ = dx,
illustrates the reason why the isodifferential calculus has remained un-
detected since Newton’s and Leibnitz’s times.

3.2.4 Isospaces, Isogeometries, Isotopologies and
their Isoduals

The isotopies of metric or pseudo-metric spaces (such as the Euclid-
ean, Minkowskian, Riemannian, Finslerian and other spaces), called
Santilli’s isospaces, have a fundamental role in hadronic mechanics.
They were first identified in Ref. [26] of 1983 and then studied by Santilli
in various works (see Refs. [14,15,29,54,55]) as well as other researchers.
We cannot possibly review here these advances in all details for brevity.

We merely mention that any given n-dimensional metric or pseudo-
metric space S(x, m, R) with basic unit I = Diag.(1, 1, . . . , 1), local
coordinates x = (xi), i = 1, 2, .., n, n × n-dimensional metric m and
invariant

x2 = xi × mij × xj ∈ R (3.2.24)

is lifted into the isospaces Ŝ(x̂, m̂, R̂) with isounit given by

I = Diag.(1, 1, . . . , 1) → În×n(x, v, . . .) = 1/T̂ (x, v, . . .), (3.2.25)

isocoordinates

x → x̂ = x × Î , m → m̂ = T̂ (x, v, . . .) m, (3.2.26)

isometric

m → M̂ = m̂ × Î = [T̂ (x, v, ψ, ∂ψ, . . .) × m] × Î , (3.2.27)

and isoinvariant

x2 = xi × mij × xj × I ∈ R → x̂2̂ = x̂i×̂m̂ij×̂x̂j × Î

= {xi × [T̂ (x, v, . . .) × m] × xj} × Î ∈ R̂. (3.2.28)
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where one should note that M̂ is an isomatrix, namely, a matrix whose
elements are isonumbers (thus being multiplied by Î to be in R̂) and all
operation are isotopic.3

Santilli’s isogeometries are the geometries of isospaces. As such, they
are based on the abstract axioms of the original space. For instance,
despite an arbitrary functional dependence of the isometric, the iso-
Minkowskian geometry verifies the Minkowskian, rather than the Rie-
mannian axioms.

An inspection of the functional dependence of the isometric m̂ =
T̂ (x, v, . . .) × m then reveals that isospaces Ŝ(x̂, m̂R̂) unify all possi-
ble spaces with the same dimension and signature. As an illustration,
the isotopy of the Minkowski space includes as particular case the Rie-
mannian, Finslerian as well as any other space with the same dimen-
sion and signature (+, +, +,−) (in view of the positive-definiteness of Î.
Broader unifications are possible in the event such positive-definiteness
is relaxed.

Since the isotopies preserve the original axioms, the isotopies permit
the unification of the Minkowskian and Riemannian geometry, with con-
sequential unification of special and general relativities via the axioms of
the special, as studied in detail in Ref. [15]. In turn, such a geometric
unification has far reaching implications, e.g., for grand unifications and
cosmologies (see later on).

It should be mentioned that “deformations” of conventional geome-
tries are rather fashionable these days in the physical and mathematical
literature. However, these deformations are generally afflicted by the
catastrophic inconsistencies of Theorem 1.5.1 because, when the origi-
nal geometry is canonical, the deformed geometry is noncanonical, thus
losing the invariance needed for consistent applications. The isotopies of
conventional geometries were constructed precisely to avoid such incon-
sistencies by reconstructing invariance on isospaces over isofield while
having a fully noncanonical structure, as shown below.

Therefore, for the case of “deformations” the generalized metric m̂ =
T̂ ×m and related invariant are referred to conventional units and fields
R, while for “isotopies” the same generalized metric m̂ = T̂ × m is
referred to a isounit which is the inverse of the deformation of the metric,
Î = T̂−1.

Moreover, also for the case of “deformations”, the deformed geometry
verify axioms different then the original ones, because the original metric
m has been deformed by the multiplication of the matrix T̂ while the
basic unit is kept unchanged.

Particularly intriguing are the isotopies of the symplectic geometry,
known as isosymplectic geometry [14] that is based on the following fun-
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damental isosymplectic two-isoform

d̂p̂̂∧ d̂r̂ = ω̂ ≡ dp ∧ dr = ω, (3.2.29)

due to the fact that, for certain geometric reasons, the isounit of the
momentum p in the cotangent bundle (phase space) is the inverse of
the isounit of x (i.e., when Î = 1/T̂ is the isounit for x, that for p is
T̂ = 1/Î). The invariance ω̂ ≡ ω provide a reason why the isotopies of
the symplectic geometry have escaped identification by mathematicians
for over one century.

Despite their simplicity, the isotopies of the symplectic geometry have
deep implications, e.g., they permit rigorous studies of a broader quan-
tization leading to hadronic mechanics.

We should mention that the isotopies of metric or pseudo-metric
spaces are “hidden” in the abstract axioms of conventional spaces. In
fact, the conventional line element (3.2.24) remains invariant under the
following scaling of the isounit and isotopic element

Î → Î ′ = n2 × Î , T̂ → T̂ ′ = n−2 × T̂ , n2 ∈ R, (3.2.30)

under which we have the new isoinvariance law

x2 = (xi × mij × xj) × I ≡ [xi × (n−2 × mij) × xj) × (n2 × I)

= (xi × m̂ij × xj) × Î . (3.2.31)

This “hidden” character explains the reason isospaces have remained
undetected for centuries. Note, however, that their detection required
the prior discovery of new numbers, those with arbitrary units.

Despite its simplicity, invariance (3.2.30) has far reaching implications
(as it is the case for any new invariance). For instance, the new invariance
(3.2.30) establishes that the Poincaré symmetry is eleven-dimensional,
contrary the popular belief throughout the 20-th century that it is ten-
dimensional.

In turn, the additional eleventh dimensionality of the Poincaré sym-
metry has equally far reaching implications, such as the achievement of
an axiomatically consistent quantum gravity, an axiomatically consis-
tent grand unification of electroweak and gravitational interactions, and
other advances we shall study later on.

Readers interested in learning the new mathematics are suggested to
construct the isodual isospaces and isodual isogeometries via the appli-
cation of the isodual map such as Eq. (3.2.5). Note that the latter
formulations are also “hidden” in isospaces and isogeometries. in fact,
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the reversal of the sign of Î, with consequential reversal of the sign of
T̂ , leaves invariant (3.2.28) unaffected. In fact, under isoduality

Î → Îd = −Î = 1/T̂ d = 1/ − T̂ , (3.2.31)

we have the new isodual isoinvariance law

(xi × m̂ij × xj) × Î ≡ (xdi × m̂d
ij × xdj) × Îd. (3.2.32)

This explains the reason isodual isospaces have also remained undetected
for centuries.

Remember that the topology is the ultimate foundation of mathe-
matics, and the same holds also for isomathematics. Therefore, partic-
ularly important for these studies are the isotopies of the conventional
local-differential topology studied by G. T. Tsagas and D. S. Sourlas
[139], R. M. Santilli [14], R. M. Falcón Ganfornina and J. Núñez Valdés
[226,227] and today known as the TSSNC isotopology. We regret to be
unable to review it for brevity.

3.2.5 Lie-Santilli Isotheory and its Isodual
As it is well known, Lie’s theory [4] is based on the conventional (left

and right) unit I = Diag.(1, 1, . . . , 1) of the universal enveloping associa-
tive algebra, with attached Lie algebras and corresponding (connected)
Lie transformation groups achieved via exponentiation.

The lifting I → Î(x, . . .) implies the lifting of the entire Lie theory, first
proposed by Santilli in Ref. [23] of 1978 and then studied in numerous
works (see, e.g., memoir [14] and monographs [51,54,55]).

The isotopies of Lie’s theory are today known as the Lie-Santilli
isotheory following studies by numerous mathematicians and theoreti-
cians (see the monographs by D. S. Sourlas and Gr. Tsagas [64], J. V. Ka-
deisvili [66], R. M. Falcón Ganfornina and J. Núñez Valdés [67], proceed-
ings [68–109] and contributions quoted therein).

Let ξ(L) be the universal enveloping associative algebra of an N -di-
mensional Lie algebra L with (Hermitean) generators X = (Xi), i =
1, 2, . . . , n, and corresponding Lie transformation group G over the reals
R. The Lie-Santilli isotheory is characterized by:

(I) The universal enveloping isoassociative algebra ξ̂ with infinite-
dimensional basis characterizing the Poincaré-Birkhoff-Witt-Santilli iso-
theorem

ξ̂ : Î , X̂i, X̂i×̂X̂j , i ≤ j; X̂i×̂X̂j×̂X̂k, . . . , i ≤ j ≤ k; (3.2.34)

where the “hat” on the generators denotes their formulation on isospaces
over isofields;



160 ISODUAL THEORY OF ANTIMATTER

(II) The Lie-Santilli isoalgebras

L̂ ≈ (ξ̂)− : [X̂î,X̂j ] = X̂i×̂X̂j − X̂j×̂X̂i

= X̂i×T̂ (x, v, ψ, . . .)×X̂j−X̂j×T̂ (x, v, ψ, . . .)×X̂i = Ĉk
ij×̂X̂k; (3.2.35)

(III) The Lie-Santilli isotransformation groups

Ĝ : Â(ŵ) = (êî×̂X̂×̂ŵ)×̂Â(0̂)×̂(ê−î×̂ŵ×̂X̂)

= (ei×X̂×T̂×w) × A(0) × (e−i×w×T̂×X̂), (3.2.36)

where ŵ ∈ R̂ are the isoparameters; the isorepresentation theory; etc.
The non-triviality of the above liftings is expressed by the appearance

of the isotopic element T̂ (x, v, ψ, . . .) at all levels (I), (II) and (III) of
the isotheory, such as in the exponentiation. The arbitrary functional
dependence of T̂ (x, v, ψ, . . .) then implies the achievement of the desired
main features of the isotheory which can be expressed by the following:

LEMMA 3.2.2 [14]: When formulated on conventional spaces over
conventional fields, Lie-Santilli isoalgebras are generally nonlocal, non-
linear and noncanonical, but they reconstruct locality, linearity and
canonicity when formulated on isospaces over isofields.

A main role of the isotheory is then expressed by the following prop-
erty:

LEMMA 3.2.3 [39]: Under the condition that Î is positive-definite,
isotopic algebras and groups are locally isomorphic to the corresponding
conventional algebras and groups, respectively.

Stated in different terms, the Lie-Santilli isotheory was not constructed
to characterize new Lie algebras, because all Lie algebras over a field of
characteristic zero are known. On the contrary, the Lie-Santilli isothe-
ory has been built to characterize new realizations of known Lie algebras
generally of nonlinear, nonlocal and noncanonical character as needed
for a deeper representation of valence bonds or, more generally, systems
with nonlinear, nonlocal and noncanonical interactions.

The mathematical implications of the Lie-Santilli isotheory are sig-
nificant. For instance, Gr. Tsagas [142] has shown that all simple non-
exceptional Lie algebras of dimension N can be unified into one single
Lie-Santilli isotope of the same dimension, while studies for the inclu-
sion of exceptional algebras in this grand unification of Lie theory are
under way.
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In fact, the characterization of different simple Lie algebras, including
the transition from compact to noncompact Lie algebras, can be charac-
terized by different realizations of the isounit while using a unique form
of generators and of structure constants (see the first examples for the
SO(3) algebra in Ref. [23] of 1978 and numerous others in the quoted
literature).

The physical implications of the Lie-Santilli isotheory are equally sig-
nificant. We here mention the reconstruction as exact at the isotopic
level of Lie symmetries when believed to be broken under conventional
treatment. In fact, Santilli has proved:

1) the exact reconstruction of the rotational symmetry for all ellip-
soidical deformations of the sphere [12];

2) the reconstruction of the exact SU(2)-isospin symmetry under elec-
tromagnetic interactions [28,33];

3) the reconstruction of the exact Lorentz symmetry under all (suf-
ficiently smooth) signature-preserving deformations of the Minkowski
metric [26];

4) the reconstruction of the exact parity under weak interactions [55].
R. Mignani [180] has studied the reconstruction of the exact SU(3)

symmetry under various symmetry-breaking terms. In all these cases
the reconstruction of the exact symmetry has been achieved by merely
embedding all symmetry breaking terms in the isounit. The positive-
definiteness of the latter ensured the local isomorphism of the isotopic
and original symmetries.

The construction of the isodual Lie-Santilli isotheory for antimatter
is an instructive exercise for interested readers.

3.3 CLASSICAL ISO-HAMILTONIAN
MECHANICS AND ITS ISODUAL

3.3.1 Newton-Santilli Isomechanics and its
Isodual

As it is well known, Newton [1] had to construct the differential cal-
culus as a pre-requisite for the formulation of his celebrated equations.

Today we know that Newton’s equations can only represent point-
particles due to the strictly local-differential character of the underlying
Euclidean topology.

The fundamental character of Newtonian Mechanics for all scientific
inquiries (such as Hamiltonian mechanics, quantum mechanics, quantum
chemistry, quantum field theory, etc.) is due to the preservation at all
subsequent levels of study of:

1) The underlying Euclidean topology;
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2) The differential calculus; and
3) The abstraction of particles as being point-like.
By keeping in mind Newton’s teaching, the author has dedicated pri-

mary efforts to the isotopic lifting of the conventional differential calcu-
lus, topology and geometries [14] as a pre-requisite for a structural gener-
alization of Newton’s equations into a form representing extended, non-
spherical and deformable particles under action-at-a-distance/potential
as well as contact/nonpotential forces.

As studied in detail in Chapter 1, the need for such a lifting is due to
the fact that point particles are dimensionless and, therefore, they cannot
experience contact-resistive forces. This feature has lead to subsequent
theories, such as Hamiltonian and quantum mechanics, that solely admit
action-at-a-distance/potential forces among point particles.

Such a restriction is indeed valid for a number of systems, such as
planetary systems at the classical level and atomic systems at the oper-
ator level, because the large distances among the constituents permit an
effective point–like approximation of planets of the extended wavepack-
ets of electrons as being massive points.

However, when interactions occur at short distances, as in the case of
electron valence bonds or the mutual penetration of the wavepackets of
particles in general, the point-like approximation is no longer sufficient
and a representation of the actual, extended, generally nonspherical and
deformable shape of particles is necessary to admit contact nonpotential
interactions.

By recalling the fundamental character of Newtonian mechanics for all
of sciences, the achievement of a consistent representation of the contact
interactions of valence electron bonds at the operator level requires the
prior achievement of a consistent Newtonian representation.

To outline the needed isotopies, let us recall that Newtonian mechanics
is formulated on the Kronecker product

Stot = St × Sx × Sv (3.3.1)

of the one dimensional space St representing time t, the tree dimensional
Euclidean space Sr of the coordinates r = (rk

α) (where k = 1, 2, 3 are the
Euclidean axes and α = 1, 2, . . . , N represents the number of particles),
and the velocity space Sv, v = dr/dt.

It is generally assumed that all variables t, r, and v are defined on the
same field of real numbers R. However, the unit of time is the scalar I =
+1, while the unit of the Euclidean space is the matrix I = Diag.(1, 1, 1).
Therefore, on rigorous grounds, the representation space of Newtonian
mechanics Stot = S1×Sr×Sv must be defined on the Kronecker product
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of the corresponding fields

Rtot = Rt × Rr × Rv (3.3.2)

with total unit

ITot = 1 × Diag.(1, 1, 1)r × Diag.(1, 1, 1)v (3.3.3)

the Newtonian systems most important for the isotopies are given
by the so-called closed-isolated non-Hamiltonian systems studied in Sec-
tion 3.1 [51], namely, systems which are closed-isolated from the rest of
the universe, thus verifying all ten Galilean total conservation laws, yet
they admit internal non-Hamiltonian forces due to contact interactions,
as typically illustrated by the structure of Jupiter. A knowledge of these
system is hereon assumed.

The isotopies of Newtonian mechanics, also called Newton-Santilli
isomechanics [63–68], requires the use of: the isotime t̂ = t × Ît with
isounit Ît = 1/T̂t and related isofield R̂t; the isocoordinates r̂ = (r̂k

α) =
r × Îx, with isounit Îx = 1/T̂r and related isofield R̂r; and the isospeeds
v̂ = (vkα) = v × Îv with isounit Îv = 1/T̂v and related isofield R̂v.

Iso-Newtonian Mechanics is then formulated on the Kronecker prod-
uct of isospaces

ŜTot = Ŝt × Ŝr × Ŝv (3.3.4)

over the Kronecker product of isofields

R̂t × R̂r × R̂v (3.3.5)

with total isounit
ÎTot = Ît × Îr × Îv. (3.3.6)

The isospeed is then given by

v̂ =
d̂r̂

d̂t̂
= Ît ×

d(r × Îr)
dt

= v × Ît × Îr + r × Ît ×
dÎr

dt
= v × Îv (3.3.7)

where

Îv = Ît × Îr ×
(
1 + r × T̂r ×

dÎr

dt

)
. (3.3.8)

The Newton-Santilli isoequations, first proposed in memoir [14] of
1996 (following the first identification of the isodifferential calculus) can
be written

m̂α×̂
d̂v̂kα

d̂t̂
= − ∂̂V̂ (r̂)

∂̂r̂k
α

, (3.3.9)



164 ISODUAL THEORY OF ANTIMATTER

namely, the equations are conceived in such a way to formally coincide
with the conventional equations for selfadjoint forces, FSA = −∂V/∂r,
while all nonpotential forces are represented by the isounits or, equiva-
lently, by the isodifferential calculus.

Such a conception is the only one known permitting the representation
of extended particles with contact interactions that is invariant (thus
avoiding the catastrophic inconsistencies of Theorem 1.5.1) and achieves
closure, namely, the verification of all ten Galilean conservation laws.

The above conception is also crucial to permit, apparently for the first
time, the derivability from an action principle of sufficiently smooth but
otherwise unrestricted nonconservative systems, thus permitting, also
for the first time, their treatment via the optimal control theory, as
indicated in the next subsection.

An inspection of Eq. (3.3.9) is sufficient to see that

Lemma 3.3.1 [14]: Iso-Newtonian mechanics reconstructs canonicity
on isospace over isofields.

This property permits Eq. (3.3.9) to avoid Theorem 1.5.1 on the
catastrophic inconsistencies of noncanonical theories. Note that this
would not be the case if nonselfadjoint forces appear in the right hand
side of Eq. (3.3.9) as in Eq. (3.1.1).

THEOREM 3.3.1 [14]: Under the verification by the non-self-adjoint
forces of all conditions (3.1.8), the Newton-Santilli isoequations achieve
a consistent representation of closed non-Hamiltonian systems.

Proof. The verification of all ten Galilean conservation laws is es-
tablished by a visual inspection of Eq. (3.3.9) since their symmetry
is the Galileo-Santilli isosymmetry, i.e., the Galilean symmetry, only
formulated on isospace over isofields [53]. By recalling that conserva-
tion laws are represented by the generators of the underlying symmetry,
conventional total conservation laws then follow from the fact that the
generator of the conventional Galilean symmetry and its isotopic lifting
coincide. The admission of internal nonpotential forces is established by
the unrestricted functional dependence of the isounit. q.e.d.

When projected in the conventional Newtonian space STot, Eq. (3.3.9)
can be explicitly written

m̂×̂ d̂v̂

d̂t̂
= m × Ît ×

d(v × Îv)
dt
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= m×a× Ît × Îv +m× v× Ît ×
dÎv

dt
= − ∂̂V̂ (r̂)

∂̂r̂
= −Îx ×

∂V

∂r
, (3.3.10a)

m × a = −T̂t × T̂v × Îr ×
∂V

∂r
− m × v × T̂v ×

dÎv

dt
, (3.3.10b)

with necessary and sufficient conditions for the representation of all pos-
sible SA and NSA forces

Ît × Îv × Îx = I, Îr = 1/T̂t × T̂r, (3.3.11a)

m × v × T̂v ×
dÎv

dt
= FNSA(t, r, v), (3.3.11b)

which always admit a solution, since they constitute a system of 6N
algebraic (rather than differential) equations in the 6N + 1 unknowns
given by Ît, and the diagonal Îr and Îv.

As an illustration, we have the following equations of motion of an
extended particle with the ellipsoidical shape experiencing a resistive
force FNSA = −γ × v because moving within a physical medium

m × a = −γ × v (3.3.12a)

Îv = Diag.(n2
1, n

2
2, n

2
3) × eγ×t/m. (3.3.12b)

The representation of the density of the particle considered is done via
the time isounit Ît = n2

4, as we shall see in our isorelativistic treatments.
Interested readers can construct the representation of any desired NSA

forces (see also memoir [14] for other examples).
Note the natural appearance of the velocity dependence in the nonself-

adjoint forces, as typical of resistive forces.
Note also that the representation of the extended character of parti-

cles occurs only in isospace because, when Eq. (3.3.9) are projected in
the conventional Newtonian space, all isounits cancel out and the point
characterization of particles is recovered.

Note finally the direct universality of the Newton-Santilli isoequations,
namely, their capability of representing all infinitely possible Newton’s
equations (universality) directly in the frame of the observer without
any need of transforming the local coordinates (direct universality).

As indicated earlier, Eq. (3.3.9) can only describe a system of par-
ticles. The isodual Newton-Santilli isoequations for the treatment of a
system of extended antiparticles can be written [14]

m̂d
α×̂

d d̂dv̂d
kα

d̂dt̂d
= − ∂̂V̂ d(r̂)

∂̂dr̂dk
α

. (3.3.13)
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Rather than being a mere mathematical formality, the above isodual
equations have deep physical implications. In fact, they are at the foun-
dation of the resolution of the scientific imbalance caused by classical
antimatter studied in Chapter 1 also for the case of extended antiparti-
cles.

Moreover, the above isodual equations indicate the multidimensional
character of nature, not in the popular sense of increasing the dimension
of the basic Euclidean space, but rather in the hyperdimensional sense
that different three-dimensional spaces coexisting one inside the other.

In fact, according to the above isodual theory, extended antiparticle
do not exist in the iso-Euclidean space, but rather in their own isodual
iso-Euclidean space that is physically distinct from the former.

Note again that classical antiparticles move backward in time, al-
though this time referred to the isotime. the isoduality of other aspects
of the Newton-Santilli isomechanics is instructive for readers interested
in the field.

3.3.2 Iso-Action Principle and its Isodual
Eq. (3.3.9) admit the analytic representation in terms of the following

isoaction principle [14]

δ̂Â(t̂, r̂) = δ̂

∫̂
(p̂kα×̂pd̂r̂k

α) − Ĥ×̂td̂t̂

= δ

∫̂
[pkα × T̂r(t, r, p, . . .) × d(rk

α × Îr) − H × T̂t(t, r, p, . . .)d(t × Ît) = 0.

(3.3.14)
Note the main result permitted by the isodifferential calculus, con-

sisting in the reduction of an action functional of arbitrary power in
the linear momentum (arbitrary order) to that of first power in p (first
order).

Since the optimal control theory and the calculus of variation depend
on the first order character of the action functional, the above reduc-
tion has important implications, such as the treatment, apparently for
the first time in scientific records, of extended objects moving within
resistive media via the optimal control theory. Note that a first order
conventional action is impossible for the systems considered with con-
sequential impossibility to apply the optimal control theory to systems
such as the wing of an airplane while moving within air.

Note also that, when the isounits are constant, isoaction and action
functional coincide. This illustrates the apparent reason why the iso-
topies of the action principle creeped in un-noticed for over one century.
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3.3.3 Iso-Hamiltonian Mechanics and its Isodual
It is easy to prove that isoaction principle (3.3.14) characterizes the

Hamilton-Santilli isoequations [14]

d̂r̂

d̂t̂
=

∂̂Ĥ

∂̂p̂
=

p̂

m̂
, (3.3.15a)

d̂p̂

d̂t̂
= − ∂̂Ĥ

∂̂r̂
= −Îr ×

∂Ĥ

∂r̂
= F̂SA + F̂NSA, (3.3.15b),

under the following isounit is

Ît = 1, Îr = I + FNSA/FSA, Îp = T̂r, (3.3.16)

and the Hamiltonian with the usual form on isospace over isofields

Ĥ =
∑

α=1,...,n

p̂kα×̂pp̂
k
α

2̂×̂m̂α

+ V̂ (r̂), (3.3.17)

where the reader should note the real-valued, symmetric and positive-
definite character of all isounits.

As one can see, the above analytic equations are noncanonical when
formulated via conventional mathematics, while they are isocanonical,
namely, they reconstruct canonicity when formulated via isomathemat-
ics, namely, on isospaces over isofields.

Consequently, the projection of the above analytic equations on con-
ventional spaces over conventional field has no invariance, while, when
written on isospaces over isofields (that is, without the explicit expres-
sion of the isoderivative), the same equations are manifestly invariant
under the Galileo-Santilli isosymmetry [50], thus resolving the inconsis-
tencies of Theorem 1.5.1.

The above analytic equations characterize the following Poisson-San-
tilli isobrackets

[Â,̂B̂] =
∂̂Â

∂̂r̂k
α

× ∂̂B̂

∂̂p̂kα

− ∂̂B̂

∂̂r̂k
α

× ∂̂Â

∂̂p̂kα

=
∂Â

∂r̂i
α

× Îk
ir × Îj

pk × ∂̂B̂

∂p̂jα
− ∂B̂

∂ri
α

× Îk
ir × Îj

pk × ∂Â

∂p̂jα

=
∂Â

∂r̂k
α

× ∂B̂

∂p̂kα
− ∂B̂

∂r̂k
α

× ∂Â

∂p̂kα
, (3.3.18)

where the last identity occurs because Îr = 1/Îp. It is evident that
the above brackets constitute a classical realization of the Lie-Santilli
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isoproduct. In particular, this is the isoproduct used for the construction
of the Galileo-Santilli isoalgebra [50].

Isoaction principle (3.3.14) also characterizes the following Hamilton-
Jacobi-Santilli isoequations [14]

∂̂Â
∂̂t̂

+ Ĥ = 0, (3.3.19a)

∂̂Â
∂̂r̂k

α

− p̂kα = 0. (3.3.19b)

∂̂Â
∂̂p̂kα

= 0. (3.3.19c)

As we shall see, a most important property of the iso-Hamilton me-
chanics is that, when formulated on isospaces over isofields, the isoaction
is independent from the linear momenta, as proved by Eq. (3.2.19c). this
feature has fundamental implications for quantization discussed in the
next section.

As it was the case for Eq. (3.3.9), iso-Hamiltonian mechanics has
been conceived to coincide at the abstract level with the conventional
formulation. Nevertheless, the following main differences occur:

1) Hamiltonian mechanics can only represent point particles while its
isotopic covering can represent the actual, extended, nonspherical and
deformable shape of particles via the simply identification of isounits
(3.3.16);

2) Hamiltonian mechanics can only represent a rather restricted class
of Newtonian systems, those with potential forces, while its isotopic
covering is directly universal for all possible (sufficiently smooth) SA
and NSA Newtonian systems;

3) All non-self-adjoint forces are represented by the isounits or, equiv-
alently, by the isodifferential calculus, thus permitting their invariant
description, since iso-Hamiltonian mechanics reconstructs canonicity on
isospaces over isofields.

As outlined above, iso-Hamiltonian mechanics can only described
closed non-Hamiltonian systems of particles. The construction of its
isodual for antiparticles is an instructive exercise for interested readers.

The Hamilton-Santilli isodual isoequations for the analytic treatment
of extended antiparticles can be written [14]

d̂dr̂d

d̂dt̂d
=

∂̂dĤd

∂̂dp̂d
=

p̂d

m̂m
, (3.3.20a)

d̂dp̂d

d̂dt̂d
= − ∂̂dĤd

∂̂dr̂d
= F̂ dSA + F̂ dNSA, (3.3.20b)
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and they are directly universal for the representation of isodual Newton-
Santilli isoequations (3.3.13).

The isodual Hamilton-Jacobi-Santilli isoequations can be written [14]

∂̂dÂd

∂̂dt̂d
+ Ĥd = 0, (3.3.21a)

∂̂dÂd

∂̂dr̂dk
α

− p̂d
kα = 0. (3.3.21b)

∂̂dÂd

∂̂dp̂d
kα

= 0. (3.3.21c)

rather than being a mere mathematical virtuosity, the above isodual
equations are crucial for the resolution of the scientific imbalance caused
by classical antimatter studied in Chapter 1. In fact, the above equations
permit the creation of a new quantization channel specifically intended
for antiparticles in a way independent from that of particles and such
that the operator image of the classical treatment is indeed a charge
conjugate state.

3.4 LIE-ISOTOPIC BRANCH OF HADRONIC
MECHANICS AND ITS ISODUAL

3.4.1 Technical Difficulties in Quantizing
Nonpotential Forces

The biggest technical difficulty emerging in the quantization of New-
tonian systems with arbitrary nonconservative forces via conventional
mathematics is that the action functional generally depends on the lin-
ear moments, in addition to the canonical dependence on time and co-
ordinates, A = A(t, r, p), as illustrated by Birkhoffian mechanics [51].

In turn, as shown below, the quantization of such type of general-
ized action leads to “wavefunctions” that are also dependent on time,
coordinates and momenta, ψ = ψ(t, r, p), resulting in an operator me-
chanics that is in dramatic disagreement with quantum mechanics, e.g.,
on Heisenberg’s uncertainty principle, Pauli’s exclusion principle, etc.

In fact, all these familiar quantum laws are crucially dependent on the
conventional dependence of the wavefunctions either on time and coordi-
nates only, ψ = ψ(t, r), or on time and momenta only, ψ = ψ(t, p), while
“wavefunctions” with the joint dependence ψ = ψ(t, r, p) are strictly
outside the axioms of quantum mechanics.

In any case, the above studies are afflicted by the catastrophic incon-
sistencies of Theorem 1.5.1 at the purely classical level and, as such, they
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cannot constitute solid classical foundations for new operator theories.
In fact, the lack of invariance at the classical level propagates to the
operator level resulting in a host of operator inconsistencies.

After studying for decades nonconservative systems at the classical
and operator levels (see monographs [48,49,50,51] and papers quoted
therein), the author had no other alternative than that of constructing
a new mathematics specifically conceived for the problem at hand and
only thereafter construct a new classical mechanics under the condition
of resolving the inconsistencies of Theorem 1.5.1 and, in addition, have
a generalized action that is independent from the linear momenta, as a
condition to avoid wavefunctions not treatable with available methods
and catastrophic conflicts with established quantum laws.

Immediately after the original proposal in 1978 the new isomath-
ematics [23], it became possible to propose the construction of had-
ronic mechanics and to identify its fundamental dynamical equations,
the iso-Heisenberg equations reviewed below [38]. Numerous additional
developments then followed. However, with the passing of the years
hadronic mechanics was still missing the invariance necessary to avoid
catastrophic inconsistencies.

By the early 1990s all possible mathematics underlying quantum me-
chanics had been isotopically lifted, including numbers, fields, spaces,
algebras, geometries, etc. Nevertheless, hadronic mechanics was still
missing the invariance.

Detailed study of the problem reveals that it originated in the isotopies
of the linear momentum operator. In turn, the lack of such a basic
realization prevented the finalization of experimental verifications and
applications.

It should be indicated that the search for the invariance of the oper-
ator isotopic formulations requested the search of a various isotopies of
classical Hamiltonian mechanics, as illustrated by Birkhoffian mechanics
[51] and the various mechanics of the first edition of Refs. [54,55].

It was finally in 1996, some 18 years following the original proposal
of 1978 [23], that the lack of invariance was identified where one would
expect it the least, in the absence at of the isotopies of the ordinary
differential calculus.

The achievement of the isodifferential calculus in memoir [14] of 1996
finally permitted the achievement of full maturity in the formulation of
classical and operator isomechanics, with the achievement of the final
form of the classical isomechanics of the preceding section and of the
operator isomechanics reviewed below. The final invariant formulation
of experimental verifications and applications then followed [58–61].
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By looking in retrospective, we can today safely state that the novel
isomathematics as outlined in Section 3.2 and the new Hamilton-Santilli
isomechanics of the preceding section do indeed achieve the indicated
objectives, a consistent and invariant treatment of all possible noncon-
servative forces as a covering of conventional treatments.

In fact, the basic isoaction on isospaces over isofields does not depend
on linear momenta, as expressed by the crucial Eq. (3.3.19c), while
isomathematics permits the invariant formulation of nonconservative in-
teractions, thus resolving the catastrophic inconsistencies of Theorem
1.5.1, and 1.5.2.

Consequently, the novel isomathematics, including most importantly
the isodifferential calculus, and the resulting Hamilton-Santilli isome-
chanics do indeed constitute solid classical foundations for a consistent
and invariant operator treatment of all possible contact, nonlinear, non-
local and nonpotential interactions among extended particles at short
mutual distances.

3.4.2 Naive Isoquantization and its Isodual
Following the laborious construction of the above classical founda-

tions, their operator map is straightforward. Recall that the conven-
tional naive (or, more rigorously, the symplectic) quantization

A → −i × h̄ × Lnψ, (3.4.1)

is solely applicable for first-order action functionals A(t, r) and, as
such, it is not applicable to the isoaction Â(t̂, r̂) = A(t × Ît, r × Îr) =
Â′(t, x, p, . . .) due to its higher order character when formulated on con-
ventional spaces.

Nevertheless, it is easy to show the validity of the following naive
isoquantization, first formulated by Animalu and Santilli [228] with the
conventional differential calculus and by Santilli [14] via the isodifferen-
tial calculus

Â(t̂, r̂) → −î×̂L̂nψ̂(t̂, r̂) = −i × Îr × Lnψ̂(t̂, r̂), (3.4.2)

that, when applied to Eq. (3.3.19), permits the map here expressed for
the case when Îr is a constant (see Ref. [55] for the general case)

∂̂Â
∂̂t̂

+ Ĥ = 0 → −î×̂ ∂̂ψ̂

∂t̂
+ Ĥ×̂ψ̂

= i × Ît ×
∂ψ̂

∂t̂
+ Ĥ × T̂r × ψ̂ = 0, (3.4.3a)
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∂̂Â
∂̂r̂k

α

− p̂kα = 0 → −î×̂ ∂̂ψ̂

∂r̂k
α

− p̂kα×̂ψ̂

= −i × Îiβ
kα × ∂ψ̂

∂riβ
− p̂kα × T̂r × ψ̂ = 0. (3.4.3b)

The above equations illustrate the 18 years of research indicated in
the preceding section to achieve invariance. In fact, their second line,
evidently the form of 1996 prior to the isodifferential calculus, is mani-
festly noninvariant, while the first line does indeed verify all conditions
for invariance. The above occurrence also illustrates the crucial role of
the isodifferential calculus for the studies of this monograph.

The most important implication of the above isoquantization can be
expressed via the following

LEMMA 3.4.1 [14,55]: Hadronic mechanics replaces Planck’s “con-
stant” with the “integro-differential” isounit Îr(t, r, v, ψ, ∂ψ, . . .).

Stated in different terms, in the transition from exterior systems (such
as the atomic structure) to interior systems (such as the structure of
hadrons, nuclei and stars), Planck’s constant is turned into a locally
varying operator.

This should be expected because the quantization of the energy was
conceived and has been established for an electron jumping between
different quantized orbits while moving in vacuum. By comparison, the
very idea of quantized orbits has no scientific sense for the same electron
when in the hyperdense core of a star. The absence of quantized orbits
then causes Planck’s constant to lose its traditional meaning in favor of
a covering quantity.

The reader should be aware that, since the isounit is an operator,
conclusions can be solely drawn from its expectation value, as studied in
the next section.

The isodual isoquantization is straightforward, and can be written

Âd(t̂d, r̂d) → −îd×̂dÎd
rd×̂dL̂ndψ̂d(t̂d, r̂d), (3.4.4)

that, when applied to Eq. (3.3.21), permits the map [14]

∂̂dÂd

∂̂dt̂d
+ Ĥd = 0 → −id ×d Îd

t ×d ∂dψ̂d

∂dtd
+ Ĥ×T̂ d

r ×d ψ̂d = 0, (3.4.5a)

∂̂dÂd

∂̂dr̂dk
α

− p̂d
kα = 0 → −id ×d Îd

r ×d ∂dψ̂d

∂drd
− p̂d ×d T̂ d

r ×d ψ̂d = 0. (3.4.5b)
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The above isodual quantization establishes that the independent chan-
nel of quantization for point-like antiparticles of Chapter 2 also applies
to the case of extended antiparticles.

3.4.3 Iso-Hilbert Spaces and their Isoduals
Hadronic mechanics formulated over the iso-Hilbert space, first intro-

duced by Myung and Santilli [25], Ĥ with isostates |ψ̂(t̂, r̂) >, isoinner
product

< ψ̂|×̂|ψ̂ > ×Î =< ψ̂| × T̂ × |ψ̂ > ×Î ∈ Ĉ, (3.4.6)

and isonormalization
< ψ̂|×̂|ψ̂ >= 1. (3.4.7)

The isoexpectation values of an observable Â are given by

< ψ̂|×̂Â×̂|ψ̂ >

< ψ̂|×̂|ψ̂ >
∈ Ĉ. (3.4.8)

Consequently, the isoexpectation values of the isounit recover Planck’s
constant,

< ψ̂|×̂Î×̂|ψ̂ >

< ψ̂|×̂|ψ̂ >
=

< ψ̂|×̂|ψ̂ >

< ψ̂|×̂|ψ̂ >
= 1 = h̄ (3.4.9)

and the isoeigenvalue of the isounit

Î ×̂ |ψ̂ >= 1 × |ψ̂ > . (3.4.10)

Since the quantities that can be measured are the isoexpectation values,
rather than the iso-operators per se, we see from the above property
that, despite the generalization of Planck’s constant into an operator
(Lemma 3.4.1), the sole observable quantity remains h̄.

An important property is given by the fact that, when an operator
A is Hermitean on H over C, mechanics, it is also iso-Hermitean of Ĥ
over Ĉ,

< ψ̂|×̂(Â×̂|ψ̂ >) ≡ (< ψ̂|×̂Â†̂)×̂|ψ̂ > . (3.4.11)

Consequently, all quantities that are observable for quantum mechanics
remain observable for hadronic mechanics, and, from here on, we shall
drop the “hat” on the sign of Hermiticity,

Â†̂ ≡ Â†. (3.4.12)

The theory of isodual iso-Hilbert spaces Hd can be constructed via
a simple isoduality of the preceding theory. For instance, the isodual
states on Hd are given by

|ψ̂ >d= −|ψ̂ >†= − < ψ̂|, (3.4.13)
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with isodual inner product

< ψ̂|×̂|ψ̂ >d ×Îd =< ψ̂|×̂|ψ̂ > ×Îd ∈ Ĉd, (3.4.14)

isodual isoexpectation values of an isodual observable Âd

< ψ̂|×̂Â×̂|ψ̂ >d

< ψ̂|×̂|ψ̂ >d
∈ Ĉd, (3.4.15)

and isodual isorenormalization and isonormalization

< ψ̂|×̂|ψ̂ >d= −1, (3.4.16)

where the isodual quotient is used. Additional aspects of the isodual
isotheory can be readily derived by the interested reader.

3.4.4 Isolinearity, Isolocality and Isounitarity
An important property of the theory of iso-Hilbert spaces is that, by

conception and construction, the said theory is nonlinear, nonlocal and
nonunitary when formulated on conventional spaces over conventional
fields. Nevertheless, the theory reconstructs linearity, locality and uni-
tarity when formulated on isospaces over isofields.

In fact, it is easy to see that the theory of iso-Hilbert spaces is isolinear
because it verifies all needed axioms on H over Ĉ, such as

Â×̂(n̂×̂|ψ̂ > +m̂×̂|ψ̂ >) = n̂×̂Â×̂|ψ̂ > +m̂×̂Â×̂|ψ̂ >), (3.4.17a)

(n̂×̂Â + m̂×̂Â)×̂|ψ̂ >= n̂×̂Â×̂|ψ̂ > +m̂×̂Â×̂|ψ̂ >), (3.4.17b)

(Â + B̂)×̂|ψ̂ >= Â + (B̂)×̂|ψ̂ >). (3.4.17c)

Similarly, isolocality is given by the property that the theory is every-
where local except at the isounit since, by construction, all nonlocal-
integral interactions are embedded in the isounit.

Finally, the theory is isounitary in the sense that the basic transfor-
mations are given by

Ĥ×̂U † = Û †×̂Û = Î . (3.4.18)

The isotopies identify the following new isoinvariance of Hilbert’s in-
ner product (here expressed for the case when the isotopic element does
not depend on the integration variable)

< ψ| × |ψ > ×I ≡< ψ| × T̂ × |ψ > ×Î , (3.4.19)
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which invariance explains why the isotopies of Hilbert spaces remained
un-discovered since Hilbert’s time, although its discovery required the
prior generalization of numbers to those with arbitrary units.

Despite its simplicity, the above isoinvariance has the important im-
plication of permitting a structural generalization quantum mechanics.
For more details, interested readers may consult Refs. [31,55].

3.4.5 Iso-Schrödinger and Iso-Heisenberg
Equations and their Isoduals

The new mechanics is characterized by the iso-Schrödinger equations
first derived in Refs. [25,179] with ordinary mathematics and first for-
mulated via the isodifferential calculus in Ref. [14]

î×̂ ∂̂

∂̂t̂
|ψ̂ >= Ĥ×̂|ψ̂ >

= Ĥ(t̂, r̂, p̂)× T̂ (r̂, p̂, ψ̂, ∂̂ψ̂, . . . .)×|ψ̂ >= Ê×̂|ψ̂ >= E ×|ψ̂ >, (3.4.20)

with isomomentum equations first derived in Ref. [14]

p̂k×̂|ψ̂ >= −î×̂∂̂k|ψ̂ >= −i × Îi
k × ∂i|ψ̂ >, (3.4.21)

and property
Î×̂|ψ̂ >= |ψ̂ >, (3.4.22)

confirming that Î is indeed the isounit of the theory.
The iso-Heisenberg equations, first derived in Ref. [38] via conven-

tional mathematics and first formulated via the isodifferential calculus
in Ref. [14], can be written

î×̂ d̂Â

d̂t̂
= [Â,̂Ĥ] = Â×̂Ĥ−̂Ĥ×̂Â

= Â× T̂ (t̂, r̂, p̂, ψ̂, ∂̂ψ̂, . . .)× Ĥ − Ĥ × T̂ (t̂, r̂, p̂, ψ̂, ∂̂ψ̂, . . .)× Â, (3.4.23)

and isocanonical commutation rules

[r̂i ,̂p̂j ] = î×̂δ̂i
j = i × δi

j × Î , [r̂i, r̂j ] = [p̂i, p̂j ] = 0. (3.4.24)

A few comments are now in order. Firstly, we should indicate that
the isotopic branch of hadronic mechanics preserves indeed conventional
quantum laws. For instance, Heisenberg’s uncertainty principle is given
by

∆r∆p ≥ 1
2
× [r̂̂,̂] =

1
2
, (3.4.25)
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and coincides with the conventional expression. The same holds for the
other uncertainty laws.

Similarly, the preservation of Pauli’s exclusion principle can be de-
rived from the isomorphism of the isotopic and conventional SU(2)-spin
symmetry, as well as from the preservation of the conventional spin eigen-
values.

Interested reader can then prove the preservation of other quantum
laws.

It is also easy to prove that all Hermitean quantities that are conserved
for quantum mechanics remain conserved under isotopies, because the
symmetries of Schrödinger’s and iso-Schrödinger’s equations are isomor-
phic and their generators coincide.

The above results implies the existence of a new notion of bound state
of particles as the operator image of closed non-Hamiltonian systems of
Section 3.1, namely, a bound state admitting internal Hamiltonian as
well as nonlinear, nonlocal and nonpotential interactions while preserv-
ing conventional total conservation laws.

Note that these are precisely the characteristics needed for quanti-
tative studies of electron valence bonds, as well as, more generally, all
bound states of particles at short mutual distances.

In view of the lack of general commutativity of Ĥ and T̂ , the iso-
Schrödinger and iso-Heisenberg’s equations have a nonunitary time evo-
lution when formulated on conventional Hilbert spaces over conventional
fields,

|ψ̂(t) >= (ei×H×T̂×t) × |ψ̂(0) >= U(t) × |ψ̂(0) >, (3.4.26a)

U × U † �= I. (3.4.26b)

However, all nonunitary transforms admit an identical reformulation
as isounitary transform on iso-Hilbert spaces,

U = Û × T̂ 1/2, (3.4.27a)

Û×̂Û † = Û †×̂Û = Î . (3.4.27b)

Therefore, as indicated in Section 3.4.2, hadronic mechanics reconstructs
unitary on iso-Hilbert spaces over isofields.

This reconstruction is a fundamental property since it resolved the
catastrophic inconsistencies of Theorem 1.5.2. The above property is also
necessary to exit from the class of equivalence of quantum mechanics,
thus illustrating the nontriviality of the lifting.

Another important property is that nonlinear Schrödinger’s equations
on H over C,

H(x, p, ψ, . . .) × |ψ >= E × |ψ >, (3.4.28)
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cannot represent composite systems because of the violation of the su-
perposition principle, while hadronic mechanics resolves this limitation.

In fact, all nonlinear Schrödinger’s equations can be identically rewrit-
ten in the isotopic form with the embedding of all nonlinear terms in
the isotopic element,

H(x, p, ψ)×|ψ >= H ′(x, p)×T̂ (x, p, ψ, . . .)×|ψ >= E×|ψ >, (3.4.29a)

H ′ = H × Î , (3.4.29b)
under which we recover the isolinearity of Section 3.4.2.

It is easy to see that the superposition principle does hold for the
isotopic reformulation (3.4.29), thus permitting the study of nonlinear
composite systems, and this is another illustration of the necessity of
isomathematics for the interactions considered in this monograph.

It is easy to prove that the isoexpectation values coincide with the
isoeigenvalues, as in the conventional case.

The above properties establish that the isotopic branch of hadronic
mechanics coincides with quantum mechanics at the abstract, realization-
free level. This feature is important to assure the axiomatic consistency
of hadronic mechanics, as well as to clarify the fact that hadronic me-
chanics is not a new theory, but merely a novel realization of the abstract
axioms of quantum mechanics.

The isodual isotopic branch of hadronic mechanics for the treatment
of extended antiparticles is given by the image of the preceding theory
under the isodual map. We have in this way the isodual Schrödinger
equation

< ψ̂| ∂̂d

∂̂dt̂
×̂d

îd =< ψ̂|×̂d
Ĥd, (3.4.30)

the isodual iso-Heisenberg equation

d̂dÂ

d̂dt̂d
×̂d

îd = [Ĥd ,̂Âd]. (3.4.31)

and the isodual isolinear momentum

< ψ̂|×̂dp̂d = − < ψ̂| ∂̂d

∂̂d r̂d
×̂d

îd (3.4.32)

For additional intriguing features of hadronic mechanics, interested
readers can inspect memoir [31] and monograph [55].

3.4.6 Simple Construction of Isotheories
A simple method has been identified in Refs. [14,31] for the construc-

tion of the entire isomathematics and nonrelativistic hadronic mechanics.
It consists in:
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(i) representing all conventional interactions with a Hamiltonian H

and all non-Hamiltonian interactions and effects with the isounit Î;
(ii) identifying the latter interactions with a nonunitary transform

U × U † = Î �= I (3.4.33)

and
(iii) subjecting the totality of conventional mathematical, physical

quantities and all their operations to the above nonunitary transform,
resulting in the expressions

I → Î = U × I × U † = 1/T̂ , (3.4.34a)

a → â = U × a × U † = a × Î , (3.4.34b)

a × b → U × (a × b) × U †

= (U × a × U †) × (U × U †)−1 × (U × b × U †) = â×̂b̂, (3.4.34c)

eA → U × eA × U † = Î × eT̂×Â = (eÂ×T̂ ) × Î , (3.4.34d)

[Xi, Xj ] → U × [XiXj ] × U †

= [X̂î,X̂j ] = U × (Ck
oj × Xk) × U † = Ĉk

ij×̂X̂k

= Ck
ij × X̂k, (3.4.34e)

< ψ| × |ψ >→ U× < ψ| × |ψ > ×U †

=< ψ| × U † × (U × U †)−1 × U × |ψ > ×(U × U †)

=< ψ̂|×̂|ψ̂ > ×Î , (3.4.34f)

H×|ψ >→ U ×(H×|ψ >) = (U ×H×U †)×(U ×U †)−1×(U ×|ψ >) =

= Ĥ×̂|ψ̂ >, etc. (3.4.34g)

The above rule permits the explicit construction of any desired appli-
cation of hadronic mechanics.

3.4.7 Invariance of Isotopic Theories
It is easy to see that the application of an additional nonunitary trans-

form to expressions (3.4.34) implies the lack of invariance with conse-
quential activation of the catastrophic inconsistencies of Theorem 1.5.2.
As an example, given a new nonunitary transform

W × W † �= I, (3.4.35)
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we have the noninvariance of the isounit

Î = U × I × U † → Î ′ = W × Î × W † �= Î , (3.4.36)

and the same holds for all remaining isotopies.
However, the above noninvariance is based on the use of conventional

nonunitary transforms for isotheories, thus being itself inconsistent, since
isotheories must be treated with isomathematics.

The use of isounitary, rather than unitary, transforms then readily
achieves the needed invariance, as first reached in Refs. [14,31].

In fact, by reformulating any given nonunitary transform in the iden-
tical isounitary form,

W × W † = Î , W = Ŵ × T̂ 1/2, (3.4.37a)

W × W † = Ŵ ×̂Ŵ † = Ŵ †×̂Ŵ = Î , (3.4.37b)

we have the following isoinvariance laws

Î → Î ′ = Ŵ ×̂Î×̂Ŵ † = Î , (3.4.38a)

Â×̂B̂ → Ŵ ×̂(Â×̂B̂)×̂Ŵ † =

= (Ŵ × T̂ × A × T̂ × Ŵ †) × (T̂ × Ŵ †)−1 × T̂ × (Ŵ×

×T̂ )−1 × (Ŵ × T̂ × B̂ × T̂ × Ŵ †) =

= Â′ × (Ŵ † × T̂ × Ŵ )−1 × B̂′ = Â′ × T̂ × B̂′ = Â′×̂B̂′, etc. (3.4.38b)

Note that the invariance is ensured by the numerically invariant values of
the isounit Î and of the isotopic element T̂ under nonunitary-isounitary
transforms, namely,

Î → Î ′ = Î , T̂ → T̂ ′ = T̂ , ×̂ → ×̂′ = ×̂. (3.4.39)

The resolution of the catastrophic inconsistencies of Theorem 1.5.2 is
then consequential.

The achievement of invariant for classical noncanonical formulations
is equivalent to the preceding nonunitary one and its explicit form is left
to the interested reader for brevity.

3.5 ISORELATIVITY AND ITS ISODUAL
3.5.1 Introduction

Special relativity is generally presented in contemporary academia as
providing a descriptions of all infinitely possible conditions existing in
the universe.
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The scientific reality is somewhat different than this academic pos-
ture. In fact, in Section 1.1 we have shown that special relativity cannot
provide a consistent classical description of point antiparticles moving
in vacuum because leading to inconsistent quantum images consisting of
particles (rather than charge conjugated antiparticles) with the wrong
sign of the charge, besides having no distinction for bodies with null
total charge.

In Section 1.3 we have established that special relativity cannot be ex-
actly valid for extended particles and antiparticles moving within phys-
ical media because of an axiomatic inability to represent extended and
nonspherical shapes, an incompatibility with the deformation theory,
the lack of existence of a consistent reduction of classical nonconser-
vative forces to potential abstractions at the particle level, and other
reasons.

In Section 1.3 we have also established that special relativity cannot
describe irreversible processes for both matter and antimatter due to
unavoidable inconsistencies caused by its notoriously reversible axioms
and other reasons.

In Section 1.3 we have also establioshed that the complexity of biolog-
ical systems is immensely beyond the rather limited descriptive capacity
of special relativity.4

In summary, special relativity can be expected to be exactly valid
for the conditions of its original conception and construction, namely,
for point-particles and electromagnetic waves propagating in vacuum.5

All academic claims of exact validity of special relativity for physical
conditions beyond those of its original conception are nonscientific.

Particularly damaging the orderly development of scientific knowledge
is the widespread statement of the “universal constancy of the speed of
light” because contrary to well known experimental evidence that the
speed of light is a local variable depending on the medium in which it
propagates, with well known expression

c = c◦/n, (3.5.1)

where the familiar index of refraction is a function of a variety of char-
acteristics of the medium, including time t, coordinates r, density µ,
temperature τ , frequency ω, etc., n = n(t, r, µ, τ, ω, . . .).

In particular, the speed of light is generally smaller than that in vac-
uum when propagating within media of low density, such as atmospheres
or liquids,

c � c◦, n � 1, (3.5.2)

while the speed of light is generally bigger than that in vacuum when
propagating within special guides, or within media of very high density,
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such as the interior of stars and quasars,

c � c◦, n � 1 (3.5.3)

In fact, academic claims of recovering the speed of light in water
via photons scattering among the water molecules are afflicted by the
following inconsistencies:

1) The said claims have no scientific value for the case of electromag-
netic waves with large wavelength, evidently due to the impossibility
of a meaningful reduction to photons of wavelength of the order of one
meter or so;

2) The said claims cannot recover numerically the reduction of the
speed of light in vacuum by about one third due to the notorious low
value of the cross section for Compton scattering even when the reduc-
tion to photon has scientific sense; and

3) The said claims are vacuous for experimentally established speeds
bigger than that of light in vacuum.

It is appropriate here to note that academia continues to ignore the
fact that German experimentalists have transmitted an entire Beethoven
symphony at speeds bigger than that of light in vacuum via electromag-
netic waves propagating within special guides (see Section 1.3).

Assuming that via some unknown manipulation special relativity is
shown to represent the propagation of light within physical media, such
a representation would activate the catastrophic inconsistencies of The-
orem 1.5.1.

This is due to the fact that the transition from the speed of light in vac-
uum to that within physical media requires a noncanonical or nonunitary
transform.

This point can be best illustrated by using the metric originally pro-
posed by Minkowski, which can be written

η = Diag.(1, 1, 1,−c2
◦). (3.5.4)

Then, the transition from c◦ to c = c◦/n in the metric can only be
achieved via a noncanonical or nonunitary transform

η = Diag.(1, 1, 1,−c2
◦) → η̂

= Diag.(1, 1, 1,−c◦/n2) = U × η × U †, (3.5.5a)

U × U † = Diag.(1, 1, 1, 1/n2) �= I. (3.5.5b)

We should finally mention that the continued insistence in the uni-
versal validity of special relativity for whatever condition exist in the
universe despite the publications of the above limitations in refereed
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journals creates serious problems of scientific ethics and accountability
because the said insistence causes the impossibility of predicting much
needed new clean energies and fuels [58].

In fact, the latter crucially depend on the admission of the locally
varying character of the speed of light and the consequential need of
initiating the laborious process of constructing a suitable covering rela-
tivity.

In view of the above societal implications, the studies reviewed in this
section have been conducted without any consideration of academic in-
terests, and have been inspired by the desire of conducting unobstructed
research.

An invariant resolution of the limitations of special relativity for closed
and reversible systems of extended and deformable particules under
Hamiltonian and non-Hamiltonian interactions has been provided by the
lifting of special relativity into a new formulation today known as San-
tilli isorelativity, or isorelativity for short, where: the prefix “iso” stands
to indicate that relativity principles apply on isospacetime over isofields;
and the characterization of “special” or “general” is inapplicable be-
cause, as shown below, isorelativity achieves a geometric unification of
special and general relativities.

Closed and irreversible systems of extended and deformable particles
with Hamiltonian and non-Hamiltonian interactions are also character-
ized by isorelativity under the condition that the isounit is Hermitean
and nowhere singular, but explicitly dependent on time, Î = Î(t, . . .) =
Î†(t, . . .) �= Î(−t, . . .).

The description of the broader open irreversible systems requires San-
tilli’s genorelativity with a Lie-admissible structure studied in the next
section.

Isorelativity was first proposed by R. M. Santilli in Ref. [26] of 1983
via the first invariant formulation of iso-Minkowskian spaces and related
iso-Lorentz symmetry.

The studies were then continued in: Ref. [11] of 1985 with the first
isotopies of the rotational symmetry; Ref. [28] of 1993 with the first
isotopies of the SU(2)-spin symmetry; Ref. [29] of 1993) with the first
isotopies of the Poincaré symmetry; Ref. [33] of 1998 with the first
isotopies of the SU(2)-isospin symmetries, Bell’s inequalities and local
realism; and Ref. [30] of 1996 with the first isotopies of the spinorial
covering of the Poincaré symmetry.

The studies were then completed with memoir [15] of 1998 present-
ing a comprehensive formulation of the iso-Minkowskian geometry and
its capability to unify the Minkowskian and Riemannian geometries, in-
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cluding its formulation via the mathematics of the Riemannian geometry
(such iso-Christoffel’s symbols, isocovariant derivatives, etc.).

Numerous independent studies on isorelativity are available in the lit-
erature, one can inspect in this respect Refs. [63–68] and papers quoted
therein; Aringazin’s proof [192] of the direct universality of the Lorentz-
Poincaré-Santilli isosymmetry for all infinitely possible spacetimes with
signature (+, +, +, −); Mignani’s exact representation [118] of the large
difference in cosmological redshifts between quasars and galaxies when
physically connected; the exact representation of the anomalous behav-
ior of the meanlives of unstable particles with speed by Cardone et al.
[110,111]; the exact representation of the experimental data on the Bose-
Einstein correlation by Santilli [112] and Cardone and Mignani [113]; the
invariant and exact validity of the iso-Minkowskian geometry within the
hyperdense medium in the interior of hadrons by Arestov et al. [120];
the first known exact representation of molecular features by Santilli and
Shillady [125,126]; and numerous other contributions.

Evidently we cannot review isorelativity in the necessary details to
avoid a prohibitive length. Nevertheless, to achieve minimal self-suffi-
ciency of this presentation, it is important to outline at least its main
structural lines (see monograph [55] for detailed studies).

3.5.2 Iso-Minkowskian Spaces and their Isoduals
The central notion of isorelativity is the lifting of the basic unit of the

Minkowski space and of the Poincaré symmetry, I = Diag.(1, 1, 1, 1),
into a 4 × 4-dimensional, nowhere singular and positive-definite matrix
Î = Î4×4 with an unrestricted functional dependence on local spacetime
coordinates x, speeds v, accelerations a, frequencies ω, wavefunctions ψ,
their derivative ∂ψ, and/or any other needed variable,

I = Diag.(1, 1, 1) → Î(x, v, a, ω, ψ, ∂ψ, . . .)

= 1/T̂ (x, v, ω, ψ, ∂ψ, . . .) > 0. (3.5.6)

Isorelativity can then be constructed via the method of Section 3.4.6,
namely, by assuming that the basic noncanonical or nonunitary trans-
form coincides with the above isounit

U × U † = Î = Diag.(g11, g22, g33, g44),

gµµ = gµµ(x, v, ω, ψ, ∂ψ, . . .) > 0, µ = 1, 2, 3, 4, (3.5.7)

and then subjecting the totality of quantities and their operation of spe-
cial relativity to the above transform.

This construction is, however, selected here only for simplicity in prag-
matic applications, since the rigorous approach is the construction of
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isorelativity from its abstract axioms, a task we have to leave to inter-
ested readers for brevity (see the original derivations [55]).

This is due to the fact that the former approach evidently preserves
the original eigenvalue spectra and does not allow the identification of
anomalous eigenvalues emerging from the second approach, such as those
of the SU(2) and SU(3) isosymmetries [33].

Let M(x, η, R) be the Minkowski space with local coordinates x =
(xµ), metric η = Diag.(1, 1, 1,−1) and invariant

x2 = (xµ × ηµν × xν) × I ∈ R. (3.5.8)

The fundamental space of isorelativity is the Minkowski-Santilli isospace
[26,15] and related topology [14,226,227], M̂(x̂, η̂, R̂) characterized by the
liftings

I = Diag.(1, 1, 1, 1) → U × I × U † = Î = 1/T̂ , (3.5.9a)

η = Diag.(1, 1, 1,−1) × I → (U †−1 × η × U−1) × Î = η̂

= T̂ × η = Diag.(g11, g22, g33,−g44) × Î , (3.5.9b)

with consequential isotopy of the basic invariant

x2 = (xµ × ηµν × xν) × I ∈ R

→ U × x2 × U † = x̂2̂ = (x̂µ×̂m̂µν × xν) × I ∈ R, (3.5.10)

whose projection in conventional spacetime can be written

x̂2̂ = [xµ × η̂µν(x, v, a, ω, ψ, ∂ψ, . . .) × xν ] × Î , (3.5.11)

The nontriviality of the above lifting is illustrated by the following:

THEOREM 3.5.1: The Minkowski-Santilli isospaces are directly uni-
versal, in the sense of admitting as particular cases all possible spaces
with the same signature (+, +, +,−), such as the Minkowskian, Rie-
mannian, Finslerian and other spaces (universality), directly in terms
of the isometric within fixed local variables (direct universality).

Therefore, the correct formulation of the the Minkowski-Santilli iso-
geometry requires the isotopy of all tools of the Riemannian geometry,
such as the iso-Christoffel symbols, isocovariant derivative, etc. (see for
brevity Ref. [15]).

Despite that, one should keep in mind that, in view of the positive-
definiteness of the isounit [34,79], the Minkowski-Santilli isogeometry
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coincides at the abstract level with the conventional Minkowski geom-
etry, thus having a null isocurvature (because of the basic mechanism
of deforming the metric η by the amount T̂ (x, . . .) while deforming the
basic unit of the inverse amount Î = 1/T̂ ).

The geometric unification of the Minkowskian and Riemannian geome-
tries achieved by the Minkowski-Santilli isogeometry constitute the ev-
ident geometric foundation for the unification of special and general
relativities studied below.

It should be also noted that, following the publication in 1983 of
Ref. [26], numerous papers on “deformed Minkowski spaces” have ap-
peared in the physical and mathematical literature (generally without a
quotation of their origination in Ref. [26]).

These “deformations” are ignored in these studies because they are
formulated via conventional mathematics and, consequently, they all
suffer of the catastrophic inconsistencies of Theorem 1.4.1.

By comparison, isospaces are formulated via isomathematics and,
therefore, they resolve the inconsistencies of Theorem 1.5.1, as shown
in Section 3.5.9. This illustrates again the necessity of lifting the basic
unit and related field jointly with all remaining conventional mathemat-
ical methods.

3.5.3 Poincaré-Santilli Isosymmetry and its
Isodual

Let P (3.1) be the conventional Poincaré symmetry with the well
known ten generators Jµν , Pµ and related commutation rules hereon as-
sumed to be known.

The second basic tool of isorelativity is the Poincaré-Santilli isosym-
metry P̂ (3.1) studied in detail in monograph [55] that can be constructed
via the isotheory of Section 3.2, resulting in the isocommutation rules
[26,29]

[Jµν ,̂Jαβ ] = i×(η̂να×Jβµ−η̂να×Jβν−η̂nuβ×Jαµ+η̂µβ×Jαν), (3.5.12a)

[Jµν ,̂Pα] = i × (η̂µα × Pν − η̂να × Pµ), (3.5.12b)

[Pµ ,̂P ν] = 0, (3.5.12c)

where we have followed the general rule of the Lie-Santilli isotheory
according to which isotopies leave observables unchanged (since Her-
miticity coincides with iso-Hermiticity) and merely change the opera-
tions among them.

The iso-Casimir invariants of P̂ (3.1) are given by

P 2̂ = Pµ×̂Pµ = Pµ× η̂µν ×P ν = Pk×gkk×Pk−p4×g44×P4, (3.5.13a)
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W 2̂ = Wµ×̂Wµ, Wµ = ε̂µαβρ×̂Jαβ×̂P ρ. (3.5.13b)

and they are at the foundation of classical and operator isorelativistic
kinematics.

Since Î > 0, it is easy to prove that the Poincaré-Santilli isosymmetry
is isomorphic to the conventional symmetry. It then follows that the
isotopies increase dramatically the arena of applicability of the Poincaré
symmetry, from the sole Minkowskian spacetime to all infinitely possible
spacetimes.

Next, the reader should be aware that the Poincaré-Santilli isosym-
metry characterizes “isoparticles” (and not particles) via its irreducible
isorepresentations.

A mere inspection of the isounit shows that the Poincaré-Santilli
isosymmetry characterizes actual nonspherical and deformable shapes
as well as internal densities and the most general possible nonlinear,
nonlocal and nonpotential interactions.

Since any interaction implies a renormalization of physical character-
istics, it is evident that the transition from particles to isoparticles, that
is, from motion in vacuum to motion within physical media, causes an
alteration (called isorenormalization), in general, of all intrinsic char-
acteristics, such as rest energy, magnetic moment, charge, etc.

As we shall see later on, the said isorenormalization has permitted
the first exact numerical representation of nuclear magnetic moments,
molecular binding energies and other data whose exact representation
resulted to be impossible for nonrelativistic and relativistic quantum
mechanics despite all possible corrections conducted over 75 years of
attempts.

The explicit form of the Poincaré-Santilli isotransforms leaving invari-
ant line element (3.5.11) can be easily constructed via the Lie-Santilli
isotheory and are given:

(1) The isorotations [11]

Ô(3) : x̂′ = �̂(θ̂)×̂x̂, θ̂ = θ × Îθ ∈ R̂θ, (3.5.14)

that, for isotransforms in the (1, 2)-isoplane, are given by

x1′ = x1 × cos[θ× (g11 × g22)1/2]−x2 × g22 × g−1
11 × sin[θ× (g11 × g22)1/2],

(3.5.15a)
x2′ = x1 × g11 × g−1

22 × sin[θ× (g11 × g22)1/2]+x2 × cos[θ× (g11 × g22)1/2].
(3.5.15b)

For the general expression in three dimensions interested reader can
inspect Ref. [55] for brevity.
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Note that, since Ô(3) is isomorphic to O(3), Ref. [11] proved, contrary
to a popular belief throughout the 20-th century, that

LEMMA 3.5.1: The rotational symmetry remains exact for all possible
signature-preserving (+, +, +) deformations of the sphere.

The rotational symmetry was believed to be “broken” for ellipsoidal
and other deformations of the sphere merely due to insufficient math-
ematics for the case considered because, when the appropriate mathe-
matics is used, the rotational symmetry returns to be exact, and the
same holds for virtually all “broken” symmetries.

The above reconstruction of the exact rotational symmetry can be geo-
metrically visualized by the fact that all possible signature-preserving de-
formations of the sphere are perfect spheres in isospace called isosphere.

This is due to the fact that ellipsoidal deformations of the semiaxes
of the perfect sphere are compensated on isospaces over isofields by the
inverse deformation of the related unit

Radius 1k → 1/n2
k, (3.5.16a)

Unit 1k → n2
k. (3.5.16b)

We recover in this way the perfect sphere on isospaces over isofields

r̂2̂ = r̂2
1 + r̂2

2 + r̂2
3 (3.5.17)

with exact Ô(3) symmetry, while its projection on the conventional
Euclidean space is the ellipsoid

r2
1/n2

1 + r2
2/n2

2 + r2
3/n2

3, (3.5.18)

with broken O(3) symmetry.

(2) The Lorentz-Santilli isotransforms [26,29]

Ô(3.1) : x̂′ = Λ̂(v̂, . . .)×̂x̂, v̂ = v × Îv ∈ R̂v, (3.5.19)

that, for isotransforms in the (3,4)-isoplane, can be written

x1′ = x1, (3.5.20a)

x2′ = x2, (3.5.20b)

x3′ = x3 × cosh[v × (g33 × g44)1/2]

−x4 × g44 × (g33 × g44)−1/2 × sinh[v × (g33 × g44)1/2]
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= γ̂ × (x3 − β × x4), (3.5.20c)

x4′ = −x3 × g33 × (g33 × g44)−1/2 × sinh[v(g33 × g44)1/2]

+x4 × cosh[v × (g33 × g44)1/2]

= γ̂ × (x4 − β̂ × x3), (3.5.20b)

where
β̂ =

vk × gkk × vk

co × g44 × co
, γ̂ =

1
(1 − β̂2)1/2

. (3.5.21)

For the general expression interested readers can inspect Ref. [55].
Contrary to another popular belief throughout the 20-th century,

Ref. [26] proved that

LEMMA 3.5.2: The Lorentz symmetry remains exact for all possible
signature preserving (+, +, +,−) deformations of the Minkowski space.

Again, the symmetry remains exact under the use of the appropriate
mathematics.

The above reconstruction of the exact Lorentz symmetry can be geo-
metrically visualized by noting that the light cone

x2
2 + x2

3 − c2
o × t2 = 0, (3.5.22)

can only be formulated in vacuum, while within physical media we have
the light isocone

r2
2

n2
2

+
r2
3

n2
3

− c2
o × t2

n2(ω, . . .)
= 0. (3.5.23)

that, when formulated on isospaces over isofield, it is also a perfect cone,
as it is the case for the isosphere. This property then explains how the
Lorentz symmetry is reconstructed as exact according to Lemma 3.5.2
or, equivalently, that Ô(3.1) is isomorphic to O(3.1).

(3) The isotranslations [29]

T̂ (4) : x̂′ = T̂ (â, . . .)̂] × x = x̂ + Â(â, x, . . .), â = a × Îa ∈ R̂a, (3.5.24)

that can be written
xµ′

= xµ + Aµ(a, . . .), (3.5.25a)

Aµ = aµ(gµµ + aα × [g,iµ ,̂Pα]/1! + . . .), (3.5.25b)

and there is no summation on the µ indices.
We reach in this way the following important result:
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LEMMA 3.5.3 [55]: Isorelativity permits an axiomatically correct ex-
tention of relativity laws to noninertial frames.

In fact, noninertial frames are transformed into a forms that are in-
ertial on isospaces over isofields, called isoinertial, as established by the
fact that isotranslations (3.5.25) are manifestly nonlinear and, therefore,
noninertial on conventional spaces while they are isolinar on isospaces,
according to a process similar to the reconstruction of locality, lineary
and canonicity.

The isoinertial character of the frames can also be seem from the
isocommutativity of the linear momenta, Eq. (3.5.12c), while such a
commutativity is generally lost in the projection of Eq. (3.5.12c) on
ordinary spaces over ordinary fields, thus confirming the lifting of con-
ventional noninertial frames into an isoinertial form.

This property illustrates again the origin of the name “isorelativity”
to indicate that conventional relativity axioms are solely applicable in
isospacetime.

(4) The novel isotopic transformations [29]

Î(1) : x̂′ = ŵ−1̂×̂ x̂ = w−1 × x̂, Î ′ = w−2 × Î (3.5.26)

where w is a constant,

Î → Î ′ = ŵ−2×̂Î = w−2 × Î = 1/T̂ ′, (3.5.27a)

x̂2̂ = (xµ × η̂µν × xν) × Î ≡ x̂′2̂

= [xµ × (w2 × η̂µν) × xν ] × (w2 × Î), (3.5.27b)

Contrary to another popular belief throughout the 20-th century, we
therefore have the following

THEOREM 3.5.2: The Poincaré-Santilli isosymmetry, hereon de-
noted with

P̂ (3.1) = Ô(3.1)×̂T̂ (4)×̂Î(1), (3.5.28)

and, therefore, the conventional Poincaré symmetry, are eleven dimen-
sional.

The increase of dimensionality of the fundamental spacetime sym-
metry as, predictably, far reaching implications, including a basically
novel and axiomatically consistent grand unification of electroweak and
gravitational interactions studied in Chapter 5.
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The simplest possible realization of the above formalism for isorela-
tivistic kinematics can be outlined as follows. The first application of
isorelativity is that of providing an invariant description of locally vary-
ing speeds of light propagating within physical media. For this purpose
a realization of isorelativity requires the knowledge of the density of the
medium in which motion occurs.

The simplest possible realization of the fourth component of the iso-
metric is then given by the function

g44 = n2
4(x, ω, . . .), (3.5.29)

normalized to the value n4 = 1 for the vacuum (note that the density
of the medium in which motion occurs cannot be described by special
relativity). The above representation then follows with invariance under
P̂ (3.1).

In this case the quantities nk, k = 1, 2, 3, represent the inhomogeneity
and anisotropy of the medium considered. For instance, if the medium is
homogeneous and isotropic (such as water), all metric elements coincide,
in which case

Î = Diag.(g11, g22, g33, g44) = n2
4 × Diag.(1, 1, 1, 1), (3.5.30a)

x̂2̂ =
x2

n2
4

× n2
4 × I ≡ x2, (3.5.30b)

thus confirming that isotopies are hidden in the Minkowskian axioms,
and this may be a reason why they were not been discovered until re-
cently.

Next, isorelativity has been constricted for the invariant description
of systems of extended, nonspherical and deformable particles under
Hamiltonian and non-Hamiltonian interactions.

Practical applications then require the knowledge of the actual shape
of the particles considered, here assumed for simplicity as being spheroid-
al ellipsoids with semiaxes n2

1, n
2
2, n

2
3.

Note that the minimum number of constituents of a closed non-Ha-
miltonian system is two. In this case we have shapes represented with
nαk, α = 1, 2, , . . . , n.

Specific applications finally require the identification of the nonlocal
interactions, e.g., whether occurring on an extended surface or volume.
As an illustration, two spinning particles denoted 1 and 2 in condition
of deep mutual penetration and overlapping of their wavepackets (as it
is the case for valence bonds), can be described by the following Hamil-
tonian and total isounit

H =
p1 × p1

2 × m1
+

p2 × p2

2 × m2
+ V (r), (3.5.31a)
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ÎTot = Diag.(n2
11, n

2
12, n

2
13, n

2
14) × Diag.(n2

21, n
2
22, n

2
23, n

2
24)

×eN×(ψ̂1/ψ1+ψ̂2/ψ2)×
∫

ψ̂1↑(r)†×ψ̂2↓(r)×dr3

, (3.5.31b)

where N is a positive constant.
The above realization of the isounit has permitted the first known

invariant and numerically exact representation of the binding energy
and other features of the hydrogen, water and other molecules [59] for
which a historical 2% has been missing for about one century. The
above isounit has also been instrumental for a number of additional
data on two-body systems whose representation had been impossible
with quantum mechanics, such as the origin of the spin 1 of the ground
state of the deuteron that, according to quantum axioms, should be zero.

Note in isounit (3.5.31) the nonlinearity in the wave functions, the
nonlocal-integral character and the impossibility of representing any of
the above features with a Hamiltonian.

From the above examples interested readers can then represent any
other closed non-Hamiltonian systems.

3.5.4 Isorelativity and its Isodual
The third important part of the new isorelativity is given by the fol-

lowing isotopies of conventional relativistic axioms that, for the case of
motion along the third axis, can be written [29] as follows:

ISOAXIOM I. The projection in our spacetime of the maximal causal
invariant speed is given by:

VMax = c◦ ×
g
1/2
44

g
1/2
33

= c◦
n3

n4
= c × n3. (3.5.32)

This isoaxiom resolves the inconsistencies of special relativity recalled
earlier for particles and electromagnetic waves propagating within phys-
ical media such as water.

In fact, water is homogeneous and isotropic, thus requiring that

g11 = g22 = g33 = g44 = 1/n2, (3.5.33)

where n is the index of refraction.
In this case the maximal causal speed for a massive particle is c◦ as

experimentally established, e.g., for electrons, while the local speed of
electromagnetic waves is c = c◦/n, as also experimentally established.

Note that such a resolution requires the abandonment of the speed of
light as the maximal causal speed for motion within physical media, and
its replacement with the maximal causal speed of particles.
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It happens that in vacuum these two maximal causal speeds coincide.
However, even in vacuum the correct maximal causal speed remains that
of particles and not that of light, as generally believed.

At any rate, physical media are generally opaque to light but not to
particles. Therefore, the assumption of the speed of light as the maximal
causal speed within media in which light cannot propagate would be
evidently vacuous.

It is an instructive exercise for interested readers to prove that

LEMMA 3.5.4: The maximal causal speed of particles on isominkowski
space over an isofield remains c◦.

In fact, on isospaces over isofields c2◦ is deformed by the index of
refraction into the form c2◦/n2

4, but the corresponding unit cm2/sec2 is
deformed by the inverse amount, n2

4 × cm2/sec2, thus preserving the
numerical value c2◦ due to the structure of the isoinvariant studied earlier.

The understanding of isorelativity requires the knowledge that, when
formulated on the Minkowski-Santilli isospace over the isoreals, Isoax-
iom I coincides with the conventional axiom that is, the maximal causal
speed returns to be c. The same happens for all remaining isoaxioms.

ISOAXIOM II. The projection in our spacetime of the isorelativistic
addition of speeds within physical media is given by:

vTot =
v1 + v2

1 + v1×g33×v2

c◦×g44×c◦

=
v1 + v2

1 + v1×n2
4×v2

c◦×n2
3×c◦

(3.5.34)

We have again the correct result that the sum of two maximal causal
speeds in water,

Vmax = c◦ × (n3/n4), (3.5.35)
yields the maximal causal speed in water, as the reader is encouraged to
verify.

Note that such a result is impossible for special relativity. Note also
that the “relativistic” sum of two speeds of light in water, c = c◦/n, does
not yield the speed of light in water, thus confirming that the speed of
light within physical media, assuming that they are transparent to light,
is not the fundamental maximal causal speed.

ISOAXIOM III. The projection in our spacetime of the isorelativistic
laws of dilation of time t◦ and contraction of length �◦ and the variation
of mass m◦ with speed are given respectively by:

t = γ̂ × t◦, (3.5.36a)
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� = γ̂−1 × �◦, (3.5.36b)

m = γ̂ × m◦. (3.5.36c)

Note that in water these values coincide with the relativistic ones as it
should be since particles such as the electrons have in water the maximal
causal speed c◦.

Note again the necessity of avoiding the interpretation of the local
speed of light as the maximal local causal speed. Note also that the
mass diverges at the maximal local causal speed, but not at the local
speed of light.

ISOAXIOM IV. The projection in our spacetime of the iso-Doppler
law is given by the isolaw (here formulated for simplicity for 90◦ angle
of aberration):

ω = γ̂ × ω◦. (3.5.37)

This isorelativistic axioms permits an exact, numerical and invariant
representation of the large differences in cosmological redshifts between
quasars and galaxies when physically connected.

In this case light simply exits the huge quasar chromospheres already
redshifted due to the decrease of the speed of light, while the speed of
the quasars can remain the same as that of the associated galaxy. Note
again as this result is impossible for special relativity.

Isoaxiom IV also permits a numerical interpretation of the internal
blue- and red-shift of quasars due to the dependence of the local speed
of light on its frequency.

Finally, Isoaxiom IV predicts that a component of the predominance
toward the red of sunlight at sunset is of iso-Doppler nature. This pre-
diction is based on the different travel within atmosphere of light at
sunset as compared to the zenith (evidently because of the travel within
a comparatively denser atmosphere).

By contrast, the popular representation of the apparent redshift of
sunlight at sunset is that via the scattering of light among the molecules
composing our atmosphere. Had this interpretation be correct, the sky
at the zenith should be red, while it is blue.

At any rate, the claim of representation of the apparent redshift via
the scattering of light is political because of the impossibility of reach-
ing the needed numerical value of the redshift, as serious scholars are
suggested to verify.
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ISOAXIOM V. The projection in our spacetime of the isorelativistic
law of equivalence of mass and energy is given by:

E = m × c2
◦ × g44 = m×

c2◦
n2

4

. (3.5.38)

Among various applications, Isoaxiom V removes any need for the
“missing mass” in the universe. This is due to the fact that all isotopic
fits of experimental data agree on values g44 � 1 within the hyperdense
media in the interior of hadrons, nuclei and stars [55,120].

As a result, Isoaxiom V yields a value of the total energy of the uni-
verse dramatically bigger than that believed until now under the as-
sumption of the universal validity of the speed of light in vacuum.

For other intriguing applications of Isoaxioms V, e.g., for the rest
energy of hadronic constituents, we refer the interested reader to mono-
graphs [55,61].

The isodual isorelativity for the characterization of antimatter can be
easily constructed via the isodual map of Chapter 2, and its explicit
study is left to the interested reader for brevity.

3.5.5 Isorelativistic Hadronic Mechanics and its
Isoduals

The isorelativistic extension of relativistic hadronic mechanics is read-
ily permitted by the Poincaré-Santilli isosymmetry. In fact, iso-invariant
(3.5.13a) characterizes the following iso-Gordon equation on Ĥ over
Ĉ [55]

p̂µ×̂|ψ̂ >= −î×̂∂̂µ|ψ̂ >= −i × Îν
µ × ∂ν |ψ̂ >, (3.5.39a)

(p̂µ×̂p̂µ+m̂2
◦×̂ĉ4)×̂|ψ̂ >= (η̂αβ×∂α×∂β +m2

◦×c4)×|ψ̂ >= 0. (3.5.39b)

The linearization of the above second-order equations into the Dirac-
Santilli isoequation has been first studied in Ref. [29] and then by other
authors (although generally without the use of isomathematics, thus
losing the invariance).

By recalling the structure of Dirac’s equation as the Kronecker prod-
uct of a spin 1/2 massive particle and its antiparticle of Chapter 2,
the Dirac-Santilli isoequation is formulated on the total isoselfadjoint
isospace and related isosymmetry

M̂Tot = [M̂orb(x̂, η̂, R̂) × Ŝspin(2)]

×[M̂d orb(x̂d, η̂d, R̂d) × Ŝd spin(2)] = M̂d Tot, (3.5.40a)
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ŜTot = P̂ (3.1) × P̂ d(3.1) = Ŝd Tot, (3.5.40b)

and can be written [29]

[γ̂µ×̂(p̂µ − ê×̂Âµ) + î×̂m̂]×̂ |φ(x) >= 0, (3.5.41a)

γ̂µ = gµµ × γµ × Î (3.5.41b)

where the γ’s are the conventional Dirac matrices.
Note the appearance of the isometric elements directly in the structure

of the gamma matrices and their presence also when the equation is
projected in the conventional spacetime.

The following generators

Jµν = (Sk, Lk4), Pµ, (3.5.42a)

Sk = (ε̂kij ×̂ γ̂i ×̂ γ̂j)/2, Lk4 = γ̂k×̂γ̂4/2, Pµ = p̂µ, (3.5.42b)

characterize the isospinorial covering of the Poincaré-Santilli isosymme-
try.

The notion of “isoparticle” can be best illustrated with the above real-
ization because it implies that,in the transition from motion in vacuum
(as particles have been solely detected and studied until now) to mo-
tion within physical media, particles generally experience the alteration,
called “mutation”, of all intrinsic characteristics, as illustrated by the
following isoeigenvalues,

Ŝ2̂×̂|ψ̂ >=
g11 × g22 + g22 × g33 + g33 × g11

4
× |ψ̂ >, (3.5.43a)

Ŝ3×̂|ψ̂ >=
(g11 × g22)1/2

2
× |ψ̂ > . (3.5.43b)

The mutation of spin then characterizes a necessary mutation of the
intrinsic magnetic moment given by [29]

µ̃ =
(g33

g44

)1/2
× µ, (3.5.44)

where µ is the conventional magnetic moment for the same particle when
in vacuum. The mutation of the rest energy and of the remaining char-
acteristics has been identified before via the isoaxioms.

Note that the invariance under isorotations allows the rescaling of
the radius of an isosphere. Therefore, for the case of the perfect sphere
we can always have g11 = g22 = g33 = g44 in which case the magnetic
moment is not mutated. These results recover conventional classical
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knowledge according to which the alteration of the shape of a charged and
spinning body implies the necessary alteration of its magnetic moment.

The construction of the isodual isorelativistic hadronic mechanics is
left to the interested reader by keeping in mind that the iso-Dirac equa-
tion is isoselfdual as the conventional equation.

To properly understand the above results, one should keep in mind
that the mutation of the intrinsic characteristics of particles is solely re-
ferred to the constituents of a hadronic bound state under conditions of
mutual penetration of their wave packets (such as one hadronic con-
stituent) under the condition of recovering conventional characteris-
tics for the hadronic bound state as a whole (the hadron considered),
much along Newtonian subsidiary constrains on non-Hamiltonian forces,
Eq. (3.1.6).

It should be also stressed that the above indicated mutations violate
the unitary condition when formulated on conventional Hilbert spaces,
with consequential catastrophic inconsistencies, Theorem 1.5.2.

As an illustration, the violation of causality and probability law has
been established for all eigenvalues of the angular momentum M different
than the quantum spectrum

M2 × |ψ >= �(� + 1) × |ψ >, � = 0, 1, 2, 3, . . . (3.5.45)

As a matter of fact, these inconsistencies are the very reason why the
mutations of internal characteristics of particles for bound states at short
distances could not be admitted within the framework of quantum me-
chanics.

By comparison, hadronic mechanics has been constructed to recover
unitarity on iso-Hilbert spaces over isofields, thus permitting an invari-
ant description of internal mutations of the characteristics of the con-
stituents of hadronic bound states, while recovering conventional fea-
tures for states as a whole.

Far from being mere mathematical curiosities, the above mutations
permit basically new structure models of hadrons, nuclei and stars, with
consequential, new clean energies and fuels [58].

These new advances are prohibited by quantum mechanics precisely
because of the preservation of the intrinsic characteristics of the con-
stituents in the transition from bound states at large mutual distance,
for which no mutation is possible, to the bound state of the same con-
stituents in condition of mutual penetration, in which case mutations
have to be admitted in order to avoid the replacement of a scientific
process with unsubstantiated personal beliefs one way or the other.

The best illustration of the Dirac-Santilli isoequation is, therefore,
that for which it was constructed [30], to describe the transition of
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the electron from the hydrogen atom to the interior of the hyperdense
medium inside the proton, namely, to achieve a quantitative and invari-
ant representation of the synthesis of the neutron according to Ruther-
ford as a “hydrogen atom compressed in the core of a star”.

If special relativity, relativistic quantum mechanics and the conven-
tional Dirac equation are assumed to be exactly valid also for the motion
of the electron within the hyperdense medium in the interior of the pro-
ton, the neutron cannot be a bound state of a proton and an electron
at short distances, thus mandating the assumption of undetectable con-
stituents such as the hypothetical quarks that cannot be produced free,
as well known.

One of the most important results of hadronic mechanics has been
the proof at the nonrelativistic [214] and relativistic level [30] that a
hadronic bound state of an isoprotons and an isoelectron represents ex-
actly and invariantly all characteristics of the neutron, including its rest
energy, spin, charge, parity, charge radius, anomalous magnetic moment
and spontaneous decay. Virtually none of these characteristics can be
represented via the hypothetical quarks.

The societal implications of the above alternative are such to require
the surpassing of traditional academic interests on pre-established doc-
trines. In fact, the neutron is the biggest reservoir of clean energy avail-
able to mankind. This is due to the fact that the neutron is naturally
unstable, in its spontaneous decay

n → p+ + e− + ν̄. (3.5.46)

that releases a large amount of energy for particle standards (about
0.80 MeV). Such an energy is environmentally acceptable because the
electron can be easily trapped with a metal shield and the neutrino is
harmless, while the lack of radioactive waste can be achieved via suitable
nuclear selections (see web site [60] for details and technical literature
quoted therein).

The societal implications originate from the fact that no new energy
is conceivably possible under the assumption of the exact validity within
a hadron of the Minkowski geometry, special relativity and relativistic
quantum mechanics.

On the contrary, the assumption that isorelativity is valid within the
hyperdense medium inside hadrons permits the hadronic constituents to
be indeed actual physical particles that can be produced free in the spon-
taneous decay and, therefore, they can be identified among the massive
particles released in the spontaneous decays with the lowest mode.

The societal aspect of potentially large dimension is that the polit-
ical belief that the hypothetical quarks are physical particles in our
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spacetime6 prevents any prediction, let alone any development of new
energies from hadrons.

By comparison, the assumption that the hadronic constituents are
isoparticles that can be produce free in the spontaneous decays, does
indeed permit the prediction of new clean energies by stimulating said
decays [58,60].

3.5.6 Isogravitation and its Isodual
As indicated in Section 1.4, there is no doubt that the classical and op-

erator formulations of gravitation on a curved space have been the most
controversial theory of the 20-th century because of an ever increasing
plethora of problematic aspects remained vastly ignored. By contrast, as
also reviewed in Section 1.4, special relativity in vacuum has a majestic
axiomatic consistence is its invariance under the Poincaré symmetry.

Recent studies have shown that the formulation of gravitation on
a curved space or, equivalently, the formulation of gravitation based
on “covariance”, is necessarily noncanonical at the classical level and
nonunitary at the operator level, thus suffering of all catastrophic incon-
sistencies of Theorems 1.4.1 and 1.4.2 [45,46].

These catastrophic inconsistencies can only be resolved via a new
conception of gravity based on a universal invariance, rather than co-
variance.

Additional studies have identified profound axiomatic incompatibili-
ties between gravitation on a curved space and electroweak interactions.
These incompatibilities have resulted to be responsible for the lack of
achievement of an axiomatically consistent grand unification since Ein-
stein’s times [32,35,37] (see Chapter 5).

No knowledge of isotopies can be claimed without a knowledge that
isorelativity has been constructed to resolve at least some of the contro-
versies on gravitation. The fundamental requirement is the abandonment
of the formulation of gravity via curvature on a Riemannian space and
its formulation instead on an iso-Minkowskian space [15] via the follow-
ing steps characterizing exterior isogravitation in vacuum:

I) Factorization of any given Riemannian metric representing exterior
gravitation gext(x) into a nowhere singular and positive-definite 4 × 4-
matrix T̂ (x) times the Minkowski metric η,

gext(x) = T̂ ext
grav(x) × η; (3.5.47)

II) Assumption of the inverse of T̂grav as the fundamental unit of the
theory,

Îext
grav(x) = 1/T̂ ext

grav(x); (3.5.48)
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III) Submission of the totality of the Minkowski space and relative
symmetries to the noncanonical/nonunitary transform

U(x) × I†(x) = Îext
grav. (3.5.49)

The above procedure yields the isominkowskian spaces and related
geometry M̂(x̂, η̂, R̂) [15], resulting in a new conception of gravitation,
exterior isogravity, with the following main features [15,32,35,37,55]:

i) Isogravity is characterized by a universal symmetry (and not a co-
variance), the Poincaré-Santilli isosymmetry P̂ (3.1) for the gravity of
matter with isounit Îext

grav(x), the isodual isosymmetry P̂ d(3.1) for the
gravity of antimatter, and the isoselfdual symmetry P̂ (3.1)× P̂ d(3.1) for
the gravity of matter-antimatter systems;

ii) All conventional field equations, such as the Einstein-Hilbert and
other field equations, can be formulated via the Minkowski-Santilli iso-
geometry since the latter preserves all the tools of the conventional Rie-
mannian geometry, such as the Christoffel’s symbols, covariant deriva-
tive, etc. [15];

iii) Isogravitation is isocanonical at the classical level and isounitarity
at the operator level, thus resolving the catastrophic inconsistencies of
Theorems 1.5.1 and 1.5.2;

iv) An axiomatically consistent operator version of gravity always
existed and merely creeped in un-noticed through the 20-th century be-
cause gravity is imbedded where nobody looked for, in the unit of rel-
ativistic quantum mechanics, and it is given by isorelativistic hadronic
mechanics outlined in the next section.

v) The basic feature permitting the above advances is the abandon-
ment of curvature for the characterization of gravity (namely, curvature
characterized by metric gext(x) referred to the unit I) and its replace-
ment with isoflatness, namely, the verification of the axioms of flatness
in isospacetime, while preserving conventional curvature in its projection
on conventional spacetime (or, equivalently, curvature characterized by
the g(x) = T̂ ext

grav(x) × η referred to the isounit Îgrav(x) in which case
curvature becomes null due to the inter-relation Îext

grav(x) = 1/T̂ ext
grav(x))

[15].
A resolution of numerous controversies on classical formulations of

gravity then follow from the above main features, such as:
a) The resolution of the century old controversy on the lack of ex-

istence of consistent total conservation laws for gravitation on a Rie-
mannian space, which controversy is resolved under the universal P̂ (3.1)
symmetry by mere visual verification that the generators of the conven-
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tional and isotopic Poincaré symmetry are the same (since they represent
conserved quantities in the absence and in the preserve of gravity);

b) The controversy on the fact that gravity on a Riemannian space
admits a well defined “Euclidean”, but not “Minkowskian” limit, which
controversy is trivially resolved by isogravity via the limit

Îext
grav(x) → I; (3.5.50)

c) The resolution of the controversy that Einstein’s gravitation pre-
dicts a value of the bending of light that is twice the experimental value,
one for curvature and one for newtonian attraction, which controversy
is evidently resolved by the elimination of curvature as the origin of
the bending, as necessary in any case for the free fall of a body along
a straight radial line in which no curvature of any type is conceivably
possible or credible; and other controversies.

A resolution of the controversies on quantum gravity can be seen from
the property that relativistic hadronic mechanics of the preceding section
is a quantum formulation of gravity whenever T̂ = T̂grav.

Such a form of operator gravity is as axiomatically consistent as con-
ventional relativistic quantum mechanics because the two formulations
coincide, by construction, at the abstract, realization-free level.

As an illustration, whenever

T̂ ext
grav = Diag.(gext

11 , gext
22 , gext

33 , gext
44 ), gµµ > 0, (3.5.51)

the Dirac-Santilli isoequation (3.5.41) provides a direct representation
of the conventional electromagnetic interactions experienced by an elec-
tron, represented by the vector potential Aµ, plus gravitational interac-
tions represented by the isogamma matrices.

Once curvature is abandoned in favor of the broader isoflatness, the
axiomatic incompatibilities existing between gravity and electroweak in-
teractions are resolved because:

i) isogravity possesses, at the abstract level, the same Poincaré invari-
ance of electroweak interactions;

ii) isogravity can be formulated on the same flat isospace of elec-
troweak theories; and

iii) isogravity admits positive and negative energies in the same way
as it occurs for electroweak theories.

An axiomatically consistent iso-grand-unification then follows [32–35],
as studied in Chapter 5.

Note that the above grand-unification requires the prior geometric
unification of the special and general relativities, that is achieved pre-
cisely by isorelativity and its underlying iso-Minkowskian geometry.
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In fact, special and general relativities are merely differentiated in
isospecial relativity by the explicit realization of the unit. In particular,
black holes are now characterized by the zeros of the isounit [55]

Îext
grav(x) = 0. (3.5.52)

The above formulation recovers all conventional results on gravita-
tional singularities, such as the singularities of the Schwarzschild’s met-
ric, since they are all described by the gravitational content T̂grav(x) of
g(x) = T̂grav(x) × η, since η is flat.

This illustrates again that all conventional results of gravitation, in-
cluding experimental verifications, can be reformulated in invariant form
via isorelativity.

Moreover, the problematic aspects of general relativity mentioned ear-
lier refer to the exterior gravitational problem. Perhaps greater prob-
lematic aspects exist in gravitation on a Riemannian space for interior
gravitational problems, e.g., because of the lack of characterization of
basic features, such as the density of the interior problem, the locally
varying speed of light, etc.

These additional problematic aspects are also resolved by isorelativity
due to the unrestricted character of the functional dependence of the
isometric that, therefore, permits a direct geometrization of the density,
local variation of the speed of light, etc.

The above lines constitute only the initial aspects of isogravitation
since its most important branch is interior isogravitation as characterized
by isounit and isotopic elements of the illustrative type

Îint
grav = 1/T̂ int

grav > 0, (3.5.53a)

T̂ int
grav = Diag.(gint

11 /n2
1, g

int
22 /n2

2, g
int
33 /n2

3, g
int
44 /n2

4), (3.5.53b)
permitting a it geometric representation directly via the isometric of
the actual shape of the body considered, in the above case an ellipsoid
with semiaxes n2

1, n
2
2, n

2
3, as well as the (average) interior density n2

4 with
consequential representation of the (average value of the) interior speed
of light C = c/n4.

A most important point is that the invariance of interior isogravitation
under the Poincaré-Santilli isosymmetry persists in its totality since the
latter symmetry is completely independent from the explicit value of the
isounit or isotopic element, and solely depends on their positive-definite
character.

Needless to say, isounit (3.4.53) is merely illustrative because a more
accurate interior isounit has a much more complex functional depen-
dence with a locally varying density, light speed and other characteristics
as they occur in reality.
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Explicit forms of these more adequate models depends on the astro-
physical body considered, e.g., whether gaseous, solid or a mixture of
both, and their study is left to the interested reader.

It should also be noted that gravitational singularities should be solely
referred to interior models evidently because exterior descriptions of type
(3.5.52) are a mere approximation or a geometric abstraction.

In fact, a gravitational singularities existing for exterior models are
not necessarily confirmed by the corresponding interior formulations.
Consequently, the current views on black holes could well result to be
pseudo-scientific beliefs because the only scientific statement that can be
proffered at this time without raising issue of scientific ethics is that the
gravitational features of large and hyperdense aggregations of matter,
whether characterizing a “black” or “brown” hole, are basically unre-
solved at this time.

Needless to say, exterior isogravitation is a particular case of the inte-
rior formulation. Consequently, from now on, unless otherwise specified
isogravitation will be referred to the interior form.

The cosmological implications are also intriguing and will be studied
in Chapter 5.

It is hoped that readers with young minds of any age admit the incon-
trovertible character of the limitations of special and general relativities
and participate in the laborious efforts toward new vistas because any
lack of participation in new frontiers of science, whether for personal
academic interest or other reason, is a gift of scientific priorities to oth-
ers.

3.6 LIE-ADMISSIBLE BRANCH OF
HADRONIC MECHANICS AND ITS
ISODUAL

3.6.1 The Scientific Imbalance Caused by
Irreversibility

As recalled in Chapter 1, physical, chemical or biological systems are
called irreversible when their images under time reversal t → −t are
prohibited by causality and/or other laws, as it is generally the case for
nuclear transmutations, chemical reactions and organism growth.

Systems are called reversible when their time reversal images are as
causal as the original ones, as it is the case for planetary and atomic
structures when considered isolated from the rest of the universe (see
reprint volume [81] on irreversibility and vast literature quoted therein).

Another large scientific imbalance of the 20-th century studied in this
monograph is the treatment of irreversible systems via the mathematical
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and physical formulations developed for reversible systems, since these
formulations are themselves reversible, resulting in serious limitations in
virtually all branches of science.

The problem is compounded by the fact that all used formulations are
of Hamiltonian type, under the awareness that all known Hamiltonians
are reversible (since all known potentials, such as the Coulomb potential
V (r), etc., are reversible).

This scientific imbalance was generally dismissed in the 20-th century
with unsubstantiated statements, such as “irreversibility is a macro-
scopic occurrence that disappears when all bodies are reduced to their
elementary constituents”.

These academic beliefs have been disproved by Theorem 1.3.3 accord-
ing to which a classical irreversible system cannot be consistently decom-
posed into a finite number of elementary constituents all in reversible
conditions and, vice-versa, a finite collection of elementary constituents
all in reversible conditions cannot yield an irreversible macroscopic en-
semble.

The implications of the above theorem are quite profound because it
establishes that, contrary to academic beliefs, irreversibility originates
at the most primitive levels of nature, that of elementary particles, and
then propagates all the way to our macroscopic environment.

3.6.2 The Forgotten Legacy of Lagrange and
Hamilton

The scientific imbalance on irreversibility was created in the early
part of the 20-th century when the true analytic equations proposed
by Lagrange and Hamilton were “truncated” with the removal of the
external terms (Section 1.3).

In fact, Lagrange and Hamilton proposed their celebrated equations
for the clearly intent of representing all potential interactions with the
quantities today called Lagrangians and Hamiltonians, and representing
all nonpotential interactions with the external terms,

d

dt

∂L(t, r, v)
∂vk

a

− ∂L(t, r, v)
∂rk

a

= Fak(t, r, v), (3.6.1a)

drk
a

dt
=

∂H(t, r, p)
∂pak

,
dpak

dt
= −∂H(t, r, p)

∂rk
a

+ Fak(t, r, p), (3.6.1b)

L = Σa
1
2
× ma × v2

a − V (t, r, v), (3.6.1c)

H = Σa
p2

a

2 × ma
+ V (t, r, p), (3.6.1d)
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V = U(t, r)ak × vk
a + Uo(t, r), (3.6.1e)

F (t, r, v) = F (t, r, p/m). (3.6.1f)

k = 1, 2, 3; a = 1, 2, . . . , N.

The forgotten legacy of Lagrange and Hamilton is that irreversibility
originates precisely in the truncated external terms because, again, all
known potentials are reversible.

Being born and educated in Italy, during his graduate studies at the
University of Torino, the author had the opportunity of studying in the
late 1960s the original works by Lagrange that there written by Lagrange
precisely in Torino most of them in Italian.

In this way, the author had the opportunity of verifying Lagrange’s
analytic vision on the impossibility of representing all possible physical
events via the sole use of the quantity today called the Lagrangian. As
the reader can verify, Hamilton had, independently, the same vision.

Consequently, the truncation of the basic analytic equations caused
the impossibility of a credible representation of irreversibility at the
purely classical level. The lack of a credible representation then propa-
gated at all subsequent levels of study.

3.6.3 Early Representations of Irreversible
Systems

As reviewed in Section 1.3.3, the brackets of the time evolution of
an observable A(r, p) in phase space according to the analytic equations
with external terms,

dA

dt
= (A, H, F ) =

∂A

∂rk
a

× ∂H

∂pka
− ∂H

∂rk
a

× ∂A

∂pka
+

∂A

∂rk
a

× Fka, (3.6.2)

violate the right associative and scalar laws.
Therefore, the presence of external terms in the analytic equations

causes not only the loss of all Lie algebras in the study of irreversibility,
but actually the loss of all possible algebras as commonly understood in
mathematics.

To resolve this problem, the author initiated a long scientific journey
beginning with his graduate studies at the University of Torino, Italy,
following the reading of Lagrange’s papers.

The original argument, still valid today, is to select analytic equations
characterizing brackets in the time evolution verifying the following con-
ditions:

(1) The brackets of the time evolution must verify the right and left
associative and scalar laws to characterize an algebra;
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(2) Said brackets must not be invariant under time reversal as a nec-
essary condition to represent irreversibility ab initio;

(3) Said algebra must be a covering of Lie algebras as a necessary
condition to have a covering of the truncated analytic equations, namely,
as a condition for the selected representation of irreversibility to admit
reversibility as a particular case.

Condition (1) requires that said brackets must be bilinear, e.g., of the
form (A, B) with properties

(n×A, B) = n×(A, B), (A, m×B) = m×(A, B); n, m ∈ C, (3.6.3a)

(A × B, C) = A × (B, C), (A, B × C) = (A, B) × C. (3.6.3b)

Condition (2) requires that brackets (A, B) should not be totally anti-
symmetric as the conventional Poisson brackets,

(A, B) �= −(B, A), (3.6.4)

becfause time reversal is realized via the use of Hermitean conjugation.
Condition (3) then implies that brackets (A, B) characterize Lie-admis-

sible algebras in the sense of Albert [7], namely, the brackets are such
that the attached antisymmetric algebra is Lie,7

[A, B]∗ = (A, B) − (B, A) = Lie. (3.6.5)

The latter condition implies that the new brackets are formed by the
superposition of totally antisymmetric and totally symmetric brackets,

(A, B) = [A, B]∗ + {A, B}∗. (3.6.6)

It should be noted that the operator realization of brackets (A, B)
is also Jordan-admissible in the sense of Albert [10], namely, the at-
tached symmetric brackets {A, B}∗ characterize a Jordan algebra. Con-
sequently, hadronic mechanics provides a realization of Jordan’s dream,
that of seeing his algebra applied to physics.

However, the reader should be aware that, for certain technical rea-
sons, the classical realizations of brackets (A, B) are Lie-admissible
but not Jordan-admissible. Therefore, Jordan-admissibility appears to
emerge exclusively for operator theories.8

After identifying the above lines, Santilli [232] proposed in 1967 the
following generalized analytic equations

drk
a

dt
= α × ∂H(t, r, p)

∂pak
,

dpak

dt
= −β × ∂H(t, r, p)

∂rk
a

, (3.6.7)
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(where α and β are real non-null parameters) that are manifestly irre-
versible. The brackets of the time evolution are then given by

dA

dt
= (A, H)

= α × ∂A

∂rk
a

× ∂H

∂pka
− β × ∂H

∂rk
a

× ∂A

∂pka
, (3.6.8)

whose brackets are manifestly Lie-admissible, but not Jordan-admissible
as the interested reader is encouraged to verify.

Analytic equations (3.6.7) characterize the time-rate of variation of
the energy

dH

dt
= (α − β) × ∂H

∂rk
a

× ∂H

∂pka
. (3.6.9)

Also in 1967, Santilli [8,9] proposed an operator counterpart of the
preceding classical setting consisting in the first known Lie-admissible
parametric generalization of Heisenberg’s equation in the following infin-
itesimal form

i × dA

dt
= (A, B) = p × A × H − q × H × A

= m × (A × B − B × A) + n × (A × B + B × A), (3.6.10a)

m = p + q, n = q − p, (3.6.10b)

where p, q, p ± q are non-null parameters, with finite counterpart

A(t) = ei×H×q × A(0) × e−i×p×H . (3.6.11)

Brackets (A, B) are manifestly Lie-admissible with attached antisym-
metric part

[A, B]∗ = (A, B) − (B, A) = (p − q) × [A, B]. (3.6.12)

The same brackets are also Jordan-admissible as interested readers are
encouraged to verify.

The resulting time evolution is then manifestly irreversible (for p �= q)
with nonconservation of the energy

i × dH

dt
= (H, H) = (p − q) × H × H �= 0, (3.6.13)

as necessary for an open system
Subsequently, Santilli realized that the above formulations are not in-

variant under their own time evolution because Eq. (3.6.10) is manifestly
nonunitary.
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The application of nonunitary transforms to brackets (3.6.11) then led
to the proposal in memoir [39] of 1978 of the following Lie-admissible op-
erator generalization of Heisenberg equations in their infinitesimal form

dA

dt
= A × P × H − H × Q × A = (A, H)∗, (3.6.14)

with finite counterpart

A(t) = ei×H×Q × A(0) × e−i×P×H , (3.6.15a)

P = Q†. (3.6.15b)

where P , Q and P ±Q are now nonsingular operators (or matrices), and
Eq. (3.6.15b) is a fundamental consistency condition explained later on
in this section.

Eqs. (3.6.14)–(3.6.15) are the fundamental equations of hadronic me-
chanics. Their basic brackets are manifestly Lie-admissible and Jordan
admissible with structure

(A, B)∗ = A × P × B − B × Q × A

= (A × T × B − B × T × A) + (A × R × B + B × R × A), (3.6.16a)

T = P + Q, R = Q − P. (3.6.16b)

It is easy to see that the application of a nonunitary transform to
the parametric brackets (3.6.10) leads precisely to the operator brackets
(3.5.16) according to the expressions

U × U † �= I, (3.6.17a)

U × (A, B) × U † = A′ × P ′ × B′ − B′ × Q′ × A′, (3.6.17b)

where
A′ = U × A × U ′, B′ = U × B × U †, (3.6.18a)

P ′ = U †−1 × P × U−1, Q′ = U †−1 × Q × U−1. (3.6.18b)

As a result, all dynamical equations (3.6.10)–(3.6.16) are not invari-
ant under their own time evolution, thus being afflicted by the catastrophic
inconsistencies of Theorem 1.4.2.

Moreover, in the form presented above, dynamical equations (3.6.10)
are not derivable from a variational principle. Consequently, they admit
no known unique map into their operator counterpart.

In view of these insufficiencies, said equations cannot be assumed in
the above given formulation as the basic equations of any consistent
physical theory.
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3.6.4 Elements of Genomathematics
Recall from Section 1.5 that Eq. (3.6.14) are “directly universal”

(Lemma 1.5.2). Therefore, there is no possibility of identifying broader
dynamical equations capable of resolving the inconsistencies of Theo-
rem 1.4.2.

To resolve the inconsistencies, Santilli was left with no other choice
than that of constructing a new mathematics, specifically conceived for
the invariant formulation of Eqs. (3.6.14)–(3.6.15).

Following a laborious search conducted over decades, a breakthrough
occurred with the discovery, apparently made for the first time by Santilli
in Ref. [12] of 1993, that the axioms of a field hold when the ordinary
product of numbers a × b is ordered to the right or under corresponding
generalized units to the right,

a > b = a × T̂> × b, (3.6.19)

or, separately, to the left,

a < b = a × >T̂ × b, (3.6.20)

where T̂> and <T̂ are called Santilli’s genotopic elements to the right and
to the left, respectively, under the following corresponding generalization
of the unit to the right called Santilli’s genounit to the right

I = Diag.(1, 1, . . . , 1)

→ Î>(t, x, v, ψ, ∂xψ, . . .) = 1/T̂>(t, x, v, ψ, ∂xψ, . . .), (3.6.21)

and the generalization of the unit to the left called Santilli’s genounit to
the left

I = Diag.(1, 1, . . . , 1)

→< Î(t, x, v, ψ, ∂xψ, . . .) = 1/<T̂ (t, x, v, ψ, ∂xψ, . . .), (3.6.22)

with complementarity condition

Î> = (<Î)†. (3.6.23)

Under these assumptions we have the preservation of the axiom for a
unit, although separately valid for products to the right

I × a = a × I = a → Î> > A = a > Î> = a ∈ F, (3.6.24)

and to the left

I × a = a × I = a →< Î < a = a << Î = a ∈ F. (3.6.25)
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The above ordered genoproducts to the right and to the left with cor-
responding genounits to the right and to the left are at the foundation of
the new mathematics needed for an axiomatically consistent and invari-
ant representation of irreversibility, today known as Santilli’s genotopic
mathematics, or genomathematics for short, where the prefix “geno” is
used in the Greek sense of “inducing” a new mathematics.

Note that in the isomathematics of Section 3.5 the product is indeed
generalized,

a × b → a×̂b = a × T̂ × b, (3.6.26a)

T̂ = T̂ † > 0, (3.6.26b)

with compatible generalization of the unit,

I → Î = 1/T̂ , (3.6.27)

but the isoproduct to the right coincides with that to the left,

a×̂b = b×̂a, (3.6.28a)

as it is the case for ordinary products,

a × b = b × a. (3.6.28b)

A main point in the transition from the iso- to the geno-mathematics is
that, in addition to their generalization, products are lifted into different
ordered products to the right and to the left

a > b = a × T̂> × b �= a < b = a × <T̂ × b, (3.6.29)

where
T̂> = (<T̂ )†. (3.6.30)

Alternatively, we can say that the identity of the isoproducts to the
right and to the left is due to the Hermiticity of the isotopic element,
Eq. (3.6.26b). Therefore, the inequivalence of the genoproducts to the
right and to the left is due to the lack of Hermiticity of the genotopic
element.

The discovery of two complementary orderings of the product while
preserving the abstract axioms of a field has truly fundamental impli-
cations for irreversibility since it permits the axiomatically consistent
and invariant representation of irreversibility via the most ultimate and
primitive axioms, those on the product and related unit, as expressed
by the following.

FUNDAMENTAL ASSUMPTION ON IRREVERSIBILITY [12,14]:
Dynamical equations for motion forward in time are characterized by
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genoproducts to the right and related genounits, while dynamical equa-
tions for the motion backward in time are characterized by genoproducts
to the left and related genounits under the condition that said genoprod-
ucts and genounits are interconnected by time reversal expressible for
generic quantities A, B,

(A > B)† = (A > T̂> × B)† = B† × (T̂>)† × A†, (3.6.31)

namely,
T̂> = (<T̂ )† (3.6.32)

thus recovering the fundamental complementary conditions (3.6.15b).

As a result, genomathematics permits the embedding of irreversibil-
ity in the most fundamental quantities, products and related units, thus
assuring ab initio the construction of a structurally irreversible mathe-
matics.

DEFINITION 3.6.1: Let F = F (a,+,×) be a field as per Definition
2.1.1. Santilli’s forward genofields (first introduced in Ref. [12] of 1993)
are rings F̂> = F̂>(â>, +̂>, >) with forward genonumbers

â> = a × Î>, (3.6.33)

associative, distributive and commutative forward genosum

â>+̂>b̂> = (a + b) × Î> = ĉ> ∈ F̂>, (3.6.34)

associative and distributive, but not necessarily commutative, forward
genoproduct

â> > b̂> = â > ×T̂> × b̂> = ĉ> ∈ F̂ , (3.6.35)

additive forward genounit

0̂> = 0, â>+̂>0̂> = 0̂>+̂>â> = â> ∈ F̂>, (3.6.36)

and multiplicative forward genounit

Î> = 1/T̂>, â> > Î> = Î> > â> = â> ∈ F̂>,∀â>, b̂> ∈ F̂>, (3.6.37)

where Î> is a complex-valued non-Hermitean, or real-value non-symme-
tric, everywhere invertible quantity generally outside F .

The backward genofields <F̂ (<â,< +̂, <), their elements, units and
their operations are given by the Hermitean conjugate (or transposed)
of the corresponding quantities and their operations in F̂>(â>, +̂>, ×̂>),
e.g.,

<Î = (Î>)†, etc. (3.6.38)
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LEMMA 3.6.1: Forward and backward genofields are fields with char-
acteristic zero (namely, they verify all axioms of a field).

In Section 2.1 we pointed out that the conventional product “2 mul-
tiplied by 3” is not necessarily equal to 6 because, depending on the
assumed unit and related product, it can be −6.

In Section 3.5 we pointed out that the same product “2 multiplied by
3” is not necessarily equal to +6 or −6, because it can also be equal to
an arbitrary number, or a matrix or an integrodifferential operator.

In this section we point out that “2 multiplied by 3” can be ordered to
the right or to the left, and the result is not only arbitrary, but yielding
different numerical results for different orderings, 2 > 3 �= 2 < 3, all this
by continuing to verify the axioms of a field per each order [12].

Once the forward and backward genofields have been identified, the
various branches of genomathematics can be constructed via simple com-
patibility arguments, resulting in the genofunctional analysis, genodiffer-
ential calculus, etc. [14,54,55]. We have in this way the genodifferentials
and genoderivatives

d̂>x = T̂>
x × dx,

∂̂>

∂̂>x
= Î>

x × ∂

∂x
, etc. (3.6.39)

Particularly intriguing are the genogeometries [55] because they admit
nonsymmetric metrics. For instance, the Minkowski-Santilli genogeom-
etry admits the metric

η>(x) = T̂>(x) × η, (3.6.40)

where η is the Minkowski metric and T̂>(x) is a real-values, nowhere
singular, 4 × 4 nonsymmetric matrix.

Consequently, genomathematics permits, apparently for the first time,
to use a nonsymmetric metric under the validity of the abstract Min-
kowskian axioms, while bypassing known inconsistencies for nonsymmet-
ric metrics since they are referred to the nonsymmetric genounit

Î> = 1/T̂>. (3.6.41)

In this way, genogeometries are structurally irreversible and actually
represent irreversibility with their most central geometric notion, the
metric.

3.6.5 Lie-Santilli Genotheory and its Isodual
Particularly important for irreversibility is the lifting of Lie’s and

Lie-Santilli’s theories permitted by genomathematics, first identified by
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Santilli in Ref. [23] of 1978, today knows as the Lie-Santilli genotheory,
and characterized by:

(1) The forward and backward universal enveloping genoassociative
algebra ξ̂>, <ξ̂, with infinite-dimensional basis characterizing the Poin-
caré-Birkhoff-Witt-Santilli genotheorem

ξ̂> : Î>, X̂i, X̂i > X̂j , X̂i > X̂j > X̂k, . . . , i ≤ j ≤ k, (3.6.42a)

<ξ̂ : Î ,< X̂i, X̂i < X̂j , X̂i < X̂j < X̂k, . . . , i ≤ j ≤ k; (3.6.42b)

where the “hat” on the generators denotes their formulation on geno-
spaces over genofields and their Hermiticity implies that X̂> =< X̂ = X̂;

(2) The Lie-Santilli genoalgebras characterized by the universal, jointly
Lie- and Jordan-admissible brackets,

<L̂> : (X̂î,X̂j) = X̂i < X̂j − X̂j > X̂i = Ck
ij × X̂k, (3.6.43)

here formulated in an invariant form (see below);
(3) The Lie-Santilli genotransformation groups

<Ĝ> : Â(ŵ) = (êî×̂X̂×̂ŵ)> > Â(0̂) << (ê−î×̂ŵ×̂X̂)

= (ei×X̂×T̂ >×w) × A(0) × (e−i×w×<T̂×X̂), (3.6.44)

where ŵ> ∈ R̂> are the genoparameters; the genorepresentation theory,
etc.

The implications of the Lie-Santilli genotheory are significant math-
ematically and physically. On mathematical grounds, the Lie-Santilli
genoalgebras are “directly universal” and include as particular cases all
known algebras, such as Lie, Jordan, Flexible algebras, power associa-
tive algebras, quantum, algebras, supersymmetric algebras, Kac-Moody
algebras, etc. (Section 1.5).

Moreover, when computed on the genobimodule

<M̂> =< ξ̂ × ξ̂>, (3.6.45)

Lie-admissible algebras verify all Lie axioms, while deviations from Lie
algebras emerge only in their projection on the bimodule

<M> =< ξ × ξ>, (3.6.46)

of the conventional Lie theory.
This is due to the fact that the computation of the left action A < B =

A ×< T̂ × B on <ξ̂ (that is, with respect to the genounit <Î = 1/<T̂ )
yields the save value as the computation of the conventional product
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A × B on <ξ (that is, with respect to the trivial unit I), and the same
occurs for the value of A > B on ξ̂>.

The above occurrences explain the reason the structure constant and
the product in the r.h.s. of Eq. (3.6.43) are those of a conventional Lie
algebra.

In this way, thanks to genomathematics, Lie algebras acquire a tow-
ering significance in view of the possibility of reducing all possible irre-
versible systems to primitive Lie axioms.

The physical implications of the Lie-Santilli genotheory are equally far
reaching. In fact, Noether’s theorem on the reduction of reversible con-
servation laws to primitive Lie symmetries can be lifted to the reduction,
this time, of irreversible nonconservation laws to primitive Lie-Santilli
genosymmetries.

As a matter of fact, this reduction was the very first motivation for
the construction of the genotheory in memoir [23] (see also monographs
[49,50]). The reader can then foresee similar liftings of all remaining
physical aspects treated via Lie algebras.

The construction of the isodual Lie-Santilli genotheory is an instruc-
tive exercise for readers interested in learning the new methods.

3.6.6 Geno-Newtonian Mechanics and its Isodual
Recall that, for the case of isotopies, the basic Newtonian systems are

given by those admitting nonconservative internal forces restricted by
certain constraints to verify total conservation laws (these are the closed
non-Hamiltonian systems of Chapter 1).

For the case of the genotopies under consideration here, the basic
Newtonian systems are the conventional nonconservative systems with-
out subsidiary constraints (open non-Hamiltonian systems) with generic
expression [48]

m × dv

dt
= FSA(r, p) + FNSA(t, r, p, dp/dt, . . .), (3.6.47)

in which case irreversibility is characterized by nonselfadjoint forces, as
indicated earlier, since all conservative forces are reversible.

As it is well known, the above equations are not derivable from any
variational principle in the fixed frame of the observer [48], and this
is the reason why all conventional attempts for consistently quantizing
nonconservative forces have failed for about one century. In turn, the
lack of achievement of an operator counterpart of nonconservative forces
lead to the academic belief that they are illusory (Section 3.6.1).

Hadronic mechanics has achieved the first and only physically con-
sistent operator formulation of nonconservative forces known to the
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author.9 This goal was achieved by rewriting Newton’s equations into an
identical form derivable from a variational principle. Still in turn, the
latter objective was solely permitted by the novel genomathematics.

It is appropriate to recall that Newton was forced to discover new
mathematics, the differential calculus, prior to being able to formulated
his celebrated equations. Therefore, the need for new mathematics as a
condition to represent all Newton’s systems from a variational principle
should not be surprising.

Recall also from Section 2.3 that, contrary to popular beliefs, there
exist four inequivalent directions of time, namely, motion forward in fu-
ture times, motion backward in past time, motion backward from future
times and motion forward in past times, each direction having its own
unit.

Consequently, time reversal alone cannot represent all these possible
motions, and isoduality results to be the only known additional conjuga-
tion that, when combined with time reversal, can represent all possible
time evolutions of both matter and antimatter.

The above setting implies the existence of four different new mechanics
first formulated by Santilli in memoir [14] of 1996, and today known as
Newton-Santilli genomechanics, namely:

A) Forward genomechanics for the representation of forward motion
of matter systems;

B) Backward genomechanics for the representation of the time reversal
image of matter systems;

C) Isodual backward genomechanics for the representation of motion
backward in time of antimatter systems, and

D) Isodual forward genomechanics for the representation of time re-
versal antimatter systems.

These new mechanics are characterized by:
1) Four different times, forward and backward genotimes for matter

systems and the backward and forward isodual genotimes for antimatter
systems

t̂> = t × Î>
t , −t̂>, t̂>

d
, −t̂>

d
, (3.6.48)

with (nowhere singular and non-Hermitean) forward and backward time
genounits and their isoduals,10

Î>
t = 1/T̂>

t , −Î>
t , Î>

d

t , −Î>
d

t ; (3.6.49)

2) The forward and backward genocoordinates and their isoduals

x̂> = x × Î>
x ,−x̂>, x̂>

d
, −x̂>

d
, (3.6.50)
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with (nowhere singular non-Hermitean) coordinate genounit

Î>
x = 1/T̂>

x , −Î>
x , Î>

d

x, −Î>
d

x, (3.6.51)

with forward and backward coordinate genospace and their isoduals Ŝ>
x ,

etc., and related forward coordinate genofield and their isoduals R̂>
x , etc.;

3) The forward and backward genospeeds and their isoduals

v̂> = d̂>x̂>/d̂>t̂>, −v̂>, v̂>
d
, −v̂>

d
, (3.6.52)

with (nowhere singular and non-Hermitean) speed genounit

Î>
v = 1/T̂>

v , −Î>
v , Î>

d

v, −Î>
d

v, (3.6.53)

with related forward speed backward genospaces and their isoduals Ŝ>
v ,

etc., over forward and backward speed genofields R̂>
v , etc.;

The above formalism then leads to the forward genospace for matter
systems given by the Kronecker product

Ŝ>
Tot = Ŝ>

t × Ŝ>
x × Ŝ>

v , (3.6.54)

defined over the it forward genofield

R̂>
tot = R̂>

t × R̂>
x × R̂>

v , (3.6.55)

with total forward genounit

Î>
tot = Î>

t × Î>
x × Î>

v , (3.6.56)

and corresponding expressions for the remaining three spaces obtained
via time reversal and isoduality.

The basic equations are given by:
I) The forward Newton-Santilli genoequations for matter systems [14],

formulated via the genodifferential calculus,

m̂>
a >

d̂>v̂>
ka

d̂>t̂>
= − ∂̂>V̂ >

∂̂>x̂>k
a

; (3.6.57)

II) The backward genoequations for matter systems that are charac-
terized by time reversal of the preceding ones;

III) the backward isodual genoequations for antimatter systems that
are characterized by the isodual map of the backward genoequations,

<m̂d
a <

<d̂d<v̂d
ka

<d̂d<t̂d
= −

<∂̂d<V̂ d

<∂̂d<x̂dk
a

; (3.6.58)
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IV) the forward isodual genoequations for antimatter systems charac-
terized by time reversal of the preceding isodual equations.

As one can see, the representation of Newton’s equations is done in
a way similar to the isotopic case. Note that in Newton’s equations the
nonpotential forces are part of the applied force, while in the Newton-
Santilli genoequations nonpotential forces are represented by the ge-
nounits, or, equivalently, by the forward genodifferential calculus, in a
way essentially similar to the case of isotopies.

The main difference between iso- and geno-equations is that isounits
are Hermitean, thus implying the equivalence of forward and backward
motions, while genounits are non-Hermitean, thus implying irreversibil-
ity.

Note also that the topology underlying Newton’s equations is the
conventional, Euclidean, local-differential topology that, as such, can
only represent point particles.

By contrast, the topology underlying the Newton-Santilli genoequa-
tions is given by a genotopy of the isotopology studied in Refs. [14,139,
226,227] for the representation of extended, nonspherical and deformable
particles via forward genounits, e.g., of the type

Î> = Diag.(n2
1, n

2
2, n

2
3, n

2
4) × Γ>(t, r, v, . . .), (3.6.59)

where n2
k, k = 1, 2, 3 represents the semiaxes of an ellipsoid, n2

4 repre-
sents the density of the medium in which motion occurs (with more
general nondiagonal realizations here omitted for simplicity), and Γ>

constitutes a nonsymmetric matrix representing nonselfadjoint forces,
namely, the contact interactions among extended constituents occurring
for the motion forward in time.

3.6.7 Lie-Admissible Classical Genomechanics
and its Isodual

In this section we show that, once rewritten in their identical geno-
form (3.6.57), Newton’s equations for nonconservative systems are in-
deed derivable from a variational principle, with analytic equations pos-
sessing a Lie-admissible structure and Hamilton-Jacobi equations suit-
able for the first know consistent and unique operator map studied in
the next section.

The most effective setting to introduce real-valued non-symmetric ge-
nounits is in the 6N -dimensional forward genospace (genocotangent bun-
dle) with local genocoordinates and their conjugates

â>µ = aρ × Î>µ
1 ρ , (â>µ)
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=
(

x̂>k
α

p̂>
kα

)
(3.6.60)

and
R̂>

µ = Rρ × Î>ρ
2 µ , (R̂>

µ ) = (p̂kα, 0̂), (3.6.61a)

Î>
1 = 1/T̂>

1 = (Î>
2 )T = (1/T̂>

2 )T , (3.6.61b)

k = 1, 2, 3; α = 1, 2, . . . , N ; µ, ρ = 1, 2, . . . 6N,

where the superscript T stands for transposed, and nowhere singular,
real-valued and non-symmetric genometric and related invariant

δ̂> = T̂>
1 6N×6N δ6N×6N × δ6N×6N , (3.6.62a)

â>µ > R̂>
µ = â>ρ × T̂>β

1 ρ × R̂>
β = aρ × Î>β

2 ρ × Rβ . (3.6.62b)

In this case we have the following genoaction principle [14]

δ̂>Â> = δ̂>
∫̂ >

[R̂>
µ > d̂>â>

µ − Ĥ> >t d̂>t̂>]

= δ

∫
[Rµ × T̂>µ

1 ν (t, x, p, . . .) × d(aβ × Î>ν
1 β ) − H × dt] = 0, (3.6.63)

where the second expression is the projection on conventional spaces
over conventional fields and we have assumed for simplicity that the
time genounit is 1.

It is easy to prove that the above genoprinciple characterizes the fol-
lowing forward Hamilton-Santilli genoequations, (originally proposed in
Ref. [23] of 1978 with conventional mathematics and in Ref. [14] of 1996
with genomathematics (see also Refs. [28,51,52,55])

ω̂>
µν >

d̂>âν >

d̂>t̂>
− ∂̂>Ĥ>(â>)

∂̂>âµ>

=
(

0 −1
1 0

)
×

(
dr/dt
dp/dt

)
−

(
1 K
0 1

)
×

(
∂H/∂r
∂H/∂p

)
= 0, (3.6.64a)

ω̂> =
( ∂̂>R>

ν

∂̂>âµ>
−

∂̂>R̂>
µ

∂̂>âν >

)
× Î> =

(
0 −1
1 0

)
× Î>, (3.6.64b)

K = FNSA/(∂H/∂p). (3.6.64c)

The time evolution of a quantity Â>(â>) on the forward geno-phase-
space can be written in terms of the following brackets

d̂>Â>

d̂>t>
= (Â>, Ĥ>) =

∂̂>Â>

∂̂>â>µ
> ˆωµν>

>
∂̂>Ĥ>

∂̂â>ν
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=
∂Â>

∂â>µ
× S µν × ∂Ĥ>

∂â>ν

=
( ∂Â>

∂r̂>k
α

× ∂Ĥ>

∂p̂>
kα

− ∂Â>

∂p̂>
kα

× ∂Ĥ>

∂r̂>k
α

)
+

∂Â>

∂p̂>
kα

× Kk
k × ∂Ĥ>

∂p̂>
kα

, (3.6.65a)

S>µν = ωµρ × Î2µ
ρ , ωµν = (||ωαβ ||−1)µν , (3.6.65b)

where ωµν is the conventional Lie tensor and, consequently, Sµν is Lie-
admissible in the sense of Albert [7].

As one can see, the important consequence of genomathematics and its
genodifferential calculus is that of turning the triple system (A, H, FNSA)
of Eq. (3.6.2) in the bilinear form (A,̂B), thus characterizing a consistent
algebra in the brackets of the time evolution.

This is the central purpose for which genomathematics was built (note
that the multiplicative factors represented by K are fixed for each given
system). The invariance of such a formulation will be proved shortly.

It is an instructive exercise for interested readers to prove that the
brackets (A,̂B) are Lie-admissible, although not Jordan-admissible.

It is easy to verify that the above identical reformulation of Hamilton’s
historical time evolution correctly recovers the time rate of variations of
physical quantities in general, and that of the energy in particular,

dA>

dt
= (A>, H>) = [Â>, Ĥ>] +

∂Â>

∂p̂>
kα

× FNSA
kα , (3.6.66a)

dH

dt
= [Ĥ>, Ĥ>] +

∂Ĥ>

∂p̂>
kα

× FNSA
kα = vk

α × FNSA
kα . (3.6.66b)

It is easy to show that genoaction principle (3.6.66) characterizes the
following Hamilton-Jacobi-Santilli genoequations

∂̂>A>

∂̂>t̂>
+ Ĥ> = 0, (3.6.67a)

(
∂̂>A>

∂̂>â>µ
) = (

∂̂>A>

∂̂>x>k
α

,
∂̂>A>

∂̂>p>
kα

) = (R̂>
µ ) = (p̂>

kα, 0̂), (3.6.67b)

which confirm the property (crucial for genoquantization as shown be-
low) that the genoaction is indeed independent of the linear momentum.

Note the direct universality of the Lie-admissible equations for the
representation of all infinitely possible Newton equations (universality)
directly in the fixed frame of the experimenter (direct universality).

Note also that, at the abstract, realization-free level, Hamilton-Santilli
genoequations coincide with Hamilton’s equations without external terms,
yet represent those with external terms.
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The latter are reformulated via genomathematics as the only known
way to achieve invariance and derivability from a variational principle
while admitting a consistent algebra in the brackets of the time evolu-
tion [38].

Therefore, Hamilton-Santilli genoequations (3.6.66) are indeed irre-
versible for all possible reversible Hamiltonians, as desired. The origin
of irreversibility rests in the contact nonpotential forces FNSA according
to Lagrange’s and Hamilton’s teaching that is merely reformulated in an
invariant way.

The above Lie-admissible mechanics requires, for completeness, three
additional formulations, the backward genomechanics for the description
of matter moving backward in time, and the isoduals of both the forward
and backward mechanics for the description of antimatter.

The construction of these additional mechanics is lefty to the inter-
ested reader for brevity.

3.6.8 Lie-Admissible Branch of Hadronic
Mechanics and its Isodual

A simple genotopy of the naive or symplectic quantization applied
to Eq. (3.6.61) yields the genotopic branch of hadronic mechanics de-
fined on the forward genotopic Hilbert space Ĥ> with forward genostates
|ψ̂> > and forward genoinner product

<< ψ̂| > |ψ̂> > ×Î> ∈ Ĉ>. (3.6.68)

The resulting genotopy of quantum mechanics is characterized by the
forward geno-Schrödinger equations, first formulated in Refs. [42,179]
via conventional mathematics and in Ref. [14] via genomathematics)

î> >
∂̂>

∂̂>t̂>
|ψ̂> >= Ĥ> > |ψ̂> >

= Ĥ(r̂, v̂) × T̂>(t̂, r̂, p̂, ψ̂, ∂̂ψ̂. . . .) × |ψ̂> >= E> > |ψ> >, (3.6.69)

where the time orderings in the second term are ignored for simpolicity
of notation, and the forward genomomentum first formulated in Ref. [14]
thanks to the advent of said genodifferential calculus

p̂>
k > |ψ̂> >= −î> > ∂̂>

k |ψ̂> >= −i × Î>i
k × ∂i|ψ̂> >, (3.6.70)

with basic expression

Î> > |ψ̂> >= |ψ̂> >, (3.6.71)

proving that Î> is indeed the correct unit for motion forward in time.
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Note in the genoaction principle the crucial independence of isoac-
tion Â> in the linear momentum, as expressed by the Hamilton-Jacobi-
Santilli genoequations. Such independence assures that genoquantiza-
tion yields a genowavefunction solely dependent on time and coordinates,
ψ̂> = ψ̂>(t, r).

Other geno-Hamiltonian mechanics studied previously [51] do not ver-
ify such a condition, thus implying genowavefunctions with an explicit
dependence also on linear momenta, ψ̂> = ψ̂>(t, r, p) that violate the
abstract identity of quantum and hadronic mechanics whose treatment
in any case is beyond our operator knowledge at this writing.

The complementary genotopies of Heisenberg equations, today known
as Heisenberg-Santilli genoequations, were first formulated in Ref. [38]
via conventional mathematics and in Ref. [14] via genomathematics)
and can be written in their finite and infinitesimal forms

Â(t̂) = (êî×̂Ĥ×̂t̂
> ) > Â(0̂) < (<ê−î×̂t̂×̂Ĥ)

= (ei×Ĥ×T̂ >×t) × A(0) × (e−i×t×<T̂×Ĥ), (3.6.72a)

î×̂ d̂Â

d̂t̂
= (Â,̂Ĥ) = Â < Ĥ − Ĥ > Â

= Â ×< T̂ (t̂, r̂, p̂, ψ̂, . . . .) × Ĥ − Ĥ × T̂>(t̂, r̂, p̂, ψ̂, . . . .) × Â, (3.6.72b)

(r̂i ,̂ p̂j) = i × δi
j × Î>, (r̂i ,̂ r̂j) = (p̂i ,̂ p̂j) = 0, (3.6.72c)

where Eq. (3.6.72c) are the fundamental genocanonical rules and there
is no time arrow, since Heisenberg’s equations are computed at a fixed
time.

Closed irreversible systems are characterized by the Lie-isotopic sub-
case in which

î×̂ d̂Â

d̂t̂
= [Â,̂Ĥ] = Â × T̂ (t, . . .) × Ĥ − Ĥ × T̂ (t, . . .) × Â, (3.6.73a)

<T̂ (t, . . .) = T̂>(t, . . .) = T̂ (t, . . .) = T̂ †(t, . . .) �= T̂ (−t, . . .). (3.6.73b)

for which the Hamiltonian is manifestly conserved. Nevertheless the
system is manifestly irreversible. Note also the first and only known
observability of the Hamiltonian (due to its iso-Hermiticity) under ir-
revbersibility.

As one can see, brackets (A, B) are jointly Lie- and Jordan-admissible.
The genoexpectation values of an observable for the forward motion

Â> are then given by

<< ψ̂| > Â> > |ψ̂> >

<< ψ̂| > |ψ̂> >
× Î> ∈ Ĉ> (3.6.74)
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In particular, the genoexpectation values of the genounit recover the
conventional Planck’s unit as in the isotopic case,

< ψ̂| > Î> > |ψ̂ >

< ψ̂| > |ψ̂ >
= I, (3.6.75)

thus confirming that the genotopies are “hidden” in the abstract axioms
of quantum mechanics much along the celebrated Einstein-Podolsky-
Rosen argument.

Note that forward geno-Hermiticity coincides with conventional Her-
miticity. As a result, all quantities that are observables for quantum
mechanics remain observables for the above formulation.

However, unlike quantum mechanics, physical quantities are generally
nonconserved, as it must be the case for the energy,

î> >
d̂>Ĥ>

d̂>t̂>
= Ĥ × (<T̂ − T̂>) × Ĥ �= 0. (3.6.76)

Therefore, the genotopic branch of hadronic mechanics is the only
known operator formulation permitting nonconserved quantities to be
Hermitean, thus being observability.

Other formulations attempt to represent nonconservation, e.g., by
adding an “imaginary potential” to the Hamiltonian. In this case the
Hamiltonian is non-Hermitean and, consequently, the nonconservation
of the energy cannot be an observable.

Besides, “nonconservative models” with non-Hermitean Hamiltonians
are nonunitary and are formulated on conventional spaces over conven-
tional fields, thus suffering all the catastrophic inconsistencies of The-
orem 1.5.2. For additional aspects of genomechanics interested readers
may consult Ref. [61].

The above formulation must be completed with three additional Lie-
admissible formulations, the backward formulation for matter under
time reversal and the two additional isodual formulations for antimatter.
Their study is left to the interested reader for brevity.

3.6.9 Simple Construction of Lie-Admissible
Theories

As it was the case for the isotopies, a simple method has been iden-
tified in Ref. [44] for the construction of Lie-admissible (geno-) theories
from any given conventional, classical or quantum formulation. It con-
sists in identifying the genounits as the product of two different nonuni-
tary transforms,

Î> = (<Î)† = U × W †, <Î = W × U †, (3.6.77a)
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U × U † �= 1, W × W † �= 1, U × W † = Î>, (3.6.77b)

and subjecting the totality of quantities and their operations of conven-
tional models to said dual transforms,

I → Î> = U × I × W †, I →< Î = W × I × U †, (3.6.78a)

a → â> = U × a × W † = a × Î>, (3.6.78b)

a →< â = W × a × U † =< Î × a, (3.6.78c)

a × b → â> > b̂> = U × (a × b) × W>

= (U × a × W †) × (U × W †)−1 × (U × b × W †), (3.6.78d)

∂/∂x → ∂̂>/∂̂>x̂> = U × (∂/∂x) × W † = Î> × (∂/∂x), (3.6.78e)

< ψ| × |ψ >→<< ψ| > |ψ> >= U × (< ψ| × |ψ >) × W †, (3.6.78f)

H × |ψ >→ Ĥ> > |ψ> >

= (U × H × W †) × (U × W †)−1 × (U × ψ > W †), etc. (3.6.78g)

As a result, any given conventional, classical or quantum model can
be easily lifted into the genotopic form.

Note that the above construction implies that all conventional physical
quantities acquire a well defined direction of time. For instance, the
correct genotopic formulation of energy, linear momentum, etc., is given
by

Ĥ> = U × H × W †, p̂> = U × p × W>, etc. (3.6.79)

In fact, under irreversibility, the value of a nonconserved energy at a
given time t for motion forward in time is generally different than the
corresponding value of the energy for −t for motion backward in past
times.

This explains the reason for having represented in this section energy,
momentum and other quantities with their arrow of time >. Such an
arrow can indeed be omitted for notational simplicity, but only after the
understanding of its existence.

3.6.10 Invariance of Lie-Admissible Theories
Recall that a fundamental axiomatic feature of quantum mechanics

is the invariance under time evolution of all numerical predictions and
physical laws, which invariance is due to the unitary structure of the
theory.

However, quantum mechanics is reversible and can only represent in a
scientific way beyond academic beliefs reversible systems verifying total



LIE-ISOTOPIC AND LIE-ADMISSIBLE TREATMENTS 223

conservation laws due to the antisymmetric character of the brackets of
the time evolution.

As indicated earlier, the representation of irreversibility and noncon-
servation requires theories with a nonunitary structure. However, the
latter are afflicted by the catastrophic inconsistencies of Theorem 1.5.2.

The only resolution of such a basic impasse known to the author has
been the achievement of invariance under nonunitarity and irreversibil-
ity via the use of genomathematics, provided that such genomathematics
is applied to the totality of the formalism to avoid evident inconsisten-
cies caused by mixing different mathematics for the selected physical
problem.11

Such an invariance was first achieved by Santilli in Ref. [44] of 1997
and can be illustrated by reformulating any given nonunitary transform
in the genounitary form

U = Û × T̂>1/2, W = Ŵ × T̂>1/2, (3.6.80a)

U × W † = Û > Ŵ † = Ŵ † > Û = Î> = 1/T̂>, (3.6.80b)

and then showing that genounits, genoproducts, genoexponentiation,
etc., are indeed invariant under the above genounitary transform in ex-
actly the same way as conventional units, products, exponentiations, etc.
are invariant under unitary transforms,

Î> → Î>′
= Û > Î> > Ŵ † = Î>, (3.6.81a)

Â > B̂ → Û > (A > B) > Ŵ †

= (Û × T̂> × A × T> × Ŵ †) × (T̂> × W †)−1 × T̂>

×(Û × T̂>)−1 × (Û × T> × Â × T> × Ŵ>)

= Â′ × (Û × Ŵ †)−1 × B̂ = Â′ × T̂> × B′ = Â′ > B̂′, etc. (3.6.81b)

from which all remaining invariances follow, thus resolving the catastrophic
inconsistencies of Theorem 1.5.2.

Note the numerical invariances of the genounit Î> → Î>′ ≡ Î>, of the
genotopic element T̂> → T̂>′ ≡ T̂>, and of the genoproduct >→>′≡>
that are necessary to have invariant numerical predictions.

3.6.11 Genorelativity and its Isodual
Another important implication of genomathematics is the construc-

tion of yet another lifting of special relativity, this time intended for the
invariant characterization of irreversible classical, quantum and gravita-
tional processes, today known as Santilli’s genorelativity.
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Studies in the new relativity were initiated with memoir [23] of 197812

and continued in monographs [49,50]. The studies were then continued
via the genotopies of: the background Euclidean topology [14]; the Min-
kowski space [15]; the Poincaré symmetry [29]; the physical laws; etc.
The geno-Galilean case is treated in monographs [52,53] which appeared
prior to the advent of the genodifferential calculus [14]. The relativistic
case is outlined in Ref. [29].

Regrettably, we cannot review genorelativity in details to avoid a pro-
hibitive length. For the limited scope of this presentation it is sufficient
to indicate that genorelativity can be also constructed from the isorel-
ativity of the preceding section via the lifting of the isounits into time
dependent and/or nonsymmetric forms, with consequential selection of
an ordering of the product to identify the selection direction of time.

Alternatively, all aspects of genorelativity can be explicitly constructed
by subjecting the corresponding aspects of conventional special relativity
to the dual noncanonical or nonunitary transform, as of Section 3.6.

The result is a fully invariant description of irreversible and nonconser-
vative processes in classical mechanics, particle physics and gravitation.
Note that the latter is achieved thanks to the first known admission of
a nonsymmetric metric in the genotopic realization of the Minkowskian
axioms, as necessary for a credible representation of irreversible gravi-
tational events, such as the explosion of a star.

Note finally that, as it was the case for isorelativity, all distinctions
between special and general relativity are lost also for genorelativity
because the two relativities are again unified into one single relativity
verifying the same basic axioms, and merely differentiated via different
realizations of the basic unit.

As it is well known, throughout the 20-th century thermodynamics has
been basically disjoint from Hamiltonian mechanics precisely because
the former is strictly irreversible, e.g., for the increase of the entropy in
realistic systems, while the latter is strictly reversible.

It appears that the Lie-admissible classical and operator genomechan-
ics presented in this section change the above setting and offer, appar-
ently for the first time, realistic possibility for an interconnection be-
tween thermodynamics and mechanics, according to studies left to the
interested reader.

3.6.12 Lie-Admissible Hypertheories and their
Isoduals

In this author’s opinion, the biggest scientific imbalance of the 20-th
century has been the treatment of biological systems (herein denoting
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DNA, cells, organisms, etc.) via the mathematics, physics and chemistry
developed for inanimate matter, such as that of classical and quantum
mechanics.

The imbalance is due to the fact that conventional mathematics and
related formulations are inapplicable for the treatment of biological sys-
tems for various reasons.

To begin, biological events, such as the growth of an organism, are ir-
reversible. Therefore, any treatment of biological systems via reversible
mathematics, physical and chemical formulations can indeed receive
temporary academic acceptance, but cannot pass the test of time.

Quantum mechanics is ideally suited for the treatment of the structure
of the hydrogen atom or of crystals, namely systems that are fully re-
versible. These systems are represented by quantum mechanics as being
ageless. Recall also that quantum mechanics is unable to treat deforma-
tions because of incompatibilities with basic formulations, such as the
group of rotations.

Therefore, the rigorous application of quantum mechanics to biological
structures implies that all organisms from cells to humans are perfectly
reversible, rigid and eternal.

Even after achieving the invariant formulation of irreversibility out-
lined in the preceding section, it is easy to see that the underlying geno-
mathematics remains insufficient for in depth treatment of biological
systems.

Recent studies conducted by Illert [56] have pointed out that the shape
of sea shells can certainly be represented via conventional mathematics,
such as the Euclidean geometry.

However, the latter is inapplicable for a representation of the growth in
time of sea shells. Computer simulations have shown that the imposition
to sea shell growth of conventional geometric axioms (e.g., those of the
Euclidean or Riemannian geometries) causes the lack of proper growth,
as expected, because said geometries are strictly reversible, while the
growth of sea shells is strictly irreversible.

The same studies by Illert [56] have indicated the need of a mathemat-
ics that is not only structurally irreversible, but also multi-dimensional.
As an example, Illert achieved a satisfactory representation of sea shells
via the doubling of the Euclidean reference axes, namely, a geometry
which appears to be six-dimensional.

A basic problem in accepting such a view is the lack of compatibility
with our sensory perception. When holding sea shells in our hands, we
can fully perceive their shape as well as their growth with our three
Eustachian tubes.
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In particular, our senses are fully capable of perceiving deviations
from the Euclidean space, as well as the possible presence of curvature.

These occurrences pose a rather challenging problem, the achievement
of a representation of the complexity of biological systems via the most
general possible mathematics that is:

(1) is structurally irreversible (as in the preceding section);
(2) can represent deformations;
(3) is invariant under the time evolution;
(4) is multi-dimensional; and, last but not least,
(5) is compatible with our sensory perception.
A search in the mathematical literature revealed that a mathematics

verifying all the above five requirements did not exist and had to be
constructed from the main features of biological systems.

As an example, in their current formulations hyperstructures (see
Ref. [96] lack a well defined left and right unit even under their weak
equalities, they are not structurally irreversible, and they lack invari-
ance. Consequently, they are not suitable for applications in biology.

After numerous trials and errors, a yet broader mathematics verifying
the above five conditions was identified by Santilli in Ref. [14] (see
also Refs. [13,47] monograph [57]; it is today known under the name
of Santilli hypermathematics; and it is characterized by the following
hyperunits here expressed for the lifting of the Euclidean unit

I = Diag.(1, 1, 1) → Î>(t, x, v, ψ, ∂xψ, . . .) = Diag.(Î>
1 , Î>

2 , Î>
3 )

= Diag.
[
(Î>

11, Î
>
12, . . . , Î

>
1m), (Î>

21, Î
>
22, . . . , Î

>
2m),

(Î>
31, Î

>
32, . . . , Î

>
3m)

]
, (3.6.82a)

I = Diag.(1, 1, . . . , 1) →< Î(t, x, v, ψ, . . .) = Diag.(<Î1,
< Î2,

< Î3)

= Diag.
[
(<Î11,

< Î12, . . . ,
< Î1m), (<Î21,

< Î22, . . . ,
< Î2m),

(<Î31,
< Î32, . . . ,

< Î3m)
]
, (3.6.82b)

with corresponding ordered hyperproducts to the right and to the left

A > B = A × T̂> × B, A < B = A ×< T̂ × B, (3.6.83a)

Î> > A = A > Î> = A, <Î < AA << Î = A, (3.6.83b)

Î> = (<Î)† = 1/T̂>, (3.6.83c)
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the only difference with genoforms is that hyperproduct are now multi-
valued, where all operations are ordinary (and not weak as in conven-
tional hyperstructures).

As one can see, the above mathematics is not 3m-dimensional, but
rather it is 3-dimensional and m-multi-valued.

Such a feature permits the increase of the reference axes, e.g., for
m = 2 we have six axes as used by Illert [56], while achieving compatibil-
ity with our sensory perception because at the abstract, realization-free
level hypermathematics characterized by hyperunit is indeed 3-dimen-
sional.

The various branches of hypermathematics (hypernumbers, hyper-
spaces, hyperalgebras, etc.) can be constructed via mere compatibility
arguments with the selected hyperunit (see monograph [57] for brevity).

A main difference of hypermathematics with the preceding formula-
tions is that in the latter the product of two numbers is indeed general-
ized but single-valued, e.g., 2 > 3 = 346.

By comparison, in hypermathematics the product of two numbers
yields, by conception, a set of values, e.g.,

2 > 3 = (12, 341, 891, . . .). (3.6.84)

Such a feature appears to be necessary for the representation of biological
systems because the association of two atoms in a DNA (mathematically
representable with the hypermultiplication) can yield an organ with an
extremely large variety of atoms.

This feature serves to indicate that the biological world has a com-
plexity simply beyond our imagination, and that studies of biological
problems conducted in the 20-th century, such as attempting an under-
standing the DNA code via numbers dating back to biblical times, are
manifestly insufficient.

The isodual hypermathematics can be constructed via the use of iso-
duality. The following intriguing and far reaching aspect emerges in
biology. Until now we have strictly used isodual theories for the sole
representation of antimatter.

As shown in the qupted literature, the complexity of biological sys-
tems is such to require the use of both hyperformulations and their
isodual for consistent and quantitative representations, as it is the case
of bifurcations.

In turn, the above occurrence implies that the intrinsic time of bio-
logical structure, here referred to as hyperbiotime, is expected to be of
a complexity beyond our comprehension because not only multivalued,
but also inclusive of all four directions of time.
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In conclusion, the achievement of invariant representations of biolog-
ical structures and their behavior can be one of the most productive
frontiers of science with far reaching implications for other branches,
including mathematics, physics and chemistry.

As an illustration, the achievement of a mathematically consistent
representation of the non-Newtonian propulsion of sap in trees up to
big heights will automatically provide a model of geometric propulsion,
namely propulsion caused via the alteration of the local geometry with-
out any external applied force.

3.7 EXPERIMENTAL VERIFICATIONS AND
INDUSTRIAL APPLICATIONS OF
HADRONIC MECHANICS

3.7.1 Experimental Verifications of Lie-Isotopic
Theories

Nowadays, the Lie-isotopic branch of hadronic mechanics has clear
experimental verifications in classical physics, particle physics, nu-
clear physics, chemistry, superconductivity, astrophysics and cosmology,
among which we quote the following representative verifications:

� The first and only known invariant representation of classical closed
non-hamiltonian systems [51].

� An axiomatically correct formulation of special relativity in terms
of the proper time by T. Gill and his associates [202]–[206].

� The proof by Aringazin [192,197] of the “universality” of Isoax-
iom III, namely, its capability of admitting as particular cases all avail-
able anomalous time dilations via different expansions in terms of dif-
ferent quantities and with different truncations.

� The exact representation of the anomalous behavior of the mean-
lives of unstable particles with speed by Cardone et al [110,111] via
Isoaxiom III of isorelativity.

� The exact representation of the experimental data on the Bose-
Einstein correlation by Santilli [112] and Cardone and Mignani [113]
under the exact Poincaré-Santilli isosymmetry.

� The invariant and exact validity of the Minkowski-Santilli isogeome-
try within the hyperdense medium in the interior of hadrons by Arestov
et al. [120].

� The achievement of an exact confinement of quarks by Kalnay [216]
and Kalnay and Santilli [217] thanks to incoherence between the external
and internal Hilbert spaces.

� The proof by Jannussis and Mignani [186] of the convergence of
isotopic perturbative series when conventionally divergent based on the
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property for all isotopic elements used in actual models T̂ � 1, thus
implying that perturbative expansions which are divergent when formu-
lated with the conventional associative product A × B become conver-
gent when re-expressed in terms of the isoassociative product A×̂B =
A × T̂ × B, since all known isounits have resullted to be much bigger
than one, thus implying isotopic elements with much smaller then one,
|Î| >> 1, |T̂ | << 1.

� The initiation by Mignani [182] of a nonpotential-nonunitary scat-
tering theory reformulated by Santilli [55] as isounitary on iso-Hilbert
spaces over isofields, thus recovering causality and probability laws for
the first known description of scattering among extended particles with
consequential contact-nonpotential interactions.

� The first and only known exact and invariant representation by
Santilli [114,115] of nuclear magnetic moments and other nuclear char-
acteristics thanks to the mutation of particle characteristics caused by
nonpotential interactions, which exact representation has escaped quan-
tum mechanics for about one century.

� The first and only known model by Animalu [170] and Animalu and
Santilli [116] of the Cooper pair in superconductivity with an attrac-
tive force between the two identical electrons in excellent agreement with
experimental data.

� The exact representation via isorelativity by Mignani [118] of the
large difference in cosmological redshifts between quasars and galaxies
when physically connected;

� As it is well known, the exact representation of molecular data could
not be achieved by quantum chemistry for about one century because
missing about 2% of the data. One of the most important experimental
verifications of hadronic mechanics has been the achievement of a main
objective for which it was built: the first exact and invariant represen-
tation from unadulterated first axiomatic principles of all experimental
data of the hydrogen, water and other molecules, including the miss-
ing 2%.

The representation was achieved by R. M. Santilli and D. D. Shillady
[125,126] (see also the comprehensive treatment in monograph [59])
via the use of nonrelativistic hadronic mechanics based on a simple
isounit in which, as one can see, there are no free parameters for ad
hoc fits of experimental data, but only a quantitative description of
wave-overlappings, with isorelativistic extension characterized by 4-dim-
ensional isounits.

The above studies confirmed the existence of contact nonpotential
interactions at the most ultimate level of nature, that of elementary
particles such as the electrons, because the representation of the missing
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2% was proved to depend crucially on interactions beyond the capability
of a Hamiltonian.

We should recall that, due to the missing 2% and other insufficiencies
to represent data, quantum chemistry has lately introduced the so-called
“screenings of the Coulomb potential” into forms of the type

V ∗(r) = ek×r × q1 × q2

r
, k ∈ R, (3.7.1)

that do indeed improve the representation of experimental data.
However, as stressed in monograph [59], the Coulomb potentials is

one of the most fundamental invariants of quantum chemistry. It is then
easy to prove that the map from the conventional to screened Coulomb
potentials is nonunitary. Consequently, screened Coulomb potentials are
outside the class of equivalence of quantum chemistry.

In any case, the quantization of the energy is solely possible for the
conventional Coulomb law, and does not exist any more for its screening.

It then follows that the continued use in chemistry of the word “quan-
tum” for screened Coulomb potential is a academic politics deprived of
scientific content.

Ref. [59], that screened Coulomb potentials are particular cases of the
Santilli-Shillady strong valence force, trivially, because hadronic chem-
istry is nonunitary by conception, thus admitting an infinite class of
liftings of the Coulomb law, although this time no longer masqueraded
under the name of quantum chemistry.

It should be noted that, whether in valence coupling or not, electrons
repel each other. Also, the total electric or magnetic forced between neu-
tral atoms are identically null, while exchange, van der Waals and other
forces of current use in chemistry are basically insufficient to represent
the strength of molecular bonds [59].

Studies [125,126] achieved the first and only known strongly attractive
force between pairs of identical valence electrons in singlet coupling at
short distance, proved to originate from nonlocal, nonlinear and nonpo-
tential interactions due to deep overlappings of electron’s wavepackets.13

The achievement of a deeper understanding of molecular bonds has
far reaching scientific implications. In fact, it confirms that nonlocal,
nonlinear and non potential interactions exist in all interior problems
at large, such as the structure of hadrons, nuclei and stars, and imply
basically new structure models in which the constituents are isoparticles
(irreducible representation of the Poincaré-Santilli isosymmetry), rather
than conventional particles in vacuum.

� The original proposal of 1978 to build hadronic mechanics [38] in-
cluded the proof that all characteristics of the π◦ meson can be repre-
sented in an exact and invariant way via a bound state of one isoelectron
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ê− and its antiparticle ê+ under conditions of mutual penetration within
10−13 cm,

πo = (ê−, ê+)HM ; (3.7.2)

the π± meson can be represented via a bound state of three isoelectrons,

π± = (πo, e±)HM = (ê−, ê±, ê+)HM ; (3.7.3)

and the remaining mesons can be similarly identified as hadronic bound
states of massive isoparticles produced free in the spontaneous decays
with the lowest mode.

� Following the prior achievement of the isotopies of the SU(2) spin
[28], Ref. [214] of 1990 achieved for the first time the exact and invariant
representation of all characteristic of the neutron as a nonrelativistic
hadronic bound state of one isoproton and one isoelectron according to
Rutherford’s original conception,

n = (p̂+, ê−)HM . (3.7.4)

Under spontaneous decay, the isoparticles constituting the neutron reac-
quire their conventional particle configuration,

n → p+ + e− + ν̄, (3.7.5)

thus confirming the new law of hadronic mechanics already proved for
the structure model of mesons with physical constituents, according to
which the actual particles constituting unstable hadrons can be identified
in the massive constituents of the spontaneous decays with the lowest
mode.

The relativistic extension of the model was reached in Ref. [30], jointly
with the first invariant isotopies of Dirac’s equation. Subsequently, it was
easy to see that all unstable baryons can be considered as hadronic bound
states of massive isoparticles, again those generally in the spontaneous
decays with the lowest modes.

Compatibility of the above new structure models of hadrons and
SU(3)-color theories was achieved via the assumption that quarks are
composite, a view first expressed by Santilli [225] in 1981, and the use of
hypermathematics with different units for different hadrons [31].

This approach essentially yields the hyperrealization ŜU(3) in which
composite hyperquarks are characterized by the multivalued isounit with
isotopic element T̂ = (T̂u, T̂d, T̂s), resulting in hypermultiplets of mesons,
baryons, etc.

The compatibility of this hypermodel with conventional theories is
established by the isomorphism between conventional SU(3) and the
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hyper-ŜU(3), the latter merely being a broader realization of the axioms
of the former.

The significance of this hypermodel is illustrated by the fact that all
perturbative series which are divergent for SU(3) are turned into con-
vergent forms because T̂u, T̂d, T̂s � 1 under which, as indicated earlier,
all divergent perturbative series expressed in terms of the conventional
product A × B become convergent when re-expressed in terms of the
hyperproduct A × T̂ × B.

Compatibility with the structure model of hadrons with ordinary mas-
sive constituents is evident from the fact that quarks result to be com-
posed of ordinary massive isoparticles.

It should be recalled that none of the above hadronic models are
possible for quantum mechanics, e.g., because the representation of the
rest energies of hadrons would require “positive binding energies”14

These and other objections were resolved by the covering hadronic
mechanics due to the isorenormalizations (also called mutations) of the
rest energies and other features of the constituents caused by nonlocal,
nonlinear and nonpotential interactions.

� Predictably, the reduction of the neutron to a bound state of an
isoproton and an isoelectron has permitted a new structure model of
nuclei as hadronic bound states of isoprotons and isoelectron [113,114],
with the conventional quantum models based on protons and neutrons
remaining valid in first approximation.

According to quantum mechanics, the ground state of the deuteron

D = (p+, n◦)QM , (3.7.6)

should have spin zero since it is a two body system for which the most
stable state is the singlet. However, as is well known, experimental
data have established that the deuteron ground state has spin 1. This
value can only be represented in quantum mechanics as a triplet coupling
(with parallel spin) that, however, is highly unstable for hadrons at short
mutual distances.15 Consequently, one of the historical insufficiencies
of quantum mechanics in the 20-th century has been the inability to
understand the spin of the deuteron.

The new isostructure model of nuclei has permitted the first known
understanding of the reason why the deuteron ground state has spin 1
since it is a three-body system for hadronic mechanics,

D = (p̂+, ê−, p̂+)HM , (3.7.7)

thus admitting 1 as the lowest possible angular momentum.
The isonuclear model also permitted the exact and invariant represen-

tation of all remaining characteristics of the deuteron, as well as of other
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nuclear features that have remained unexplained for about one century,
such as why the correlation among nucleons is restricted to pairs only.

In particular, the old process of keep adding potentials to the nuclear
force without ever achieving an exact representation of nuclear data has
been truncated by hadronic mechanics, due to the emergence of a com-
ponent of the nuclear force that is nonlocal, nonlinear and nonpotential
due to the mutual penetration of the charge distribution of nucleons es-
tablished by nuclear data (e.g., via the ratio between nuclear volumes
and the sum of the volume of the nucleon constituents).

� In astrophysics, hadronic mechanics has permitted the formulation
of deeper models of neutron stars as being composed of isoprotons and
isoelectrons with deeper understanding of a number of events, such as
the explosion of stars.

� The exact representation by Santilli [117] of the internal blue- and
red-shift of quasar’s cosmological redshift.

� The elimination of the need for a missing mass in the universe by
Santilli [34] thanks to isoaxiom V.

3.7.2 Experimental Verifications of
Lie-Admissible Theories

Hadronic mechanics has reached an additional number of experimental
verifications for its broader Lie-admissible branch, among which we note:

� The first identification of the connection between Lie-admissibility
and supersymmetries by Adler [211];

� The first and only known optimization of the shape of extended
objects moving within resistive media via the optimal control theory
[14] following the achievement of the universality of the genoaction for
all possible resistive forces;

� The experimental validity of genotheories in classical mechanics is
established by the direct representation of all nonconservative and ir-
reversible Newtonian systems by Hamilton-Santilli genoequations via a
simple algebraic calculation with Eq. (3.6.64).

� The experimental validity of genotheories in particle physics is es-
tablished by the fact that all dissipative nuclear models represented via
imaginary potentials in the Hamiltonian and other nonunitary theories
can be identically reformulated in terms of the genotopic branch of had-
ronic mechanics, while preserving the representation of experimental
data identically.

� Above all, genomathematics and its related formulations have indeed
achieve the objective for which they were built, namely, an invariant rep-
resentation of irreversibility at all levels, from Newtonian to elementary
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particle physics. Such an objective can be achieved via the following
main rules:

(i) Identify the classical origin of irreversibility in the contact non-
potential forces among extended particles, much along the historical
teaching of Newton [1], Lagrange [2] and Hamilton [3];

(ii) Represent said nonpotential forces via real-valued, nowhere sin-
gular, non-symmetric genounits and construct a mathematics which is
structurally irreversible for all reversible Hamiltonians in the sense indi-
cated earlier;

(iii) Achieve identical reformulation [4,34] of Hamilton’s equations
with external terms with a consistent algebra in the brackets of the
time evolution of Lie-admissible type according to Albert [7];

(iv) Complement the latter mechanics with the underlying genosym-
plectic geometry, permitting the mapping of the classical formulations
into operator formulations preserving said Lie-admissible character; and

(v) Identify the origin of irreversibility in the most elementary layers
of nature, such as elementary particles in their irreversible motion in the
interior of stars.

Note that a requirement for the above rules is the nonconservation
of the energy and other physical quantities, which is readily verified by
the geno-Hamilton equations (4.6.64) due to the lack of anti-symmetric
character of brackets (A, B) of the time evolution.

� An important application of genomechanics has been done by J. Ellis
et al. [122] who have shown that its Lie-admissibility provides an ax-
iomatically consistent, direct representation of irreversibility in interior
quasars structures.

In closing, it is hoped that Lagrange’s and Hamilton’s legacy of repre-
senting irreversibility with the external terms in their analytic equations
is seriously considered because it implies covering theories with momen-
tous advances in mathematics and all quantitative sciences.

� The reader should be aware that the complexity of biological struc-
tures requires the use of hypermathematics as well as its isodual, e.g.,
for quantitative interpretations of bifurcations. In fact, a quantitative
interpretation of bifurcations, e.g., in sea shells, requires four different
hypertimes and their isoduals, as indicated below.

In turn, this is sufficient to illustrate the departure from conventional
notions of a relativity suitable for quantitative studies on biological sys-
tems, known as hyperrelativity and its isodual [57]. In fact, such new
relativity requires the most general notion of numbers, those with a
multi-valued hyperunits characterized by an ordered, yet unlimited num-
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ber of non-Hermitean elements, with consequential most general possible
geometries and mechanics, plus their isoduals.

This results in an ordered, yet unlimited variety of spaces and their
isoduals all coexisting in our three-dimensional Euclidean space, plus
corresponding, equally co-existing varieties of time. There is little doubt
that such features imply dramatic departures from the simplicity, thus
insufficiency, of special relativity.

An illustration of the complexity of hyperformulations and corre-
sponding hyperrelativity is given by the four different notions of hyper-
time which are needed for the description of complex biological processes,
such as bifurcations in seashells, all in a coexisting form and each having
a multi-valued character: motion forward in future time t̂>; motion back-
ward in past time <t̂; motion forward from past time <t̂d; and motion
backward from future time t̂>d. The necessity of these four directions in
time also illustrates the need of the isodual map.

A new conception of biological systems, which constitute a truly fun-
damental advance over rather simple prior conceptions, has been recently
proposed by Erik Trell (see Ref. [164] and contributions quoted therein).
It is based on representative blocks which appear in our space to be next
to each other, thus forming a cell or an organism, while having in reality
hypercorrelations, thus having the structure of hypernumbers, hyperma-
thematics and hyperrelativity, with consequential descriptive capacities
immensely beyond those of pre-existing, generally single-valued and re-
versible biological models. Regrettably, we cannot review Trell’s new
hyperbiological model to avoid an excessive length, and refer interested
readers to the original literature [164].

3.7.3 Industrial Applications to New Clean
Energies and Fuels

In closing, it should be indicated that the studies on isotopies have
long passed the level of pure scientific relevance, because they now have
direct industrial applications for new clean energies and fuels so much
needed by our contemporary society.

As an illustration at the particle level, the synthesis of the neu-
tron from one proton and one electron according toRutherford, Eq.(3.7.4),
has been experimentally confirmed by C. Borghi et al. [123] to occur
also at low energies, although under a number of conditions studied in
monograph [58], and additional tests are under way.

Once Rutherford’s original conception of the neutron is rendered ac-
ceptable by hadronic mechanics, the electron becomes a physical con-
stituent of the neutron (although in a mutated state). In this case,
hadronic mechanics predicts the capability of stimulating the decay of
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the neutron via photons with suitable resonating frequencies and other
means, thus implying the first known form of “hadronic energy” [58]
(that is, energy originating in the structure of hadrons, rather than
in their nuclear aggregates), which has already been preliminarily con-
firmed via an experiment conducted by N. Tsagas et al. [124] (see mono-
graph [58] for scientific aspects and the web site www.betavoltaic.com
for industrial profiles).

As an illustration at the nuclear level, hadronic mechanics pre-
dicts a basically new process for controlled nuclear syntheses which is
dramatically different than both the “hot” and the “cold” fusions is cur-
rently also under industrial development, which condition prohibits its
disclosure in this memoir.

As an illustration at the molecular level, the deeper understand-
ing of the structure of molecules has permitted the discovery and ex-
perimental verifications in Ref. [27] (see also the studies by Aringazin
and his associates in Refs. [128–130] and monograph [59]) of the new
chemical species of magnecules consisting of clusters of individual atoms,
dimers and molecules under a new bond originating from the electric and
magnetic polarization of the orbitals of atomic electrons.

In turn, the new species of magnecules has permitted the industrial
synthesis of new fuels without hydrocarbon structure, whose combustion
exhaust resolves the environmental problems of fossil fuels by surpass-
ing current exhaust requirement by the U. S. Environmental Protec-
tion Agency without catalytic converter or other exhaust purification
processes (see monograph [59] for scientific profiles and the web site
www.magnegas.com for industrial aspects).

Additional important applications of isotopies have been studied by
A. O. E. Animalu, A. K. Aringazin, R. Ashlander, C. Borgji, F. Car-
done, J. Dunning-Davies, F. Eder, J. Ellis, J. Fronteau, M. Gasperini,
T. L. Gill, J. V. Kadeisvili, A. Kalnay, N. Kamiya, S. Keles, C. N. Kto-
rides, M. G. Kucherenko, D. B. Lin, C.-X. Jiang, A. Jannussis, R. Migna-
ni, M. R. Molaei, N. E. Mavromatos, H. C. Myung, M. O. Nishioka,
D. V. Nanopoulos, S. Okubo, D. L. Rapoport, D. L. Schuch, D. S. Sour-
las, A. Tellez-Arenas, Gr. Tsagas, N. F. Tsagas, E. Trell, R. Trostel,
S. Vacaru, H. E. Wilhelm, W. Zachary, and others. These studies are
too numerous to be effectively reviewed in this memoir.
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Notes

1 In order to distinguish Eq. (3.1.2) from those used in the 20-th cen-
tury, those without external terms, the latter being known as the
truncated Lagrange equations.

2 We recall from Chapter 1 that several types of multiplications are
used in hadronic mechanics. Therefore, to avoid confusions, the lit-
erature in the field uses different symbols for their differentiation.

3 In this way the calculation of the value of an isodeterminant cancels
out all multiplications by Î except the last, thus correctly producing
an isonumber.

4 Even within the arena of the original conception (propagation of point
particles and electromagnetic waves in vacuum) there remain doubts
on the exact validity of special relativity due to its inability to admit
the aether as a universal medium that is necessary not only for the
propagation of the electromagnetic waves, but also for the very exis-
tence of elementary particles, since the latter are known to be mere
oscillations of the aether with a known frequency. Consequently,
when the aether is assumed as the universal medium with consequen-
tial privileged reference frame, special relativity has no arena whatever
of exact validity. In this monograph we do not consider these aspects
and assume special relativity as being valid in the sole arena of orig-
inal conception on mere grounds of pragmatic validity. The reader
should however bear in mind that the aether is, by far, the most im-
portant frontier of the physics of the third millennium with potential
advances beyond our most vivid imagination, such as new inextin-
guishable sources of energy, communications at speeds much bigger
than that of the conventional (transversal) electromagnetic waves via
conceivable longitudinal waves propagating through the aether, and
others.

5 Even within the arena of original conception, there remain a number
of unresolved epistemological and other aspects. They are ignored
here because they have no implication for the content of this chapter,
the representation of extended, nonspherical and deformable particles
under Hamiltonian of a non-Hamiltonian interaction or the propaga-
tion of electromagnetic waves within physical media.

6 Recall that the SU(3)-color theory provides the final Mendeleev-type
classification of hadrons. However, on scientific grounds outside aca-
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demic interests, quarks are purely mathematical representations of a
purely mathematical unitary symmetry defined on a purely mathe-
matical internal complex unitary space; quarks cannot be defined in
our spacetime due to the Orafearthaigh theorem; and quarks cannot
possibly have any gravity, because gravity can solely be defined for
inertial masses, that is, for masses characterized by the second order
Casimir invariant of the Poincaré symmetry, while it is known by
experts to qualify as such that quarks cannot be identified even mar-
ginally with the Poincaré symmetry. Therefore, for quark believers
to prove themselves to be scientists, they should provide a rigorous
prove of the reason their bodies do not float in space due to lack of
gravity.

7 More technically, a generally nonassociative algebra U with elements
a, b, c, . . . and abstract product ab is said to be Lie-admissible when
the attached algebra U− characterized by the product [a, b] = ab−ba
verifies the Lie axioms

[a, b] = −[b, a],

[[a, b], c] + [[b, c], a] + [[c, b], a] = 0.

8 More technically, a generally nonassociative algebra U with elements
a, b, c, . . . and abstract product ab is said to be Jordan-admissible
when the attached algebra U+ characterized by the product {a, b} =
ab + bA verifies the Jordan axioms

{a, b} = {b, a},

{{a, b}, a2} = {a, {b, a2}}.
In classical realizations of the algebra U the first axiom of Jordan-
admissibility is verified but the second is generally violated, while in
operator realizations both axioms are generally verified.

9 The author would appreciate any indication of operator formulations
of nonconservative forces under the conditions verified by hadronic
mechanics shown in the next section, namely, that nonconserved
quantities, such as the Hamiltonian, are Hermitean as a necessary
condition to be observable.

10 Note that, to verify the condition of non-Hermiticity, the time ge-
nounits can be complex valued.

11 Due to decades of protracted use it is easy to predict that physi-
cists and mathematicians may be tempted to treat the Lie-admissible
branch of hadronicmechanicswith conventionalmathematics,whether
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in part or in full. Such a posture would be fully equivalent, for in-
stance, to the elaboration of the spectral emission of the hydrogen
atom with the genodifferential calculus, resulting in an evident non-
scientific setting.

12 This memoir contains the first generalization of Noether’s Theorem
on Lie symmetries and conservation laws to Lie-admissible symme-
tries and nonconservation laws. The indication by interested col-
leagues of any prior representation of nonconservation laws via any
symmetry would be appreciated.

13 The word “strongly” is not evidently referred to strong interactions,
but to the strength of the new attractive valence bond.

14 Unlike similar occurrences in nuclear physics, the rest energy of had-
ronic bound states is much bigger than the sum of the rest energies
of the constituents, thus requiring the indicated positive binding en-
ergy that is anathema in quantum mechanics because Schrödinger’s
equations becomes inconsistent.

15 The original proposal of hadronic mechanics [38] suggested the gear
model for the understanding of couplings of extended particles at
short mutual distances. In fact, gears can only couple with antipar-
allel spins (singlet coupling), while their coupling with parallel spins
(triplet couplings) causes extreme repulsive forces, assuming that ro-
tations are allowed.
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Chapter 4

ANTIGRAVITY AND
SPACETIME MACHINES

4.1 THEORETICAL PREDICTIONS OF
ANTIGRAVITY

4.1.1 Introduction
Antigravity is one of the most ancient dreams of mankind, that has

stimulated the imagination of many researchers, from various engineer-
ing fields (see, e.g., Refs. [1,2] that also list patents), to the most
advanced branches of physics (see the prediction of antigravity in su-
pergravity theories [3,4] and proceedings [5] for other more recent ap-
proaches).

An experiment on the gravity of antiparticles was considered by Fair-
bank and Witteborn [6] via low energy positrons in vertical motion. Un-
fortunately, the measurements could not conclusive because of interfer-
ences from stray fields, excessive upward kinetic energy of the positrons
and other reasons.

Additional data on the gravity of antiparticles are those from the
LEAR machine on antiprotons at CERN [7], although these data too are
inconclusive because of the excessive energy of the antiprotons and other
factors, including the care necessary to extend the gravity of antiprotons
to all antiparticles pointed out in Chapter 2, the proved impossibility
for quarks to experience gravity, let alone antigravity, and other factors.

Additional experiments on the gravity of antiparticles are based on
neutron interferometry, such as the experiments by Testera [8], Pog-
giani [9] and others. These experiments are extremely sensitive and, as
such, definite and conclusive results continue to be elusive. In partic-
ular, the latter experiments too deal with antiprotons, thus inheriting



254 ISODUAL THEORY OF ANTIMATTER

the ambiguities of quark conjectures with respect to gravity, problems
in the extension to other antiparticles, and other open issues.

All further data on the gravity of antiparticles known to this author
are of indirect nature, e.g., via arguments based the equivalence principle
(see, e.g., Ref. [10] and papers quoted therein). Note that the latter
arguments do not apply under isoduality and will not be considered
further.

A review on the status of our knowledge prior to isodual theories is
available in Ref. [11], that includes an outline of the arguments against
antigravity, such as those by Morrison, Schiff and Good. As we shall see,
the latter arguments too cannon even be formulated under isodualities,
let alone be valid.

We can therefore conclude by stating that at this writing there exists
no experimental or theoretical evidence known to this author that is
resolutory and conclusive either against or in favor of antigravity.

One of the most intriguing predictions of isoduality is the existence of
antigravity conceived as a reversal of the gravitational attraction, first
theoretically submitted by Santilli in Ref. [12] of 1994.

The proposal consists of an experiment that is feasible with current
technologies and permits a definite and final resolution on the existence
or lack of the existence of the above defined antigravity.

These goals were achieved by proposing the test of the gravity of
positrons in horizontal flight on a vacuum tube. The experiment is
resolutory because, for the case of a 10 m long tube and very low kinetic
energy of the positrons (of the order of µeV ), the displacement of the
positrons due to gravity is sufficiently large to be visible on a scintillator
to the naked eye.

Santilli’s proposal [12] was studied by the experimentalist Mills [13]
to be indeed feasible with current technology, resolutory and conclusive.

The reader should be aware from these introductory lines that the
prediction of antigravity exists, specifically, for the isodual theory of an-
timatter and not for conventional treatment of antiparticles.

For instance, no prediction of antigravity can be obtained from Dirac’s
hole theory or, more generally, for the treatment of antimatter prior to
isoduality, that solely occurring in second quantization.

Consequently, antigravity can safely stated to be the ultimate test of
the isodual theory of antimatter.

In this chapter, we study the prediction of antigravity under various
profiles, we review the proposed resolutory experiment, and we outline
some of the far reaching implications that would follow from the possible
experimental verification of antigravity, such as the consequential exis-
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tence of a fully Causal Time Machine, although not for ordinary matter,
but for an isoselfdual combination of matter and antimatter.

4.1.2 Newtonian and Euclidean Prediction of
Antigravity

It is important to show that the prediction of antigravity can be first
formulated at the most primitive possible level, that of Newtonian me-
chanics and its isodual. All subsequent formulations will be merely con-
sequential.

The current theoretical scene on antigravity is dominated by the fact
that, as it is well known, the Euclidean, Minkowskian and Riemannian
geometries offer no realistic possibility to reverse the sign of a gravita-
tional mass or of the energy of the gravitational field.

Under these conditions, existing theories can at best predict a de-
crease of the gravitational force of antiparticles in the field of matter
(see Ref. [11] for a review of these conventional studies). In any case the
decreased interaction, as such, remains attractive.

Isodual mathematical and physical theories alter this scientific scene.
In fact, antigravity is predicted by the interplay between the classical
Euclidean geometry and its isodual. The resulting prediction of anti-
gravity persists at all levels, that is, for flat and curved spaces and
for classical or quantum formulations, in a fully consistent way without
known internal contradictions.

Also, antigravity is a simple consequence of Corollary 2.3.1 according
to which the observed trajectories of antiparticles under a magnetic field
are the projection in our spacetime of inverted trajectories in isodual
spacetime.

Once these aspects are understood, the prediction of antigravity be-
comes so simple to appear trivial. In fact, antigravity merely originates
from the projection of the gravitational field of matter in that of anti-
matter and vice-versa. We therefore have the following:

PREDICTION 4.1.1 [11,15]: The existence of antigravity, defined as a
gravitational repulsion experienced by isodual elementary particles in the
field of matter and vice-versa, is a necessary consequence of a consistent
classical description of antimatter.

Let us begin by studying this prediction in Euclidean and isodual
Euclidean spaces. Consider the Newtonian gravitational force of two
conventional (thus, positive) masses m1 and m2

F = −G × m1 × m2/r < 0, G, m1, m2 > 0, (4.1.1)
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where G is the gravitational constant and the minus sign has been used
for similarity with the Coulomb law.

Within the context of conventional theories, the masses m1 and m2

remain positive irrespective of whether referred to a particle or an an-
tiparticle. This yields the well known “universal law of Newtonian at-
traction”, namely, the prediction that the gravitational force is attractive
irrespective of whether for particle-particle, antiparticle-antiparticle or
particle-antiparticle.

Again, the origin of this prediction rests in the assumption that an-
tiparticles exist in our spacetime, thus having positive masses, energy
and time. Under isoduality the situation is different. For the case of
antiparticle-antiparticle under isoduality we have the different law

F d = −Gd ×d md
1 ×d md

2/
drd > 0, Gd, md

1, m
d
2 < 0. (4.1.2)

But this force exists in the different isodual space and is defined with
respect to the negative unit −1. Therefore, isoduality correctly rep-
resents the attractive character of the gravitational force between two
isodual particles.

The case of particle-antiparticle under isoduality requires the projec-
tion of the isodual particle in the space of the particle (or vice versa),
and we have the law

F = −G × m1 × md
2/r > 0, (4.1.3)

that now represents a repulsion, because it exists in our spacetime with
unit +1, and it is opposite to force (4.1.1). This illustrates antigravity
as per Prediction 4.1.1 when treated at the primitive Newtonian level.

Similarly, if we project the particle in the spacetime of the antiparticle,
we have the different law

F d = −Gd ×d md
1 ×d m2/

drd < 0, (4.1.4)

that also represents repulsion because referred to the unit −1.
We can summarize the above results by saying that the classical repre-

sentation of antiparticles via isoduality renders gravitational interactions
equivalent to the electromagnetic ones, in the sense that the Newtonian
gravitational law becomes equivalent to the Coulomb law, thus necessarily
including both attraction and repulsions.

The restriction in Prediction 4.1.1 to “elementary” isodual particles
will soon turn out to be crucial in separating science from its political
conduct, and de facto restricts the experimental verification of antigrav-
ity to positrons in the field of Earth.

Note also that Prediction 4.1.1 is formulated for “isodual particles”
and not for antiparticles. This is due to the fact indicated in preceding
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sections that, according to current terminologies, antiparticles are de-
fined in our spacetime and have positive masses, energy and time. As
such, no antigravity of any type is possible for antiparticles as conven-
tionally understood.

4.1.3 Minkowskian and Riemannian Predictions
of Antigravity

It is important to verify the above prediction at the classical relativis-
tic and gravitational levels.

Let M(x, η, R) be the conventional Minkowskian spacetime with co-
ordinates x = (r, t) (as a column) and metric η = Diag.(1, 1, 1,−1) over
the field of real numbers R(n, +,×) with unit I = Diag.(1, 1, 1, 1). The
Minkowski-Santilli isodual space [16] is given by (Section 2.2.8)

Md(xd, ηd, Rd), xd = −xt, ηd = Diag.(−1,−1,−1, +1), (4.1.5a)

Id = Diag.(−1,−1,−1,−1). (4.1.5b)

The isodual electromagnetic field on Md(xd, ηd, Rd) is given by

F d
µν = ∂d

νAd
µ − ∂d

µAd
ν = −F d

νµ, µ, ν = 1, 2, 3, 4, (4.1.6)

with isodual energy-momentum tensor

T d
µν = (1d/d4d × md) ×d [F (dαµ ×d F d

αν

+(1d/d4d) ×d gd ×d F d
αβ ×d F dαβ ] = −T t

νµ, (4.1.7)

where g is a known constant depending on the selected unit (whose
explicit value is irrelevant for this study). Most importantly, the fourth
component of the isodual energy-momentum tensor is negative-definite,

T d
00 < 0. (4.1.8)

As such, antimatter represented in isodual Minkowski geometry has
negative-definite energy, and other physical characteristics, and evolves
backward in time. It is an instructive exercise for the interested reader to
prove that the results of the Newtonian analysis of the preceding section
carry over in their entirety to the Minkowskian formulation [16].

Consider now a Riemannian space R(x, g, R) in (3+1)-dimensions
with spacetime coordinates x and metric g(x) over the reals R with
basic unit I = diag.(1, 1, 1, 1) and related Riemannian geometry as pre-
sented, e.g., in Refs. [10,17]. As outlined in Section 2.1.7, the isodual
iso-Riemannian spaces are given by

Rd(xd, gd, Rd) : xd = −xt, gd(xd) = −gt(−xt), (4.1.9a)
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Id = Diag.(−1,−1,−1,−1). (4.1.9b)

Recall that a basic drawback in the use of the Riemannian geometry
for the representation of antiparticles is the positive-definite character
of its energy-momentum tensor.

In fact, this character causes unsolved inconsistencies at all subsequent
levels of study of antimatter, such as lack of a consistent quantum image
of antiparticles.

These inconsistencies are resolved ab initio under isoduality. In fact,
the isodual Riemannian geometry is defined over the isodual field of real
numbers Rd for which the norm is negative-definite (Section 2.2.1).

As a result, all quantities that are positive in Riemannian geometry
become negative under isoduality, thus including the energy-momentum
tensor. In particular, energy-momentum tensors in the Riemannian
geometry are given by relativistic expression (2.1.49i) and, as such, they
remain negative-definite when treated in a Riemannian space.

It then follows that in the isodual Riemannian treatment of the grav-
ity of antimatter, all masses and other quantities are negative-definite,
including the isodual curvature tensor, Eq. (2.1.49c).

Despite that, the gravitational force between antimatter and antimat-
ter remain attractive, because said negative curvature is measured with
a negative unit.

As it was the case at the preceding Euclidean and Minkowskian levels,
the isodual treatment of the gravitation of matter-antimatter systems
requires its projection either in our spacetime or in the isodual spacetime.
This again implies a negative curvature in our spacetime [16] resulting
in Prediction 4.1.1 of antigravity at the classical Riemannian level too.

4.1.4 Prediction of Antigravity from Isodual
Einstein’s Gravitation

Einstein’s gravitation is generally defined (see, e.g., Ref. [10]) as the
reduction of gravitation in the exterior problem in vacuum to pure curva-
ture in a Riemannian space R(x, g, R) with local spacetime coordinates
x and metric g(x) over the field of real numbers R without a source,
according to the celebrated field equations

Gµν = Rµν − gµν × R/2 = 0, (4.1.10)

where Gµν is generally referred to as the Einstein tensor, Rµν is the
Ricci tensor, and R is the Ricci scalar.

As it is well known, Einstein’s conception of gravitation as above iden-
tified does not permit antigravity, and this occurrence has been a mo-
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tivation for the absence of serious experimental studies in the field, as
indicated in Section 1.4.1.

However, we have indicated in preceding chapters that the problem of
antigravity cannot be confidently formulated, let alone treated, in Ein-
stein’s gravitation, due to the impossibility of consistently treating anti-
matter.

As indicated earlier, the only possible formulation of antimatter is
that by only changing the sign of the charge. However, this formulation
is inconsistent with quantization since it leads to particles, rather than
antiparticles, with the wrong sign of the charge.

At any rate, the most important formulation of the gravity of anti-
matter is that for astrophysical bodies with null total charge, as expected
for an antimatter star or an antimatter neutron star.

The impossibility for any credible treatment of antimatter is then
established by the fact that according to Einstein’s conception of gravi-
tation the gravitational fields equations for matter and antimatter stars
with null total charge are identical.

These inconsistencies are resolved by the isodual theory of antimatter
because it implies the novel isodual field equations for antimatter defined
on the isodual Riemannian space [16] Rd(xd, gd, Rd) with local isodual
spacetime coordinates xd = −xt and isodual metric gd(xd) = −gt(−xt)
over the isodual field of real numbers Rd

Gd
µν = Rd

µν − gd
µν × Rd/d2d = 0. (4.1.11)

The latter representation is based on a negative-definite energy-mo-
mentum tensor, thus having a consistent operator image, as shown in
Chapter 3.

We, therefore, conclude this analysis with the following:

THEOREM 4.1.1 : Antigravity is a necessary and sufficient condition
for the existence of a classical formulation of antimatter compatible with
its operator counterpart.

Proof. Assume the validity of Einstein’s gravitation for matter and
its isodual for antimatter. Then, the former has a positive curvature
tensor and the latter has a negative curvature tensor.

Therefore, the projection of the gravitational field of antimatter in the
spacetime of matter implies a negative curvature tensor in our spacetime,
namely, antigravity, or, vice-versa, a positive curvature tensor in the iso-
dual spacetime, that is also repulsive, and this proves the sufficiency.
The necessity comes from the fact that the only formulation of anti-
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matter compatible with operator counterparts is that based on negative
energies and masses.

In turn, geometric formulations of negative energies and masses nec-
essarily imply, for consistency, a negative curvature tensor. Still in turn,
when projected in the space of matter, a negative curvature necessarily
implies antigravity and the same occurs for the projection of matter in
the field of antimatter. q.e.d.

4.1.5 Identification of Gravitation and
Electromagnetism

In addition to the above structural inability by Einstein’s equations
(4.1.10) to represent antimatter, Einstein’s gravitation is afflicted by
a litany of inconsistencies for the treatment of matter itself studied in
Section 1.4 whose resolution requires a number of structural revisions of
general relativity.

It is important to show that the prediction of antigravity, not only
persists, but it is actually reinforced for gravitational theories resolving
the inconsistencies of Einstein’s gravitation.

The first catastrophic inconsistency of Einstein’s gravitation crucial
for the problem of antigravity is that of Theorem 1.4.1 on the irrecon-
cilable incompatibility between Einstein’s lack of source in vacuum and
the electromagnetic origin of mass.

As stressed in Section 1.4, this inconsistency is such that, either one
assumes Einstein’s gravitation as correct, in which case quantum electro-
dynamics must be reformulated from its foundation to prevent a first-
order source in vacuum, or one assumes quantum electrodynamics to
be correct, in which case Einstein’s gravitation must be irreconcilably
abandoned.

The second catastrophic inconsistency of Einstein’s gravitation is that
of Theorem 1.4.2 identifying the incompatibility of field equations (4.1.10)
and the forgotten Freud identity of the Riemannian geometry,

Rα
β−

1
2
×δα

β×R−1
2
×δα

β×Θ = Uα
β +∂V αρ

β /∂xρ = k×(tαβ+τα
β ), (4.1.12)

where
Θ = gαβgγδ(ΓραβΓρ

γβ − ΓραβΓρ
γδ), (4.1.13a)

Uα
β = −1

2
∂Θ

∂gρα
|ρ

gγβ ↑γ , (4.1.13b)

V αρ
β =

1
2
[gγδ(δα

β Γρ
αγδ − δρ

βΓρ
αδ)

+(δρ
βgαγ − δα

β gργ)Γδ
γδ + gργΓα

βγ − gαγΓρ
βγ ]. (4.1.13c)
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The latter inconsistency requires the addition in the right-hand-side
of Eq. (4.1.10) of two source tensors for astrophysical bodies with null
total charge.

As stressed in Section 1.4, the above two inconsistencies are deeply
inter-related because complementary to each other, since the inconsis-
tency of Theorem 1.4.2 is the dynamical counterpart of the inconsistency
of Theorem 1.4.2 on geometric grounds.

A systematic study of the resolution of these inconsistencies was con-
ducted by Santilli [18] in 1974.

The classical gravitational formulation of antimatter can be done in
the Riemannian-Santilli isodual space Rd(xd, gd, Rd) studied in Sections
2.1.7 and 2.2.11.

To avoid catastrophic inconsistencies, the field equations of antimatter
should be compatible with the basic geometric axioms of the isodual
Riemannian geometry, including, most importantly, the isodual Freud
identity [16], that can be written

Rα
β

d − 1
2

d

×d δα
β

d ×d Rd − 1
2

d

×d δα
β

d ×d Θd

= kd ×d (T dα
β + Υdα

β ). (4.1.14)
with corresponding isodualities for Eq. (4.1.13) here assumed as known.

These studies then lead to the following:

PREDICTION 4.1.2: [18] IDENTIFICATION OF GRAVITATION
AND ELECTROMAGNETISM. In the exterior problem in vacuum, grav-
itation coincides with the electromagnetic interactions creating the grav-
itational mass with field equations

GExt.
µν = Rµν − gµν × R/2 = k × TElm

µν , (4.1.15)

where the source tensor TElm
µν represents the contribution of all charged

elementary constituents of matter with resulting gravitational mass

mGrav =
∫

d3x × TElm
00 , (4.1.16)

while in the interior problem gravitation coincides with electromagnetic
interactions plus short range weak, strong and other interactions creating
the inertial mass with field equations

GInt.
µν = Rµν − gµν × R/2 = k × (TElm

µν + ΥShortRange
µν ), (4.1.17)

where the source tensor ΥShortRange
µν represents all possible short range

interactions in the structure of matter, with inertial mass

mInert =
∫

d3x × (TElm
oo + ΥShortRange

00 ), (4.1.18)
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and general law
mInert > mGrav. (4.1.19)

The same identification of gravitation and electromagnetism then exists
for antimatter with field equations and mass expressions given by a sim-
ple isodual form of the preceding ones.

A few comments are in order. All studies on the problem of “unifi-
cation” of gravitation and electromagnetism prior to Ref. [18] known
to this author1 treated the two fields as physically distinct, resulting in
the well known historical failures to achieve a consistent unification dat-
ing back to Albert Einstein (see next chapter for a detailed study). An
axiomatically consistent theory emerges if gravitation and electromag-
netism are instead “identified”, as first done by Santilli [18] in 1974.

Also, Prediction 4.1.2 implies a theory on the origin of the gravita-
tional field, rather than a theory providing its “description”, as available
in standard treatises such as [10]. This is due to the fact that in Identifi-
cation 4.1.2 all mass terms are completely eliminated and replaced with
the fields originating mass.

In this way, the use of any mass term in any theory is an admission
of our ignorance in the structure of the considered mass.

We should indicate for completeness that the identification of exterior
gravitational and electromagnetic fields appears to be disproved by the
assumption that quarks are physical constituents of hadrons, owing to
the known large value of their “masses”.

However, as indicated in Chapter 1, gravitation solely exists in our
spacetime and cannot be consistently extended to mathematical unitary
symmetries. Also, the only masses that can consistently create grav-
itation are those defined in our spacetime, thus necessarily being the
eigenvalues of the second-order Casimir invariant of the Poincaré sym-
metry.

Since quarks cannot be defined in our spacetime, they cannot be con-
sistently characterized by the Poincaré symmetry and their masses are
not the eigenvalues of the second-order Casimir invariant of the latter
symmetry, the use of quark masses has no scientific value in any gravita-
tional profile. This is the reason why quark “masses” have been ignored
in Ref. [18] as well as in this chapter.

It is well established in quantum electrodynamics that the mass of
the electron is entirely of electromagnetic origin. Therefore, a gravita-
tional theory of the electron in which the source term solely represents
the charge contribution is incompatible with quantum electrodynamics.
In fact, the latter requires the entire reduction of the electron mass to
electromagnetic fields according to Eq. (4.1.16).
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Note in particular that, since the electron has a point-like charge, we
have no distinction between exterior and interior problems with conse-
quential identity

mGrav
Electron ≡ mInert

Electron. (4.1.20)

When considering a neutral, extended and composite particle such as
the π◦, the absence of a source tensor of electromagnetic nature ren-
ders gravitation, again, incompatible with quantum electrodynamics, as
established in Ref. [18] and reviewed in Section 1.4.

By representing the π◦ as a bound state of a charged elementary par-
ticle and its antiparticle in high dynamical conditions, quantum electro-
dynamics establishes the existence not only of a non-null total electro-
magnetic tensor, but one of such a magnitude to account for the entire
gravitational mass of the π◦ according to Eq. (4.1.16) and gravitational
mass

mGrav
π◦ =

∫
d3x × TElm

00 π◦ . (4.1.21)

Unlike the case of the electron, the π◦ particle has a very large charge
distribution for particle standards. Moreover, the structure of the π◦
particle implies the additional weak and strong interactions, and their
energy-momentum tensor is not traceless as it is the case for the elec-
tromagnetic energy-momentum tensor.

Therefore, for the case of the π◦ particle, we have a well-defined dif-
ference between exterior and interior gravitational problems, the latter
characterized by Eq. (4.1.18), i.e.,

mInert
π◦ =

∫
d3x × (TElm

00 + ΥShortRange
00 ) > mGrav

π◦ . (4.1.22)

The transition from the π◦ particle to a massive neutral star is concep-
tually and technically the same as that for the π◦. In fact, the star itself
is composed of a large number of elementary charged constituents each in
highly dynamical conditions and, therefore, each implying a contribution
to the total gravitational mass of the star as well as to its gravitational
field.

The separation between exterior and interior problems, the presence
of only one source tensor for the exterior problem and two source tensors
for the interior problems, and the fact that the inertial mass is bigger
than the gravitational mass is the same for both the π◦ and a star with
null total charge.

For the case of a star we merely have an increased number of elemen-
tary charged constituents resulting in the expression [18]

mGrav
Star = Σp=1,2,3,...

∫
d3x × TElem.Constit.

00 . (4.1.23)
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Note that when the star has a non-null total charge there is no need
to change field equations (4.1.15) since the contribution from the total
charge is automatically provided by the constituents.

As it is well known, there exist numerous other theories on the iden-
tity as well as the possible differentiation of gravitational and inertial
masses (see, e.g., Ref. [10]). However, these theories deal with exterior
gravitational problems while the studies here considered deal with the
interior problem, by keeping in mind that inertial masses are a strictly
interior problem, the exterior problem providing at best a geometric
abstraction.

Nevertheless, one should remember that all these alternative theories
are crucially based on Einstein’s gravitation, while the theory presented
in this section is based on quantum electrodynamics. Therefore, none
of the existing arguments on the differences between gravitational and
inertial masses is applicable to the theory here considered.

Note finally that conventional electromagnetism is represented by a
first-order tensor, the electromagnetic tensor Fµν of type (2.2.37a) and
related first-order Maxwell’s equations (2.2.37b) and (2.2.37c).

When electromagnetism is identified with exterior gravitation, it is
represented with a second-order tensor, the energy-momentum tensor
Tµν of type (4.1.7) and related second-order field equations (4.1.15).

4.1.6 Prediction of Antigravity from the
Identification of Gravitation and
Electromagnetism

Another aspect important for this study is that the identification of
gravitation and electromagnetism in the exterior problem in vacuum im-
plies the necessary existence of antigravity.

In fact, the identification implies the necessary equivalence of the phe-
nomenologies of gravitation and electromagnetism, both of them neces-
sarily experiencing attraction and repulsion.

Note that this consequence is intrinsic in the identification of the two
fields and does not depend on the order of the field equations (that is first
order for electromagnetism and second order for gravitation as indicated
earlier.

Alternatively, for the exterior problem of matter we have the field
equations on R(x, g, R) over R

GExt.
µν = Rµν − gµν × R/2 = k × TElm

µν , (4.1.24)
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in which the curvature tensor is positive, and for the exterior problem of
antimatter we have the isodual equations on Rd(xd, gd, Rd) over Rd

Gd,Ext.
µν = Rd

µν − gd
µν × Rd/2 = k × T d,Elm

µν , (4.1.25)

in which the curvature tensor is negative.
The prediction of antigravity, Prediction 4.1.1, follows as a trivial

extension of that of the preceding sections and occurs when the gravi-
tational field of antimatter is projected in that of matter, or vice-versa,
since such a projection implies a negative curvature in a Riemannian
space that, by definition, is antigravity.

The prediction of antigravity is so strong that it is possible to prove
that the lack of existence of antigravity would imply the impossibility of
identifying gravitation and electromagnetism.

In turn, the lack of such identification would necessary require the
impossibility for masses to have appreciable electromagnetic origin, re-
sulting in the need for a structural revision of the entire particle physics
of the 20-th century.

4.1.7 Prediction of Gravitational Repulsion for
Isodual Light Emitted by Antimatter

Another important implication of the isodual theory of antimatter
is the prediction that antimatter emits a new light, the isodual light,
that experiences repulsion when in the vicinity of the gravitational field
of matter, or vice-versa [19], where the isodual electromagnetic waves
emitted by antimatter are given by Eq. (2.3.37), i.e.,

F d
µν = ∂dAd

µ/d∂dxνd − ∂dAd
ν/

d∂dxdµ, (4.1.26a)

∂d
λF d

µν + ∂d
µF d

νλ + ∂d
νF d

λµ = 0, (4.1.26b)

∂d
µF dµν = −Jdν . (4.1.26c)

The gravitational repulsion then emerges from the negative energy of the
above isodual waves when in the field of matter. Vice versa, electromag-
netic waves emitted by matter are predicted to experience antigravity
when in the gravitational field of antimatter because they have a positive
energy.

Note that isodual electromagnetic waves coincide with conventional
waves under all known interactions except gravitation. Alternatively,
the isodual electromagnetic waves requires the existence of antigravity
at a pure classical level for their proper identification.

In turn, the experimental confirmation of the gravitational repulsion
of light emitted by antimatter would have momentous astrophysical and
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cosmological implications, since it would permit for the first time the-
oretical and experimental studies as to whether far away galaxies and
quasars are made up of matter or of antimatter.

It is important in this connection to recall that all relativistic quantum
field equations admit solutions with positive and negative energies. As it
is the case for Dirac’s equations, relativistic field equations are generally
isoselfdual, thus admitting solutions with both positive and negative
energies.

The former are used in numerical predictions, but the negative-energy
states are generally discarded because they are believed to be “unphys-
ical.”

The isodual theory implies a significant revision of the interpretation
of quantum field theory because the solutions of relativistic equations
with positive energy are defined in our spacetime and represent particles,
while the joint solutions with negative energy are actually defined on the
isodual spacetime and represent antiparticles.

This re-interpretation cannot be presented in this chapter for brevity.
In fact, a systematic study of isodual photons requires the formulation
of isodual quantum field theory that would render prohibitive the length
of this chapter.

It is hoped that interested colleagues will indeed work out the pro-
posed isodual quantum field theory, with particular reference to the isod-
ual re-interpretation of advanced and retarded solutions, Green distribu-
tions, Feynman diagrams, and all that, because of various implications,
such as those in conjugation of trajectories or in the transition from
particles to antiparticles.

In closing, the reader should keep in mind that the isodual theory of
antimatter resolves all conventional inconsistencies on negative energies
as well as against antigravity (see also Section 2.3.15).

4.2 EXPERIMENTAL VERIFICATION
OF ANTIGRAVITY

4.2.1 Santilli’s Proposed Test of Antigravity
for Positrons in Horizontal Flight

By far the most fundamental experiment that can be realized by
mankind with current technologies is the measure of the gravitation of
truly elementary antiparticles, such as the positron, in the field of Earth.

Irrespective of whether the outcome is positive or negative, the exper-
iment will simply have historical implications for virtually all of physics,
from particle physics to cosmology for centuries to come.
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If antigravity is experimentally established, the location of the experi-
ment is predicted to become a place of scientific pilgrimage for centuries,
due to the far reaching implications, such as the consequential existence
of a Causal Time Machine outlined later on in this chapter.

An inspection of the literature soon reveals that the problem of the
gravity of antiparticles in the field of Earth is fundamentally unsettled
at this writing, thus requiring an experimental resolution.

On theoretical grounds, all arguments based on the weak equivalence
principle [10] are dismissed as inconclusive by the isodual theory of anti-
matter, since the latter predicts that bound states of particles and their
isoduals experience attraction in the gravitational field of Earth.

At any rate, no argument against antigravity based on general rela-
tivity can be considered scientifically valid without first the resolution of
the catastrophic inconsistencies of gravitation, such as those expressed
by the various inconsistency theorems of Section 1.4.

Similarly, all experiments conducted to date on the test of the grav-
ity of antiparticles not bounded to matter are equally inconclusive, to
the author’s best knowledge.2 A direct measurement of the gravity of
positrons was considered in 1967 by Fairbanks and Witteborn [6] via
electrons and positrons in a vertical vacuum tube.

However, the test could not be conducted because preliminary tests
with electrons discouraged the use of positrons due to excessive distur-
bances caused by stray fields, impossibility of ascertaining the maximal
height of the electrons, and other problems.

Neutron interferometric measurements of the gravity of antiprotons
have been studied by Testera [8], Poggiani [9] and others. However,
these experiments are highly sophisticated, thus implying difficulties,
such as those for securing antiprotons with the desired low energies,
magnetic trapping of the antiprotons, highly sensitive interferometric
measurements of displacements, and others.

A number of important proposals to text the gravity of antimatter
have been submitted to CERN and at other laboratories by T. Gold-
man, R. J. Hughes, M. M. Nieto, et al. [22–25], although no resolutory
measurement has been conducted to date to the author best knowledge,
perhaps in view of the excessive ambiguities for an accurate detection
of the trajectories of antiparticles under Earth’s gravitational field in
existing particle accelerators (see in this respect Figure 4.2).

Additional important references are those studying the connection
between antigravity and quantum gravity [26–29], although the latter
should be studied by keeping in mind Theorem 1.5.2 on the catastrophic
inconsistencies of quantum gravity when realized via nonunitary struc-
tures defined on conventional Hilbert spaces and fields.3
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In view of these unsettled aspects, an experiment that can be resolu-
tory with existing technologies, that is, establishing in a final form either
the existence of the lack of existence of antigravity, has been proposed
by Santilli in Ref. [12] of 1994.

The experiment essentially requires a horizontal vacuum tube ranging
from 100 meters in length and 0.5 meter in diameter to 10 m in length
and 1 m in diameter depending on used energies, with axial collimators
at one end and a scintillator at the other end as in Figure 4.1. The
proposed test then consists in:

1) Measuring the location in the scintillator of lack of gravitational
displacement via a collimated photon beam (since the gravitational dis-
placement on photons at the considered distances is ignorable);

2) Measuring on the same scintillator the downward displacement
due to Earth’s gravity on an electron beam passing through the same
collimators, which downward displacement is visible to the naked eyes for
sufficiently small electron energies (for instance, we can have a downward
displacement due to gravity of 5 mm, that is visible to the naked eye,
for electron kinetic energies of 25 µeV along 100 m horizontal flight, or
for electrons with 2 µeV along a 10 m horizontal flight); and

3) Measuring on the same scintillator the displacement due to Earth’s
gravity on a positron beam passing through the same collimators, which
displacement is also visible to the naked eye for positron energies of the
order of a few µeV.

If the displacement due to gravity of the positrons is downward, the
test would establish the lack of existence of antigravity. On the contrary,
the detection of an upward displacement of the positrons would establish
the existence of antigravity.

An alternative proposal was submitted by Santilli [20] via the use
of the so-called particle decelerator in the shape of a doughnut of a
diameter of about 10 m and 50 cm in sectional diameter (Figure 4.2).
The main idea is that low energy beams of electrons and positrons could
be decelerated via the use of magnetic fields down to the energy needed
to achieve a displacement due to gravity sufficiently larger than the
dispersion to be visible to naked eye, at which point the particles are
released into a scintillator.

We have stressed throughout this presentation that the only exper-
imental verification of the theoretical prediction of antigravity recom-
mendable at this writing, is that for truly elementary antiparticles in the
gravitational field of matter without any bound to other particles, such
as an isolated beam of positrons under the gravitation field of Earth.
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Figure 4.1. A schematic view of the proposal to test the gravity of positrons sug-
gested by Santilli [12] in 1994 via a horizontal vacuum tube with a scintillator at the
end in which a collimated beam of photons is used to identify the point in the scin-
tillator of no displacement due to gravity, and collimated beams of very low energy
electrons and, separately, positrons are used to measure displacements due to gravity.
The latter are indeed visible to the naked eye for sufficiently low kinetic energy of
the order of a few µeV. Santilli’s proposal [12] was studied by the experimentalist
J. P. Mills, jr. [13], as reviewed in the next section.

Other tests of antigravity, if conducted before the above tests with
positrons and used for general claims on antigravity, can likely lead to
ambiguities or a proliferations of unnecessary controversies.

The reasons for this restriction are numerous. Firstly, the study of
the gravity of particle-antiparticle systems, such as a bound state of
one electron and one positron at large mutual distances according to
quantum mechanics (QM),

Positronium = (e−, e+)QM , (4.2.1)

is strongly discouraged for a first “test of antigravity”, because all theo-
ries, including the isodual theory, predict attraction of the positronium
in the field of matter. Therefore, under no condition can any possible
experimental verification of this prediction be used as a credible claim
on the lack of existence of antigravity at large.
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Figure 4.2. A schematic view of the alternative proposal submitted for study by the
author [20] at the National High Magnetic Field Laboratory, Tallahassee, Florida,
in December 1995. The main idea is to use the established techniques for “particle
accelerators” for the construction of a “particle decelerator” that would slow down the
initial energy of electron and positron beams down to the amounts needed to produce
displacement due to gravity sufficiently bigger than the spread due to stray fields to
produce a definite-resolutory answer visible to the naked eye. Suggested dimensions
of the “particle decelerator” are 10 m in diameter with a sectional diameter of 0.5 m
and two entrances-exits, one used for the entrance-exit of the electron beam and the
other for the positron beam. The study conducted by Mills [13] for the horizontal
tube indicates that the “particle decelerator” here considered is also feasible and will
produce a resolutory answer.

Second, the above restriction eliminates the use of muons for a first
test of antigravity, because, in view of their instability and decay modes,
and as studied in detail in the next chapter, hadronic mechanics (HM)
predicts that muons are a bound state of electrons and positrons in
conditions of total mutual penetrations of their wavepackets at very
short mutual distances,

µ± = (e−, e±, e+)HM , (4.2.2)
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with consequential highly nonlocal effects structurally beyond any credi-
ble treatment by quantum mechanics. Under this structure, both muons
and antimuons are predicted to experience gravitational attraction only
because the possible antigravity of the positron is expected to be less
than the gravity of basic electron-positron system.

A similar restriction applies against the use of mesons for first tests of
antigravity because they are bound states of particles and antiparticles
that, as such, are predicted not to experience antigravity in the field
of matter. This is particularly the case for pions. Similarly, a first use
of kaons for experiments on antigravity can only result in un-necessary
controversies in view of their unsettled structure.

Serious reservation also exist for the first use of antiprotons and anti-
neutrons due to their basically unsettled structure. As stressed earlier,
the use of current quark conjecture prevents antiprotons and antineu-
trons to have any gravity at all, let alone antigravity, as rigorously proved
by the fact indicated earlier that gravity can only be defined in our phys-
ical spacetime while quarks can only be defined in their internal mathe-
matical unitary space, as well as by the lack of credibly defines “quark
masses” as inertial eigenvalues of the second order Casimir invariant of
the Poincaré group (see the Appendix of Ref. [8]).

Equally equivocal can be at this stage of our knowledge the conduction
of first gravitational measurements via the sole use of the antihydrogen
atom for intended general results on antigravity, evidently because its nu-
cleus, the antiproton, is believed to be a bound state of quarks for which
no gravity at all can be consistently defined. Any study of antigravity
under these unsettled structural conditions can only lead to un-necessary
controversies, again, if used for general results on antigravity.

It is evident that, until baryons theories are afflicted by such fun-
damental problematic aspects, as the inability even to define gravity in
a credible way, no gravitational measurement based on antiprotons and
antineutrons can be credibly used as conclusive for all of antimatter.

After the resolution of the gravitational behavior of unbounded posit-
rons in the field of matter, the tests for the gravitational behavior of
positronium, muons, muonium, pions, pionium, antiprotons, antineu-
trons, antihydrogen atom, etc. become essential to acquire an experi-
mental background sufficiently diversified for serious advances on anti-
matter beyond the level of personal beliefs one way or the other.

The fundamental test of the gravity of positrons here considered was
proposed by the author to the following institutions:

1) Stanford Linear Acceleration Center, Stanford, USA, during and
following the Seventh Marcel Grossmann Meeting on General Relativity
held at Stanford University in July 1994;
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2) The Joint Institute for Nuclear Research in Dubna, Russia, during
the International Conference on Selected Topics in Nuclear Physics held
there in August 1994;

3) The National High Magnetic Field Laboratory in Tallahassee, Flo-
rida, during a meeting there in 1996 on magnetic levitation;

4) CERN, Geneva, Switzerland, during a presentation there of had-
ronic mechanics;

5) Brookhaven National Laboratories, following the participation at
the Sepino meeting on antimatter of 1996 [5];
and to other laboratories as well to universities in various countries.

It is regrettable for mankind that none of these laboratories or univer-
sities expressed interest in even considering to date such a fundamental
experiment, by preferring to spend much bigger public funds for esoteric
experiments manifestly lesser important than that of antigravity.

4.2.2 Santilli’s Proposed Tests of Antigravity
for Isodual Light

Additionally, in 1997 Santilli [19] predicted that antimatter emits a
new light, the isodual light, that is predicted to be repelled by the grav-
itational field of matter, and proposed its experimental verification as
the only known (or even conceivable) possibility of ascertaining whether
far-away galaxies and quasars are made up of matter or of antimatter.

Measurements as to whether light emitted by the antihydrogen atoms
now produced at CERN are attracted or repelled by matter is pre-
dictably more delicate than the test of the gravity of the positron, ev-
idently because gravitational displacements for photons in horizontal
flight are extremely small, as well know, thus requiring very sensitive
interferometric and other measurements.

The experimental detection as to whether far-away galaxies and qua-
sars are made up of matter or of antimatter is predictably more complex
and requiring longer periods of time, but with immense scientific impli-
cations whatever the outcome.

The test can be done in a variety of ways, one of which consists of
measuring the deflection of light originating from far away astrophys-
ical objects when passing near one of our planets. Comparative mea-
surements of a sufficiently large number of galaxies and quasars should
permit the detection of possible repulsions, in the event it exists.

Another test has been privately suggested by to the author by an
astrophysicist and consists in reinspecting all existing astrophysical data
on the deflection of light from far away galaxies and quasars when passing
nearby astrophysical bodies.
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In the opinion of this astrophysicist, it appears that evidence for the
repulsion of light already exists in these data. Such a possible evidence
has been ignored so far, and, if found, could not be admitted publicly
at the moment, simply because Einstein’s gravitation does not allow for
any prediction of gravitational repulsion of light.

An understand is that, for these astrophysical measurements to be
credible, astrophysicists must conduct the study of a vary large number
of galaxies and quasars (of the order of several thousands), and the
considered galaxies and quasars must be sufficiently far away to render
plausible their possible antimatter structure.

4.2.3 Mills’ Studies of Santilli’s Proposed Tests of
Antigravity

The experimentalist J. P. Mills, jr., [13] conducted a survey of all sig-
nificant experiments on the gravity of antiparticles in the field of Earth,
including indirect tests based on the weak equivalence principle and di-
rect experiments with antiparticles, by concluding that the problem is
basically unsettled on theoretical and experimental grounds, thus requir-
ing an experimental resolution.

After considering all existing possible tests, Mills’ conclusion is that
Santilli’s proposed test [12] on the measurement of the gravitational
deflection of electrons and positron beams of sufficiently low energy in
horizontal flight in a vacuum tube of sufficient length and shielding, is
preferable over other possible tests, experimentally feasible with current
technology, and providing a resolutory answer as to whether positrons
experience gravity or antigravity.

As it is well known, a main technical problem in the realization of
Santilli’s test is the shielding of the horizontal tube from external elec-
tric and magnetic field, and then to have a tube structure in which the
internal stray fields have an ignorable impact on the gravitational de-
flection, or electrons and positrons have such a low energy for which the
gravitational deflection is much bigger than possible contributions from
internal stray fields, such as the spreading of beams.

The electric field that would cancel the Earth gravitational force on
an electron is given by

E = me × g/e = 5.6 × 10−11 V/m. (4.2.3)

As it is well known, an effective shielding from stray fields can be ob-
tained via Cu shells. However, our current understanding of the low
temperature zero electric field effect in Cu shells does not seem suffi-
cient at this moment to guarantee perfect shielding from stray fields.
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Mills [13] then suggested the following conservative basic elements for
shielding the horizontal tube.

Assuming that the diameter of the tube is d and the shielding enclo-
sure is composed of randomly oriented grains of diameter λ, the statis-
tical variation of the potential on the axis of the tube of a diameter d
would then be [13]

∆V =
λ

d ×√
π

, (4.2.4)

As expected, the effect of stray fields at the symmetry axis of the tube
is inversely proportional to the tube diameter. As we shall see, a tube
diameter of 0.5 m is acceptable, although one with 1 m diameter would
give better results.

Given a work function variation of 0.5 eV, 1 µm grains and d = 30 cm,
we would have the following variation of the potential on the axis of the
horizontal tube

∆V = 1 µeV. (4.2.5)

Differences in strain or composition could cause larger variations in
stray fields. To obtain significant results without ambiguities for the
shielding effect of low temperature Cu shells, Mills [13] suggests the use
of electrons and positrons with kinetic energies significantly bigger than
1 µeV. As we shall see, this condition is met for tubes with minimal
length of 10 m and the diameter of 1 m, although longer tubes would
evidently allow bigger accuracies.

The realization of Santilli’s horizontal vacuum tube proposed by Mills
[13] is the following. As shown in Figure 4.3, the tube would be a long
dewar tube, consisting of concentric shells of Al and Mu metals, with
Pb and Nb superconducting shells and an inner surface coated with an
evaporated Cu film.

There should be two superconducting shells so that they would go
superconducting in sequence [Nb (9.25 K), Pb (7.196 K)], evidently for
better expulsion of flux. Trim solenoids are also recommended for use
within the inner shell and a multitude of connections to the Cu field for
trimming electrostatic potentials.

As also shown in Figure 4.3, the flight tube should be configured with
an electrostatic lens in its center for use of electron and positron beams
in both horizontal directions, as well as to focus particles from a source at
one end into a gravity deflection sensitive detector at the other end. The
de Broglie wavelength of the particles results in the position resolution

d = 2.4 × π × αB × c × L

v × D
, (4.2.6)
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Figure 4.3. A schematic view of the realization suggested by Mills [13] of the hori-
zontal tube proposed by Santilli [12].

where α = 1/137 is the fine structure constant, aB = 0.529Å is the Bohr
radius of hydrogen, c is the velocity of light, v is the electron or positron
velocity, L is the length of the horizontal path, and D is the diameter of
the lens aperture in the center of the flight tube.

The vertical gravitational deflection is given by

∆y = g × L2

2 × v2
, (4.2.7)

Given L = 100 m, D = 10 cm, v/c = 10−5 (i.e., for 25 µeV particles), we
have

∆y = 5 mm. (4.2.8)

For 1meV particles the resolution becomes

∆y = 125 µm. (4.2.9)
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Therefore, one should be able to observe a meaningful deflection us-
ing particles with kinetic energies well above the expected untrimmed
fluctuation in the potential.

Mills also notes that the lens diameter should be such as to minimize
the effect of lens aberration. This requirement, in turn, dictates the
minimum inside diameter of the flight tube to be 0.5 m.

The electron source should have a cooled field emission tip. A suf-
ficient positron source can be provided, for example, by 0.5 ci of 22Na
from which we expect (extrapolating to a source five times stronger)
3 × 107 e+/s in a one centimeter diameter spot, namely a positron flux
sufficient for the test.

Ideal results are obtained when the positrons should be bunched into
pulses of 104 e+ at the rate of 103 bunches per second. Groups of 103

bunches would be collected into macrobunches containing 106 e+ and 20
nsec in duration. The positrons would be removed from the magnetic
field and triply brightness enhanced using a final cold Ni field remoder-
ator to give bunches with 104 e+, 10 meV energy spread, an ellipsoidal
emission spot 0.1 µm high and 10 µm wide and a 1 radian divergence.

However, stray fields are notoriously weak and decrease rapidly with
the distance. Therefore, there is a diametr of the vacuum tube for which
stray fields are expected to have value on the axis insufficient to disrupt
the test via a spreding of the beams. Consequently, the proposed tests
is also expected to be resolutory via the use of very low energy positrons
as available, e.g., from radioactive sources.

As a matter of fact, the detection in the scientillator of the same
clear gravitational deflection due to gravity by a few positrons would be
sufficient to achieve a final resolution, provided, of course, that these few
events can be systematically reproduced.

After all, the reader should compare the above setting with the fact
that new particles are nowadays claimed to be discovered at high en-
ergy laboratories via the use of extremely few events out of hundreds of
millions of events on record for the same test.

The beam would then be expanded to 100 µm×1 cm cross section and
a 1 mrad divergence, still at 10 meV. Using a time dependent retarding
potential Mills would then lower the energy spread and mean energy to
100 µeV with a 2 µs pulse width. Even assuming a factor of 1,000 loss of
particles due to imperfections in this scheme, Mills’ set-up would then
have pulses of about 10 positrons that could be launched into the flight
tube with high probability of transmissions at energy of 0 to 100 µeV.

The determination of the gravitational force would require many sys-
tematic tests. The most significant would be the measurements of the
deflection as a function of the time of flight (enhance the velocity v)
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∆v(e±,±v) for both positrons and elections and for both signs of the
velocity relative to the lens on the axis of the tube, v > 0 and v < 0,
the vertical gravitational force on a particle of charge q is

Fy = −m × g + q × Ey + q × vz × Bx/c. (4.2.10)

The deflection is then given by

∆y =
∫ L

0

∫ z′

0
q × [E(z′′) + v × B(z′′)/c]

×dz′′ × dz′/(m × v2) − g × z2/2 × v2. (4.2.11)

In lowest order, Mills neglects the transverse variation in Ey and Bx

and writes for the average fields

ε =
1
L2

∫ L

0

∫ z′

0
Ey(z′′)dz′′ × dz′, (4.2.12)

and

β =
1
L2

∫ L

0

∫ z′

0
Bx(z′′) × dz′′ × dz′. (4.2.13)

Note that these are not simple averages, but the averages of the run-
ning averages. They depend on the direction of the velocity. In the
approximation that there are not significantly different from simple av-
erages, the average of the four deflection ∆y for both positrons and
electrons and for both signs of the velocity is independent of ε and β
and it is given by

< ∆y > = (g+ + g−) × L2

v2
. (4.2.14)

where g± refers to the gravitational acceleration of e±. Since we also have
the velocity dependence of the ∆y’s, and can manipulate E and B by
means of trim adjustments, it will be possible to unravel the gravitational
effect from the electromagnetic effect in this experiment.

In summary, the main features proposed by Mills [13] for Santilli’s
[12] horizontal vacuum tube are that:

1) The tube should be a minimum of 10 m long and 1 m in diameter,
although the length of 100 m (as proposed by Santilli [12]) and 0.5 m in
diameter is preferable;

2) The tube should contain shields against internal external electric
and magnetic fields and internal stray fields. According to Mills [13], this
can be accomplished with concentric shells made of Al, double shells of
Mu metal, double shells of superconducting Nb and Pb, and a final
internal evaporated layer of fine grain of Cu;
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3) Use bright pulsed sources of electrons and, separately, positrons,
at low temperature by means of phase space manipulation techniques
including brightness enhancement;

4) Time of flight and single particle detection should be tested to
determine the displacement of a trajectory from the horizontal line as a
function of the particle velocity;

5) Comparison of measurements should be done using electrons and
positrons traversing the flight tube in both directions.

The use of electrons and positrons with 25 µeV kinetic energy would
yield a vertical displacement of 5 mm at the end of 100 m horizontal
flight, namely, a displacement that can be distinguished from displace-
ments caused by stray fields and be visible to the naked eye, as insisted
by Santilli [12].

Mills [13] then concludes by saying that “. . . an experiment to mea-
sure the gravitational deflection of electrons and positrons in horizontal
flight, as suggested by R. M. Santilli, . . . is indeed feasible with current
technologies. . . . and should provide a definite resolution to the problem
of the passive gravitational field of the positron”.

4.3 CAUSAL SPACETIME MACHINE
4.3.1 Introduction

In preceding sections of this monograph we have indicated the far
reaching implications of a possible experimental verification of antigrav-
ity predicted for antimatter in the field of matter and vice versa, such
as a necessary revision of the very theory of antimatter from its classical
foundations, a structural revision of any consistent theory of gravita-
tion, a structural revision of any operator formulation of gravitation,
and others.

In this section we show that another far reaching implications of the
experimental detection of antigravity is the consequential existence of a
Causal Time Machine [14], that is the capability of moving forward or
backward in time without violating the principle of causality, although,
as we shall see, this capability is restricted to isoselfdual states (bound
states of particles and antiparticles) and it is not predicted by the isodual
theory to be possible for matter or, separately, for antimatter.

It should be stressed that the Causal Time machine here considered
is a mathematical model, rather than an actual machine. Nevertheless,
science has always surpassed predictions. Therefore, we are confident
that, as it has been the cases for other predictions, one the Causal Time
Machine is theoretically predicted, science may indeed permits its actual
construction, of course, in due time.
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As we shall see, once a causal Time Machine has been identified, the
transition to a causal SpaceTime Machine with the addition of motion
in space is direct and immediate.

4.3.2 Causal Time Machine
As clear from the preceding analysis, antigravity is only possible if

antiparticles in general and the gravitational field of antimatter, in par-
ticular, evolve backward in time. A time machine is then a mere conse-
quence.

Causality is readily verified by the isodual theory of antimatter for
various reasons. Firstly, backward time evolution measured with a nega-
tive unit of time is as causal as forward time evolution measured with a
positive unit of time. Moreover, isoselfdual states evolve according to the
time of the gravitational field in which they are immersed. As a result,
no violation of causality is conceivably possible for isoselfdual states.

Needless to say, none of these causality conditions are possible for
conventional treatments of antimatter.

The reader should be aware that we are referring here to a “Time
Machine,” that is, to motion forward and backward in time without
space displacement (Figure 4.4). The “Space-Time Machine” (that is,
including motion in space as well as in time), requires the isodualities as
well as isotopies of conventional geometries studied in Chapter 3 and it
will be studied in the next section.

The inability to have motion backward in time can be traced back
to the very foundations of special relativity, in particular, to the basic
time-like interval between two points 1 and 2 in Minkowski space as a
condition to vrify causality

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 − (t1 − t2)2 × c2 < 0. (4.3.1)

defined on the field of real numbers R(n,×, I), I = Diag.(1, 1, 1, 1).
The inability to achieve motion backward in time then prevents the

achievement of a closed loop in the forward light cone, thus including
motion in space and time, since said loop would necessarily rquire motion
backward in time.

Consider now an isoselfdual state, such as the positronium or the π◦
meson (Section 2.3.14). Its characteristics have the sign of the unit of
the observer, that is, positive time and energy for matter observers and
negative times and negative energies for antimatter observers. Then a
closed loop can be achieved as follows [14]:

1) With reference to Figure 4.4, expose first the isoselfdual state to
a field of matter, in which case it evolved forward in time from a point
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Figure 4.4. A schematic view of the simplest possible version of the “Time Machine”
proposed in Ref. [14] via an isoselfdual state such as the positronium or the π◦

meson that are predicted to move forward (backward) in time when immersed in
the gravitational field of matter (antimatter). The Time Machine then follows by a
judicious immersion of the same isoselfdual state first in the fields of matter and then
in that of antimatter. No causality violation is possible because of the time evolution
for isoselfdual states is that of the field in which they are immersed in.

at time t1 to a point at a later time t2 where the spacetime coordinates
verify the time-like invariant (4.3.1) with t2 > t1;

2) Subsequently, expose the same isoselfdual state to a field of anti-
matter in which case, with the appropriate intensity of the field and the
duration of the exposure, the state moves backward in time from time
t2 to the original time t1, where the spacetime coordinates still verify
invariant (4.3.1) with t2 < t1 although in its isodual form.

We, therefore, have the following:
PREDICTION 4.3.1 [14]: Isoselfdual states can have causal motions

forward and backward in time, thus performing causal closed loops in the
forward light cone.

Note that the above causal Time Machine implies gravitational at-
traction for both fields of matter and antimatter, owing to the use of an
isoselfdual test particle, in which case we only have the reversal of the
sign of time and related unit.

Note also that the use of a particle or, separately, of an antiparticle
would violate causality.

Numerous time machines exist in the literature. However, none of
them appears to verify causality and, as such, they are ignored.
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Other time machines are based on exiting our spacetime, entering
into a mathematical space (e.g., of complex unitary character), and then
returning into our spacetime to complete the loop.

Other attempts have been based on quantum tunnelling effects and
other means.

By comparison, the Causal Time Machine proposed in Ref. [14]
achieves a closed loop at the classical level without exiting the forward
light cone and verifying causality.4

4.3.3 Isogeometric Propulsion
All means of locomotion developed by mankind to date, from pre-

historic times all the way to current interplanetary missions, have been
based on Newtonian propulsions, that is, propulsions all based on New-
ton’s principle of action and reaction.

As an example, human walking is permitted by the action generated
by leg muscles and the reaction caused by the resistance of the feet on
the grounds. The same action and reaction is also the origin of all other
available locomotions, including contemporary automobiles or rockets
used for interplanetary missions.

Following the identification of the principle of propulsion, the next
central issue is the displacement that is evidently characterized by the
Euclidean distance. We are here referring to the conventional Euclid-
ean space E(r, δ, R) over the reals R with familiar coordinates r =
(x, y, z) × I, metric δ = Diag.(1, 1, 1), units for the three axes I = I3×3

= Diag(1 cm, 1 cm, 1 cm) hereon used in their dimensionless form
I = Diag.(1, 1, 1), and Euclidean distance that we write in the isoinvari-
ant form

D2 = r2 × I = (x2 + y2 + z2) × I ∈ R. (4.3.2)

The geometric locomotion can be defined as the covering of distances
via the alteration (also called deformation) of the Euclidean geometry
without any use of action and reaction. The only possible realization of
such a geometric locomotion that avoid the theorems of catastrophic
inconsistencies of Section 1.5, as well as achieves compatibility with
our sensory perception (see below), is the isogeometric locomotion [15b]
namely, that permitted by the Euclid-Santilli isogeometry and relative
isodistance.

We are here referring to the Euclid-Santilli isospace (Section 3.2)
Ê(r̂, δ̂, R̂) over the isoreals R̂ with isocoordinates r̂ = (x, y, z)× Î, metric
δ̂ = T̂3×3 × δ, isounits for the three isoaxes

Î = Î3×3 = Diag(n2
1 cm, n2

2 cm, n2
3 cm) = 1/T̂3×3 > 0 (4.3.3)
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that will also be used hereon in the dimensionless form

Î = Diag(n2
1, n2

2, n2
3), (4.3.4)

and isodistance that we write in the isoinvariant form5

D̂2̂ = r̂2̂ = (x2/n2
1 + y2/n2

2 + z2/n2
3) × Î ∈ R̂, (4.3.5)

in which case the deformation of the geometry is called geometric mu-
tation.6

It is evident that D̂ can be bigger equal or smaller than D. Con-
sequently, the isogeometric locomotion occurs when D̂ < D, as in the
example below

Î = Diag.(n2
1, 1, 1) � I = Diag.(1, 1, 1), T̂ � I, (4.3.6a)

D̂2̂ = (x2/n2
1 + y2 + z2) � D2 = (x2 + y2 + z2). (4.3.6b)

The understanding of the above locomotion requires a knowledge of
the isobox of Section 3.2. Consider such an isobox and assume that it
is equipped with isogeometric locomotion. In this case, there is no dis-
placement at all that can be detected by the internal observer. However,
the external observer detects a displacement of the isobox the amount
x2 − x2/n2

1.
This type of locomotion is new because it is causal, invariant and

occurs without any use of the principle of action and reaction and it is
geometric because it occurs via the sole local mutation of the geometry.

The extension to the causal spacetime machine, or spacetime isogeo-
metric locomotion is intriguing, and can be formulated via the Minkowski-
Santilli isospace of Section 3.2 with four-isodistance

D̂2̂ = (x2/n2
1 + y2/n2

2 + z2/n2
3 − c2 × t2/n2

4) × Î ∈ R̂ (4.3.7)

where n4 > 0.
The main implications in this case is the emergence of the additional

time mutation as expected to occur jointly with any space mutation. In
turn, this implies that the isotime t̂ = t/n4 (that is, the internal time)
can be bigger equal or smaller than the time t (that of the external
observer).

More specifically, from the preservation of the original trace of the
metric, isorelativity predicts that the mutations of space and time are
inversely promotional to each others. Therefore, jointly with the motion
ahead in space there is a motion backward in time and vice versa.

Consequently, the external observer sees the object moving with his
naked eye, and believes that the object evolves in his own time, while
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Figure 4.5. An artistic rendering of the “SpaceTime Machine”, namely, the “math-
ematical” prediction of traveling in space and time permitted by the isodual theory
of antimatter. The main assumption is that the aether (empty space) is a universal
medium characterized by a very high density of positive and negative energies that
can coexist because existing in distinct, mutually isodual spacetimes. Virtually arbi-
trary trajectories and speeds for isoselfdual states (only) are then predicted from the
capability of extracting from the aether very high densities of positive and negative
energies in the needed sequence. Discontinuous trajectories do not violate the law
of inertia, speeds much bigger than the speed of light in vacuum, and similarly ap-
parently anomalous events, do not violate special relativity because the locomotion
is caused by the change of the local geometry and not by conventional Newtonian
motions.

in reality the object could evolve far in the past. Alternatively, we can
say that the inspection of an astrophysical object with a telescope, by
no means, implies that said object evolves with our own time because it
could evolve with a time dramatically different than that after adjust-
ments due to the travel time of light because, again, light cannot carry
any information on the actual time of its source.

To further clarify this important point, light cannot possibly carry
information on the time of its source because light propagates at the
speed c at which there is no time evolution.

As a concrete example, one of the consequences of interior gravita-
tional problems treated via Santilli’s isorelativity (see Section 3.5) is
that the time of interior gravitational problems, t̂ = t/n4, depends on
the interior density n2

4, rather than the inertial mass, thus varying for
astrophysical bodies with different densities.

This implies that if two identical watches are originally synchronized
with each other on Earth, and then placed in the interior gravitational
field of astrophysical bodies with different densities, they will no longer
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be synchronized, thus evolving with different times, even though light
may continue to provide the information needed for their intercommu-
nication.

In particular, the time evolution of astrophysical bodies slows down
with the increase of the density,

t̂1 < t̂2, n2
41 > n2

42. (4.3.8)

It should also be noted that the above effect has no connection with
similar Riemannian predictions because it is structurally dependent on
the change of the units, rather than geometric features.

A prediction of isospecial relativity is that the bigger the density, the
slower the time evolution. Thus, a watch in the interior of Jupiter is
predicted to move slower than its twin on Earth under the assumption
that the density of Jupiter (being a gaseous body) is significantly smaller
than that of Earth (that can be assumed to be solid for these aspects).

As stressed in Section 4.3.1, the above spacetime machine is a purely
mathematical model. To render it a reality, there is the need to identify
the isogeometric propulsion, namely a source for the geometric mutations
of type (4.3.5).

Needless to say, the above problem cannot be quantitatively treated
on grounds of available scientific knowledge. However, to stimulate the
imagination of readers with young minds of any age, a speculation on
the possible mechanism of propulsion should be here voiced.

The only source of geometric mutation conceivable today is the avail-
ability of very large energies concentrated in very small regions of space,
such as energies of the order of 1030 ergs/cm3. Under these conditions,
isorelativity does indeed predict isogeometric locomotion because these
values of energy density generate very large values of isounits Î, with
very small values of the isotopic element T̂ , resulting in isogeometric
locomotions precisely of type (4.3.5).

The only possible source of energy densities of such extreme value is
empty space. In fact, according to current views, space is a superposition
of positive and negative energies in equal amounts each having extreme
densities precisely of the magnitude needed for isogeometric locomotion.

The speculation that should not be omitted in this section is therefore
that, one day in the future, the advancement of science will indeed allow
to extract from space at will all needed amounts of both positive and
negative energy densities.

In the event such an extraction becomes possible in a directional way,
a spaceship would be able to perform all desired types of trajectories, in-
cluding trajectories with sharp discontinuities (instantaneous 90 degrees
turns), instantaneous accelerations, and the like without any violation
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of the law of inertia because, as indicated earlier, the spaceship perceives
no motion at all. It is the geometry in its surroundings that has changed.

Moreover, such a spaceship would be able to cover interstellar dis-
tances in a few of our minutes, although arriving at destination way
back in the time evolution of the reached system.

Science has always surpassed science fiction and always will, because
there is no limit to the advancement of scientific knowledge. On this
ground it is, therefore, easy to predict that, yes, one day mankind will
indeed be able to reach far away stars in minutes.

It is only hoped that, when that giant step for mankind is achieved,
the theory that first achieved its quantitative and invariant prediction,
Santilli isorelativity, will be remembered.

Notes

1 Again, the author would appreciate the indication of similar contri-
butions prior to 1974.

2 The author would appreciate being kept informed by experimentalist
in the field.

3 The author would like to express his sincere appreciation to T. Gold-
man for the courtesy of bringing to his attention the important refer-
ences [22–29] that could not be reviewed here for brevity, but whose
study is recommended as a necessary complement of the presentation
of this monograph.

4 The indication by colleagues of other versions of the spacetime ma-
chine with a proved verification of causality without existing from
our spacetime would be appreciated.

5 By “isoinvariance” we means invariance under conventional space or
spacetime symmetries plus the isotopic invariance.

6 According to the contemporary terminology, “deformations” are al-
terations of the original structure although referred to the original
field. As such they are afflicted by the catastrophic inconsistencies
of Section 1.5. The term “mutation”, first introduced by Santilli in
Ref. [21] of 1967, is today referred to an alteration of the original
structure under the condition of preserving the original axioms, thus
requiring the formulation on isospaces over isofields that avoid said
theorems of catastrophic inconsistency.
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Chapter 5

GRAND-UNIFICATION AND
COSMOLOGY

5.1 ISO-GRAND-UNIFICATION
5.1.1 The Role of Antimatter in Grand

Unifications
As indicated earlier, no conclusive study on antimatter can be con-

ducted without its consistent inclusion in grand unifications of gravi-
tational [1–3] and electroweak interactions [4–7]. Vice versa, no grand
unification can be considered scientifically valuable without the correct
inclusion of antimatter because the latter has a profound impact in the
very structure of a consistent grand unification.

All studies on grand unifications conducted until now have been essen-
tially restricted to matter. When antimatter is included, the studies have
to be enlarged to two grand unifications, one for matter and the other
for antimatter with a correct anti-automorphic (or anti-isomorphic) in-
terconnecting map.

Consequently, the inclusion of antimatter in grand unifications intro-
duces severe restrictions on the admissible models, which restrictions are
generally absent when antimatter is ignored and grand unifications are
restricted to matter alone.

We shall, therefore, avoid the review of the very large number of
structurally inconsistent grand unifications published since Einstein’s
times and leave to the interested reader their re-examination in light of
the new advances of this volume.

An in depth study of grand unifications soon reveals the need of for-
mulating antimatter at the purely classical level, the need for abandoning
curvature, and the need for a geometric unification of special and gen-
eral relativities as presented in preceding chapters. It is only at the level



290 ISODUAL THEORY OF ANTIMATTER

of these broader views on grand unifications that the isodual theory of
antimatter emerges as inevitable.

Even though presented at the end of this monograph, the author initi-
ated his studies on grand unification, constructed the needed broadening
or modifications of pre-existing methods, and then achieved an invariant,
axiomatically consistent grand unification.

This process requires it two decades of research before the publication
of the first paper on grand unification, a lapse of time illustrating the
complexity of the problem, as known in any case by the failure of the
large number of preceding attempts.

The reader should be aware that, in this section, we shall exclusively
study closed-isolated systems of electroweak and gravitational interac-
tions in vacuum that are treatable via the Lie-isotopic branch of hadro-
nic mechanics and its isodual. Interior problems, such as those inclusive
of the origin of gravitation, require the broader Lie-admissible branch of
hadronic mechanics and their treatment will be merely indicated at the
end of this section for development by interested readers.

5.1.2 Axiomatic Incompatibilities of General
Relativity and Electroweak Interactions

The preceding efforts for a grand unification of gauge theories of elec-
troweak interactions and gravitation as described by general relativity
are afflicted by the following axiomatic incompatibilities, first presented
in Ref. [9] of 1997 (see also the related papers [10,11]):

(1) Incompatibilities due to antimatter: electroweak theories are
bona fide relativistic field theories, thus characterizing antimatter via
negative-energy solutions, while general relativity characterizes antimat-
ter via positive-definite energy-momentum tensors. This first incompat-
ibility renders manifestly inconsistent all attempts at grand unification
known to this author.1

(2) Incompatibilities due to curvature: electroweak theories are
essentially flat theories since they are formulated via Minkowskian ax-
ioms, while general relativity is centrally dependent on curvature since it
is based on Riemannian axioms. This second incompatibility is another,
independent, primary origin of the failure of the vast number of attempts
at grand unification existing in the literature and carries profound im-
plications, such as the extension to grand unification of the theorems of
catastrophic inconsistencies of Section 1.4.

(3) Incompatibilities due to spacetime symmetries: electroweak
interactions are based on the axioms of special relativity, thus verifying
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the fundamental Poincaré symmetry P (3.1), while such a basic symme-
try is absent in general relativity and is replaced by a generic covariance.
This third incompatibility has additional profound implications for any
consistent grand unification because either one abandons the basic sym-
metries of electroweak interactions in favor of an unknown covariance, or
one abandons general relativity for a new theory admitting a universal
symmetry.

(4) Incompatibilities due to the lack of a Minkowskian limit
of general relativity: as it is well known [1–3], general relativity ad-
mits a well defined Euclidean limit under PPN approximation, but one
century of studies have failed to identify a corresponding well defined
Minkowskian limit. On the other side, electroweak interactions [4–7] are
formulated on a Minkowski spacetime. This fourth incompatibility of
the two interactions then emerges in a number of aspects, such as irrec-
oncilable ambiguities in the identification of total conservation laws of
grand unifications when inclusive of gravitational interactions.

(5) Incompatibilities due to the nonunitary character of quan-
tum gravity: as it is also well known, electroweak theories are operator
field theories with a unitary structure, thus having invariant prediction
of numerical values permitting meaningful experimental verifications.
By comparison, all quantum formulations of general relativity (see, e.g.
Ref. [8] and references quoted therein) have a nonunitary structure. Be-
sides evident, additional, independent inconsistencies in attempting to
combine unitary and nonunitary theories, any attempt of grand unifica-
tion along contemporary views in general relativity and quantum gravity
is afflicted by the theorems of catastrophic inconsistencies of Section 1.4.

It is evident that no significant advance can be achieved in grand
unifications without, firstly, a serious addressing of these inconsistencies
and, secondly, without their resolution.

Recall that the theory of electromagnetic interactions, when (and only
when) restricted to the vacuum2, has a majestic mathematical and phys-
ical consistency that eventually propagated to unified theories of elec-
tromagnetic and weak interactions.

The view adopted in this monograph, identifiable in more details only
now, is that, rather than abandoning the majestic beauty of electroweak
theories, we abandon instead the popular views on gravitation of the
20-th century due to their catastrophic inconsistencies and, as a con-
dition to achieve a consistent grand unification, we reconstruct grav-
itational theories in such a way to have the same abstract axioms of
electroweak theories.
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5.1.3 Resolution of the Incompatibilities via
Isotopies and Isodualities

In this chapter we present a resolution of the above incompatibilities
first achieved by Santilli in Ref. [9] of 1997 (see also Ref. [10,11] following
a number of rather complex and diversified scientific journeys that can
be outlined as follows:

(A) Isotopies. The scientific journey to achieve a consistent grand
unification started in 1978 with memoirs [12,13] for the classical and
operator isotopies. A baffling aspect in the inclusion of gravity in unified
gauge theories is their geometric incompatibility.

The view that motivated Refs. [12,13] is that the difficulties experi-
enced in achieving a consistent grand unification are primarily due to
insufficiencies in their mathematical treatment.

Stated in plain language, the view here considered is that, due to
the complexity of the problem, the achievement of an axiomatic com-
patibility between gravitation and electroweak interactions requires a
basically new mathematics, that is, basically new numbers, new spaces,
new symmetries, etc.

Following first the verification of the lack of existence in the liter-
ature of a mathematics permitting the desired consistent grand unifi-
cation, and following numerous attempts, the only possible new mathe-
matics resulted to be that permitted by the isotopies as first proposed in
Refs. [12,13], namely, a generalization of the conventional trivial unit +1
of electroweak theories into the most general possible, positive-definite
unit with an unrestricted functional dependence on local variables, called
Santilli’s isounit,

I = +1 > 0 → Î = Î† = I(x, v, ψ, ∂ψ, . . .) > 0, (5.1.1)

and consequential compatible reconstruction of all main branches of
mathematics.

The uniqueness of the isotopies is due to the fact that, whether con-
ventional or generalized, the unit is the basic invariant of any theory.
Therefore, the use of the unit for the generalization of pre-existing meth-
ods guarantees the preservation of the invariance so crucial for physical
consistency (Sections 1.5.2 and 1.5.3).

Another aspect that illustrates the uniqueness of the isotopies for
grand unifications is that the positive-definiteness of the isounit guar-
antees the preservation of the abstract axioms of electroweak theories,
thus assuring axiomatic consistency of grand unification from the very
beginning.
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The general lines on isotopies presented in memoirs [12,13] of 1978
were then followed by laborious studies that reached mathematical and
physical maturity only in memoir [14] of 1996, as outlined in Chapter 3
(see monographs [15] for a comprehensive presentation).

(B) Isodualities. The achievement of an axiomatically consistent
grand unification for matter constitutes only half of the solution because,
as stressed in Section 5.1.1, no grand unification can be considered phys-
ically significant without the consistent inclusion of antimatter.

The incompatibility of electroweak theories and general relativity for
antimatter identified in Section 5.1.2 is only the symptom of deeper
compatibility problems. As now familiar from the studies presented
in this monograph, matter is treated at all levels, from Newtonian to
electroweak theories, while antimatter is treated only at the level of
second quantization.

Since there are serious indications that half of the universe could well
be made up of antimatter (see Section 5.2), it is evident that a more
effective theory of antimatter must apply at all levels.

Until such a scientific imbalance is resolved, any attempt at a grand
unification can well prove to be futile.

Recall that charge conjugation in quantum mechanics is an anti-
automorphic map. As a result, no classical theory of antimatter can
possibly be axiomatically consistent via the mere change of the sign of
the charge, because it must be an anti-automorphic (or, more gener-
ally, anti-isomorphic) image of that of matter in all aspects, including
numbers, spaces, symmetries, etc.

The resolution of the above imbalance required a second laborious
scientific journey that initiated with the proposal of the isodual map in
memoirs [16] of 1985, here expressed for an arbitrary quantity

Q(x, v, ψ, . . .) → Qd = −Q†(−x†,−v†,−ψ†,−∂ψ†, . . .), (5.1.2)

proposal that was followed by various studies whose mathematical and
physical maturity was only reached years later in memoir [14] of 1996,
as reported in Chapters 2 and 3 (see also monographs [15] for a more
general presentation).

To illustrate the difficulties, it is appropriate here to note that, fol-
lowing the presentation in papers [16] of 1985 of the main mathematical
ideas, it took the author nine years before publishing their application
to antimatter in paper [17] of 1994.

We are here referring to the original proposal of Refs. [16,17] of
mapping isounit (5.1.1) for matter into an negative-definite nonsingular
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arbitrary unit, known today as Santilli’s isodual isounits,

Î(x, ψ, ∂ψ, . . .) > 0

→ Îd = −Î†(−x†,−ψ†,−∂ψ†, . . .) < 0
(5.1.3)

and its use for the characterization of antimatter at all levels, from New-
tonian mechanics to second quantization.

The uniqueness of the isodual representation is given by the fact that
isodualities are the only known liftings permitting the construction of
a mathematic that is anti-isomorphic to the conventional (or isotopic)
mathematics, as necessary for a consistent representation of antimatter
at all levels, while preserving the crucial invariance needed to avoid
catastrophic inconsistencies.

(C) Poincaré-Santilli isosymmetry and its isoduals. The sci-
entific journeys on isotopies and isodualities were only intended as pre-
requisites for the construction of the universal symmetry of gravitation
for matter and, separately, for antimatter in such a way to be locally
isomorphic to the spacetime symmetry of electroweak interactions, the
latter being an evident condition of consistency.

It is easy to see that, without the prior achievement of a new grav-
itation possessing an invariance, rather than the covariance of general
relativity, any attempt at constructing a grand unification will prove to
be futile in due time.

The complexity of the problem is illustrated by the fact that, not only
gravitation for matter had to be reformulated in a form admitting a sym-
metry, but that symmetry had to be compatible with the basic Poincaré
symmetry of electroweak theories [4–7]. Moreover, a dual compatible
symmetry had to be achieved for the gravity of antimatter.

The latter problems called for a third laborious scientific journey on
the isotopies and isodualities of the Poincaré symmetry P̂ (3.1), today
called the Poincaré-Santilli isosymmetry and its isodual outlined in Sec-
tion 3.5 (see monographs [15] for comprehensive studies). These studies
included:

1) The isotopies and isodualities of the Lorentz symmetry initiated
with paper [18] of 1983 on the classical isotopies with the operator coun-
terpart presented in paper [19] of the same year;

2) The isotopies and isodualities of the rotational symmetry first pre-
sented in papers [16]3;

3) The isotopies and isodualities of the SU(2)-spin symmetry, first
presented in paper [20] of 1993, and related implications for local realist,
hidden variables and Bell’s inequalities published in Ref. [21] of 1998;
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4) The isotopies and isodualities of the Poincaré symmetry including
the universal invariance of gravitation, first presented in paper [22] of
1993; and

5) The isotopies and isodualities of the spinorial covering of the Poin-
caré symmetry first presented in papers [23,24] of 1996.4

We are referring here to the reconstruction of the conventional sym-
metries with respect to an arbitrary nonsingular positive-definite unit
(5.1.1) for the isotopies, and with respect to an arbitrary nonsingular
negative-definite unit (5.1.3) for the isodualities.

This reconstruction yields the most general known nonlinear, nonlo-
cal and noncanonical or nonunitary liftings of conventional symmetries,
while the locally isomorphism for isotopies) (anti-isomorphism for iso-
dualities) with the original symmetries is guaranteed by the positive-
definiteness (negative-definiteness) of the generalized units.

One should be aware that the above structures required the prior step-
by-step isotopies and isodualities of Lie’s theory (enveloping associative
algebras, Lie algebras, Lie groups, transformation and representation
theories, etc.), originally proposed by Santilli in 1978 [12], studied in nu-
merous subsequent works and today called the Lie-Santilli isotheory and
its isodual (see Section 3.2 for an outline and Ref. [15] for comprehensive
studies).

It is evident that the Poincaré-Santilli isosymmetry and its isod-
ual have fundamental character for these studies. One of their pri-
mary applications has been the achievement of the universal symmetry
(rather than covariance) of all possible Riemannian line elements in their
isominkowskian representation [22]

ds′2 = dx′µ × g(x′)µν × dx′ν ≡ dxµ × g(x)µν × dxν = ds2, (5.1.4)

Once the unit of gauge theories is lifted to represent gravitation, elec-
troweak interactions will also obey the Poincaré-Santilli isosymmetry
for matter and its isodual for antimatter, thus offering realistic hopes
for the resolution of the most difficult problem of compatibility between
gravitation and electroweak interactions, that for spacetime symmetries.

Perhaps unexpectedly, the fundamental spacetime symmetry of the
grand unified theory of Refs. [9–11] is based on the total symmetry of
Dirac’s equation, here written with related spacetime and underlying
unit (see Chapter 2 for details)

STot = {SL(2.C) × T (3.1) × I(1)} × {SLd(2.Cd) ×d T d(3.1) ×d Id(1)},
(5.1.5a)

MTot = {M(x, η, R) × Sspin} × {Md(xd, ηd, Rd) ×d Sd
spin} (5.1.5b)

ITot = {Iorb × Ispin} × {Id
orb ×d Id

spin}, (5.1.5c)
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To understand the above occurrence, the reader should be aware that
isodualities imply a new symmetry called isoselfduality (Section 2.1),
given by the invariance under the isodual map (5.1.2).

Dirac’s gamma matrices verify indeed this new symmetry (from which
the symmetry itself was derived in the first place), i.e.,

γµ → γd
µ = −γ†

µ = γµ. (5.1.6)

Consequently, contrary to a popular belief throughout the 20-th cen-
tury, the Poincaré symmetry cannot be the total symmetry of Dirac’s
equations, evidently because it is not isoselfdual.

For evident reasons of consistency, the total symmetry of Dirac’s equa-
tion must also be isoselfdual as the gamma matrices are. This condition
identifies the total symmetry (5.1.5a) because that symmetry is indeed
isoselfdual.

To understand the dimensionality of symmetry (5.1.5a) one must first
recall that isodual spaces are independent from conventional spaces. The
doubling of the conventionally believed ten-dimensions of the Poincaré
symmetry then yields twenty dimensions.

But relativistic invariants possess the novel isotopic invariance (3.5.27),
i.e.,

(xν × ηµν × xν) × I ≡ [xν × (w−2 × η)µν × xν) × (w2 × I)

= (xν × η̂µν × xν) × Î , (5.1.7)

with corresponding isotopic invariance of Hilbert’s inner product

< ψ| × |ψ > ×I ≡< w−1 × ψ| × |w−1 × ψ > ×(w2 × I)

=< ψ|×̂|ψ > ×Î . (5.1.8)

Consequently, the conventional Poincaré symmetry has emerged as being
eleven dimensional at both the classical and operator levels, as first
presented by Santilli in Ref. [22] of 1993 and studied in Section 3.5.3.
It then follows that the total symmetry (5.1.5a) of Dirac’s equations is
twenty-two dimensional.

The grand unification proposed in Refs. [9–11] is based on the ax-
iomatic structure of the conventional Dirac’s equations, not as believed
throughout the 20-th century, but as characterized by isotopies and iso-
dualities.

In particular, the grand unification here studied is permitted by the
new isotopic invariances (5.1.7) and (5.1.8) that are hidden in relativistic
invariants [21], thus assuring the operator compatibility of the grand
unification, as we shall see.
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The reader should not be surprised that the two new invariances
(5.1.7) and (5.1.8) remained undetected throughout the 20-th century
because their identification required the prior discovery of new numbers,
first the numbers with arbitrary positive units, and then the additional
new numbers with arbitrary negative units for invariances [25].

(D) Classical and operator isogravitation. After a number
of (unpublished) attempts, the resolution of numerous inconsistencies
of general relativity studied in Section 1.4, plus the inconsistencies
for grand unifications, requested the isotopic reformulation of gravita-
tion, today known as Santilli’s isogravitation, first presented at the VII
M. Grossman Meeting on General Relativity of 1996 [26], as reviewed in
Section 3.5, essentially consisting in the factorization of any given (non-
singular and symmetric) Riemannian metric g(x) into the Minkowskian
metric η multiplied by a 4 × 4-matrix T̂ ,

g(x) = T̂Grav(x) × η, (5.1.9)

and the reconstruction of gravitation with respect to the isounit

ÎGrav(x) = 1/T̂Grav(x), (5.1.10)

thus requiring the isotopic reformulation of the totality of the mathe-
matical and physical methods of general relativity.

Despite its simplicity, the implications of isogravitation are far reach-
ing, such as:

1) The isotopic reformulation permits the achievement of the universal
Poincaré-Santilli isoinvariance for all possible gravitational models;

2) The isotopic reformulation eliminates curvature for the character-
ization of gravity, and replaces it with isoflatness, thus achieving com-
patibility with the flatness of electroweak interactions;

3) The isotopic reformulation reconstructs unitarity on iso-Hilbert
spaces over isofields via the identical reformulation of nonunitary trans-
form at the foundations of hadronic mechanics (Chapter 3)

U × U † �= I → Û×̂Û † = Û †×̂Û = ÎGrav (5.1.11)

where
U × U † = Î , Û = U × T̂

1/2
Grav, (5.1.12)

thus providing the only known resolution of the catastrophic incon-
sistencies of Theorems 1.5.1 and 1.5.2.

Above all, isogravitation achieved the first and only known, axiomat-
ically consistent operator formulation of gravitation provided by rela-
tivistic hadronic mechanics of Section 3.5, as first presented in Ref. [27]
of 1997.
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In fact, gravity is merely imbedded in the unit of relativistic operator
theories. Since the gravitational isounit is positive-definite from the
nonsingular and symmetric character of the metric g(x) in factorization
(5.1.9), the abstract axioms of operator isogravity are the conventional
axioms of relativistic quantum mechanics, only subjected to a broader
realization.

The preservation of conventional relativistic axioms then assures the
achievement, for the first time as known by the author, of a consistent
operator formulation of gravitation.5

(E) Geometric unification of special and general relativities.
The resolution of the problems caused by lack of any Minkowskian limit
of general relativity requested additional studies. After a number of
(unpublished) attempts, the only possible solution resulted to be a geo-
metric unification of special and general relativities, first presented in
Ref. [28], in which the two relativities are characterized by the same ab-
stract axioms and are differentiated only by their realization of the basic
unit. The trivial realization I = Diag.(1, 1, 1, 1) characterizes special
relativity, and broader realization (5.1.10) characterizes general relativ-
ity.

The latter final efforts requested the construction ab initio of a new
geometry, today known as Minkowski-Santilli isogeometry [28] in which
the abstract axioms are those of the Minkowskian geometry, including
the abstract axiom of flatness necessary to resolve the catastrophic in-
consistencies of Section 1.4, yet the new geometry admits the entire
mathematical formalist of the Riemannian geometry, including covari-
ant derivatives, Christoffel’s symbols, etc. (see Section 3.2 for an outline
and monographs [15] for comprehensive studies).

The important point is that at the limit

Lim ÎGrav(x) → I, (5.1.13)

the Minkowskian geometry and conventional special relativity are recov-
ered identically and uniquely.

The reader should be aware that the grand unification presented in
this section is centrally dependent on the Minkowski-Santilli isogeome-
try, the Poincaré-Santilli isosymmetry, and the isotopic formulation of
gravitation. Their knowledge is a necessary pre-requisite for the techni-
cal understanding of the following sections.
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5.1.4 Isotopic Gauge Theories
The isotopies of gauge theories were first studied in the 1980’s by

Gasperini [29], followed by Nishioka [30], Karajannis and Jannussis [31]
and others, and ignored thereafter for over a decade.

These studies were defined on conventional spaces over conventional
fields and were expressed via the conventional differential calculus. As
such, they are not invariant, as it became shown in memoirs [32], thus
suffering of the catastrophic inconsistencies of Theorem 1.5.2.

Refs. [9–11] presented, apparently for the first time, the invariant
isotopies of gauge theories, or isogauge theories for short, and their iso-
duals,those formulated on isospaces over isofields and characterized by
the isodifferential calculus of memoir [14]. For completeness, let us recall
that the latter theories are characterized by the following methods:

(1) Isofields [25] of isoreal numbers R̂(n̂, +̂, ×̂) and isocomplex num-
bers Ĉ(ĉ, +̂, ×̂) with: additive isounit 0̂ = 0; generalized multiplicative
isounit Î given by Eq. (5.1.9); elements, isosum, isoproduct and related
generalized operations,

â = a × Î , â+̂b̂ = (a + b) × Î , (5.1.14a)

â×̂b̂ = â × T̂ × b̂ = (a × b) × Î , (5.1.14b)

ân̂ = â×̂â×̂...×̂â, (5.1.14c)

â
ˆ1/2 = a1/2 × Î1/2, â/̂b̂ = (â/b̂) × Î , etc. (5.1.14d)

(2) Isominkowski spaces [18] M̂ = M̂(x̂, η̂, R̂) with isocoordinates
x̂ = x × Î = {xµ} × Î, isometric N̂ = η̂ × Î = [T̂ (x, . . .) × η] × Î , and
isointerval over the isoreals R̂

(x̂ − ŷ)2̂ = [(x̂ − ŷ)µ×̂N̂µν×̂(x̂ − ŷ)ν ]

= [(x − y)µ × η̂µν × (x − y)ν ] × Î , (5.1.15)

equipped with Kadeisvili isocontinuity [33] and the isotopology developed
by G. T. Tsagas and D. S. Sourlas [34], R. M. Santilli [14], R. M. Fal-
cón Ganfornina and J. Núñez Valdés [35,36] (see also Aslander and Ke-
les [37]). A more technical formulation of the isogauge theory can be
done via the isobundle formalism on isogeometries.

(3) Isodifferential calculus [14] characterized by the following isod-
ifferentials

d̂x̂µ = Îµ
ν × dx̂ν , (5.1.16a)

d̂x̂µ = T̂ ν
µ × dx̂ν , (5.1.16b)
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and isoderivatives

∂̂µf̂ = ∂̂f̂ /̂∂̂x̂µ = (T̂ ν
µ × ∂νf) × Î , (5.1.17a)

∂̂µf̂ = (Îµ
ν × ∂νf) × Î , ∂̂x̂µ/̂∂̂x̂ν = δ̂µ

ν = δµ
ν × Î , etc. (5.1.17b)

where one should note the inverted use of the isounit and isotopic element
with respect to preceding formulations.

(4) Isofunctional isoanalysis [15], including the reconstruction of
all conventional and special functions and transforms into a form admit-
ting of ÎGrav as the left and right unit. Since the iso-Minkowskian geom-
etry preserves the Minkowskian axioms, it allows the preservation of
the notions of straight and intersecting lines, thus permitting the recon-
struction of trigonometric and hyperbolic functions for the Riemannian
metric g(x) = T̂ (x) × η.

(5) Isominkowskian geometry [28], i.e., the geometry of isoman-
ifolds M̂ over the isoreals R̂, that satisfies all abstract Minkowskian
axioms because of the joint liftings

η → η̂ = T (x, . . .) × η (5.1.18a)

I → Î = T−1, (5.1.18b)

while preserving the machinery of Riemannian spaces as indicated ear-
lier, although expressed in terms of the isodifferential calculus.

In this new geometry Riemannian line elements are turned into iden-
tical Minkowskian forms via the embedding of gravity in the deferentials,
e.g., for the Schwarzschild exterior metric we have the iso-Minkowskian
reformulation (Ref. [28], Eq. (2.57)), where the spacetime coordinates
are assumed to be covariant,

d̂ŝ = d̂r̂2̂ +̂ r̂2̂×̂(d̂θ̂2̂ +̂ isosin2̂θ̂) −̂ d̂t̂2̂, (5.1.19a)

d̂r̂ = T̂r × dr̂, d̂t̂ = T̂t × dt̂, (5.1.19b)

T̂r = (1 − 2 × M/r)−1, T̂t = 1 − 2 × M/r. (5.1.19c)

(6) Relativistic hadronic mechanics [15] characterized by the iso-
Hilbert space Ĥ with isoinner product and isonormalization over Ĉ

< φ̂|×̂|ψ̂ > ×Î , < ψ̂|×̂|ψ̂ >= Î . (5.1.20)

Among various properties, we recall that: the iso-Hermiticity on Ĥ
coincides with the conventional Hermiticity (thus, all conventional ob-
servables remain observables under isotopies); the isoeigenvalues of iso-
Hermitean operators are real and conventional (because of the identities

Ĥ×̂|ψ̂ >= Ê×̂|ψ̂ >= E × |ψ̂ >); (5.1.21)
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the condition of isounitarity on Ĥ, over Ĉ is given by

Û×̂Û † = Û †×̂Û = Î , (5.1.22)

(see memoir [27] for details).
(7) The Lie-Santilli isotheory [12] with: conventional (ordered)

basis of generators X = (Xk), and parameters w = (wk), k = 1, 2, . . . , n,
only formulated in isospaces over isofields with a common isounit; uni-
versal enveloping isoassociative algebras ξ̂ with infinite-dimensional basis
characterized by the isotopic Poincaré-Birkhoff-Witt theorem [12]

Î , X̂i×̂X̂j , (i ≤ j), X̂i×̂X̂j × X̂k, (i ≤ j ≤ k, ...) (5.1.23)

Lie-Santilli subalgebras [12]

[X̂î,X̂j ] = X̂i×̂X̂j − X̂j×̂X̂i = Ĉk
ij(x, . . .)×̂X̂k, (5.1.24)

where the Ĉ’s are the structure disfunctions; and isogroups characterized
by isoexponentiation on ξ̂ with structure [12]

êX̂ = Î+̂X̂/̂1̂̂!+̂X̂×̂X̂/̂2̂̂!+̂... = (eX̂×T̂ ) × Î = Î × (eT̂×X̂), (5.1.25)

Despite the isomorphism between isotopic and conventional struc-
tures, the lifting of Lie’s theory is nontrivial because of the appearance
of the matrix T̂ with nonlinear integrodifferential elements in the very
exponent of the group structure, Eq. (5.1.25).

To avoid misrepresentations, one should keep in mind that the iso-
topies of Lie’s theory were not proposed to identify “new Lie algebras”
(an impossible task since all simple Lie algebras are known from Cartan’s
classification), but to construct instead the most general possible non-
linear, nonlocal and noncanonical or nonunitary “realizations” of known
Lie algebras.

(8) Isolinearity, isolocality and isocanonicity or isounitarity.
Recall from lifting (5.1.25) that isosymmetries have the most general pos-
sible nonlinear, nonlocal and noncanonical or nonunitary structure. A
main function of the isotopies is that of reconstructing linearity, locality
and canonicity or unitarity on isospaces over isofields, properties called
isolinearity, isolocality and isocanonicity or isounitarity. These are the
properties that permit the bypassing of the theorems of catastrophic
inconsistencies of Section 1.5.

As a result, the use of the conventional linear transformations on M
over R, X ′ = A(w) × x violates isolinearity on M̂ over R̂.

In general, any use of conventional mathematics for isotopic theories
leads to a number of inconsistencies which generally remain undetected
by nonexperts in the field.6
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(9) Isogauge theories [9–11]. They are characterized by an n-
dimensional connected and non-isoabelian isosymmetry Ĝ with: basic
n-dimensional isounit (4.1.9); iso-Hermitean generators X̂ on an iso-
Hilbert space Ĥ over the isofield Ĉ(ĉ, +̂, ×̂); universal enveloping as-
sociative algebra ξ̂ with infinite isobasis (5.1.23); isocommutation rules
(5.1.24); isogroup structure

Û = ê−i×Xk×θ(x)k = (e−i×Xk×T̂×θ(x)k) × Î , Û †×̂Û = Î (5.1.26)

where one should note the appearance of the gravitational isotopic el-
ements in the exponent of the isogroup, and the parameters θ(x)k now
depend on the iso-Minkowski space; isotransforms of the isostates on Ĥ

ψ̂′ = Û×̂ψ̂ = (e−i×Xk×T̂ (x,...)×θ(x)k) × ψ̂; (5.1.27)

isocovariant derivatives [28]

D̂µψ̂ = (∂̂µ − i×̂ĝ×̂Â(x̂)k
µ×̂X̂k)×̂ψ̂; (5.1.28)

iso-Jacobi identity

[D̂α ,̂[D̂β ,̂D̂γ ]] +̂ [D̂β ,̂[D̂γ ,̂D̂α]] +̂ [D̂γ ,̂[D̂α ,̂D̂β ]] = 0, (5.1.29)

where g and ĝ = g × Î are the conventional and isotopic coupling con-
stants, A(x)k

µ × Xk and Â(x̂)k
µ×̂X̂k = [A(x)k

µ × Xk] × Î are the gauge
and isogauge potentials; isocovariance

(D̂µψ̂)′

= (∂̂µÛ)×̂ψ̂+̂Û×̂(∂̂µψ̂)−̂î×̂ĝ×̂Â′(x̂)µ×̂ψ̂ = Û×̂D̂µψ̂, (5.1.30a)

Â(x̂)′µ = −ĝ−1̂×̂[∂̂µÛ(x̂)]×̂Û(x̂)−1̂, (5.1.30b)

δ̂Â(x̂)k
µ = −ĝ−1̂ ×̂ ∂̂µθ̂(x̂)k +̂ Ĉk

ij ×̂ θ̂(x̂)i ×̂ Â(x̂)j
µ, (5.1.30c)

δ̂ψ̂ = −î×̂ĝ×̂θ̂(x̂)k×̂X̂k×̂ψ̂; (5.1.30d)

non-isoabelian iso-Yang-Mills fields

F̂µν = î×̂ĝ−1̂×̂[D̂µ̂, D̂ν ]ψ̂, (5.1.31a)

F̂ k
µν = ∂̂µÂk

ν −̂ ∂̂νÂ
k
µ +̂ ĝ×̂Ĉk

ij×̂Âi
µ×̂Âj

ν ; (5.1.31b)

related isocovariance properties

F̂µν → F̂ ′
µν = Û×̂F̂µν×̂Û−1, (5.1.32a)
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Isotr(F̂µν′×̂F̂µν′
) = Isotr(F̂µν×̂F̂µν), (5.1.32b)

[D̂α ,̂F̂βγ ] +̂ [D̂β ,̂F̂γα] +̂ [D̂γ ,̂F̂α‘β ] ≡ 0; (5.1.32c)

derivability from the isoaction

Ŝ =
∫̂

d̂4̂x̂(−F̂µν×̂F̂µν /̂4̂) =
∫̂

d̂4̂x̂(−F̂ k
µν×̂F̂µν

k /̂4̂), (5.1.33)

where
∫̂

=
∫
×Î, plus all other familiar properties in isotopic formula-

tion.
The isodual isogauge theory, first proposed in Refs. [9–11], is the image

of the preceding theory under the isodual map (5.1.2) when applied to
the totality of quantities and their operations.

The latter theory is characterized by the isodual isogroup Ĝd with
isodual isounit

Îd
Grav = −Î†Grav = −ÎGrav = −1/T̂Grav < 0. (5.1.34)

The elements of the base fields

R̂d(n̂d, +̂d, ×̂d), (5.1.35)

are given by the isodual isoreal numbers

n̂d = −n̂ = −n × Î , (5.1.36)

and those of the field
Ĉd(ĉd, +̂d, ×̂d), (5.1.37)

are the isodual isocomplex numbers

ĉd = −(c × Î)† = (n1 − i × n2) × Îd = (−n1 + i × n2) × Î . (5.1.38)

The carrier spaces are the isodual iso-Minkowski spaces M̂d(x̂d,

−η̂d, R̂d) on R̂d and the isodual iso-Hilbert space Hd on Ĉd with iso-
dual isostates and isodual isoinner product

|ψ̂ >d= −|ψ̂ >†= − < ψ|, (5.1.39a)

< φ̂|d × T̂ d × |ψ̂ >d ×Îd. (5.1.39b)

It is instructive to verify that all eigenvalues of isodual iso-Hermitean
operators are negative − definite (when projected in our space-time),

Ĥd ×̂d |ψ̂ >d = < ψ| × (−E). (5.1.40)
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Ĝd is characterized by the isodual Lie-Santilli isotheory with isodual
generators X̂d = −X̂, isodual isoassociative product

Âd×̂d
B̂d = Âd × T̂ d × B̂d, T̂ d = −T̂ , (5.1.41)

and related isodual isoenveloping and Lie-Santilli isoalgebra.
The elements of Ĝd are the isodual isounitary isooperators

Ûd(θ̂d(x̂d)) = −Û †(−θ̂(−x̂)). (5.1.42)

In this way, the isodual isogauge theory is seen to be an anti-isomorphic
image of the preceding theory, as desired.

It is an instructive exercise for the reader interested in learning the
new techniques to study first the isodualities of the conventional gauge
theory (rather than of their isotopies), and show that they essentially
provide a mere reinterpretation of the usually discarded, advanced solu-
tions as characterizing antiparticles.

Therefore, in the isoselfdual theory with total gauge symmetry Ĝ×Ĝd,
isotopic retarded solutions are associated with particles and advanced
isodual solutions are associated with antiparticles.

No numerical difference is expected in the above reformulation be-
cause, as shown in Chapter 3, isotopies preserve not only the original
axioms but also the original numerical value (when constructd properly).

It is also recommendable for the interested reader to verify that the
isotopies are indeed equivalent to charge conjugation for all massive par-
ticles, with the exception of the photon (see Section 2.3). In fact, isodual
theories predict that the antihydrogen atom emits a new photon, tenta-
tively called by this author the isodual photon [38], that coincides with
the conventional photon for all possible interactions, thus including elec-
troweak interactions, except gravitation. This indicates that the isodual
map is inclusive of charge conjugation for massive particles, but it is
broader than the latter.

Isodual theories in general, thus including the proposed grand unifica-
tion, predict that all stable isodual particles, such as the isodual photon,
the isodual electron (positron), the isodual proton (antiproton) and their
bound states (such as the antihydrogen atom), experience antigravity in
the field of the Earth (defined as the reversal of the sign of the curvature
tensor).

If confirmed, the prediction may offer the possibility in the future to
ascertain whether far away galaxies and quasars are made-up of matter
or of antimatter.

We finally note that isomathematics is a particular case of the broader
genomathematics, also introduced for the first time in Ref. [12] of 1978
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(see Section 3.6), which occurs for non-Hermitean generalized units and
is used for an axiomatization of irreversibility.

In turn, genomathematics is a particular case of the hypermathema-
tics, that occurs when the generalized units are given by ordered sets of
non-Hermitean quantities and is used for the representation of multival-
ued complex systems (e.g. biological entities) in irreversible conditions.

Evidently both the genomathematics and hypermathematics admit
an anti-isomorphic image under isoduality (see also Section 3.6).

In conclusion the methods outlined in this note permit the study of
seven liftings of conventional gauge theories [9–11]:

(1) The isodual gauge theories for the treatment of antimatter without
gravitation in vacuum;

(2,3) The isogauge theories and their isoduals, for the inclusion of
gravity for matter and antimatter in reversible conditions in vacuum
(exterior gravitational problem);

(4,5) The genogauge theories and their isoduals, for the inclusion of
gravity for matter and antimatter in irreversible interior conditions (in-
terior gravitational problems); and

(6,7) the hypergauge theories and their isoduals, for multivalued and
irreversible generalizations.

For brevity this section is restricted to theories of type (1), (2), (3).
The development of the remaining genotopies of gauge theories is left to
interested readers.

5.1.5 Iso-Grand-Unification
In this section we review the Iso-Grand-Unification (IGU) with the

inclusion of electroweak and gravitational interactions, first submitted in
Refs. [9–11] via the 22-dimensional total isoselfdual isosymmetry given
by isosymmetry (3.5.28) and its isodual

ŜTot = (P̂(3.1)×̂Ĝ) × (P̂(3.1)d×̂d
Ĝd)

= [ŜL(2, Ĉ)×̂T̂ (3.1)×̂Î(1)] × [ŜL
d
(2, Ĉd)×̂d

T̂ d(3.1)×̂dÎd(1)], (5.1.43)

where P̂ is the Poincaré-Santilli isosymmetry [22] in its isospinorial re-
alization [24], Ĝ is the isogauge symmetry of the preceding section and
the remaining structures are the corresponding isoduals.

Without any claim of a final solution, it appears that the proposed
IGU does indeed offer realistic possibilities of resolving the axiomatic
incompatibilities (1)–(5) of Section 5.1.2 between gravitational and elec-
troweak interactions.

In fact, IGU represents gravitation in a form geometrically compatible
with that of the electroweak interactions, represents antimatter at all
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levels via negative-energy solutions, and characterizes both gravitation
as well as electroweak interactions via the universal Poincaré-Santilli
isosymmetry.

It should be indicated that we are referring here to the axiomatic
consistency of IGU. In regard to the physical consistency we recall that
isotopic liftings preserve not only the original axioms, but also the orig-
inal numerical values [15].

As an example, the image in iso-Minkowskian space over the isoreals
of the light cone, the isolight cone, not only is a perfect cone, but a cone
with the original characteristic angle, thus preserving the speed of light
in vacuum as the maximal causal speed in iso-Minkowskian space.

This peculiar property of the isotopies implies the expectation that
the proposed Iso-Grand-Unification preserves the numerical results of
electroweak interactions.

The reader should be aware that the methods of the recent memoir
[27] permit a truly elementary, explicit construction of the proposed
IGU.

As well known, the transition from the Minkowskian metric η to Rie-
mannian metrics g(x) is a noncanonical transform at the classical level,
and, therefore, a nonunitary transform at the operator level.

The method herein considered for turning a gauge theory into an
IGU consists in the following representation of the selected gravitational
model, e.g., Schwarzschild’s model:

g(x) = T (x) × η, I(x) = U × U † = 1/T̂ (5.1.44a)

= Diag.[(1 − 2 × M/r) × Diag(1, 1, 1), (1 − 2 × M/r)−1], (5.1.44b)

and then subjecting the totality of the gauge theory to the nonunitary
transform U × U †.

The method then yields: the isounit

I → Î = U × I × U †; (5.1.45)

the isonumbers

a → â = U × a × U † = a × (U × U †) = a × Î , a = n, c; (5.1.46)

the isoproduct with the correct expression and Hermiticity of the isotopic
element,

A × B → U × (A × B) × U †

= (U × A × U †) × (U × U †)−1 × (U × B × U †)

= Â × T̂ × B̂ = Â×̂B̂; (5.1.47)
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the correct form of the iso-Hilbert product on Ĉ,

< φ| × |ψ >→ U× < φ| × |ψ > ×U †

= (< ψ| × U †) × (U × U †)−1 × (U × |ψ >) × (U × U †)

=< φ̂| × T̂ × |ψ̂ > ×Î; (5.1.48)

the correct Lie-Santilli isoalgebra

A × B − B × A → Â×̂B̂ − B̂×̂Â; (5.1.49)

the correct isogroup

U × (eX) × U † = (eX×T̂ ) × Î , (5.1.50)

the Poincaré-Santilli isosymmetry P → P̂, and the isogauge group G →
Ĝ.

It is then easy to verify that the emerging IGU is indeed invariant
under all possible additional nonunitary transforms, provided that, for
evident reasons of consistency, they are written in their identical isouni-
tary form,

W × W † = Î , (5.1.51a)

W = Ŵ × T̂ 1/2, W × W † = Ŵ ×̂Ŵ † = Ŵ †×̂Ŵ = Î . (5.1.51b)

In fact, we have the invariance of the isounit

Î → Î ′ = Ŵ ×̂Î×̂Ŵ † = Î , (5.1.52)

the invariance of the isoproduct

Â×̂B̂ → Ŵ ×̂(Â×̂B̂)×̂Ŵ † = Â′×̂B̂′, etc. (5.1.53)

Note that the isounit is numerically preserved under isounitary trans-
forms, as it is the case for the conventional unit I under unitary trans-
form, and that the selection of a nonunitary transform W × W † = Î ′
with value different from Î evidently implies the transition to a different
gravitational model.

Note that the lack of implementation of the above nonunitary-iso-
unitary lifting to only one aspect of the original gauge theory (e.g., the
preservation of the old numbers or of the old differential calculus) implies
the loss of the invariance of the theory [32].

The assumption of the negative-definite isounit Îd = −(U ×U †) then
yields the isodual component of the IGU.
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Note finally that diagonal realization (5.1.44) has been assumed mainly
for simplicity. In general, the isounit is positive-definite but nondiago-
nal 4 × 4-dimensional matrix. The Schwarzschild metric can then be
more effectively represented in its isotropic coordinates as studied, e.g.
in Ref. [39], pp. 196–199).

In closing, the most significant meaning of IGU is that gravitation
has always been present in unified gauge theories. It did creep-in un-
noticed because embedded where nobody looked for, in the “unit” of gauge
theories.

In fact, the isogauge theory of Section 5.1.4 coincides with the conven-
tional theory at the abstract level to such an extent that we could have
presented IGU with exactly the same symbols of the conventional gauge
theories without the “hats”, and merely subjecting the same symbols to
a more general realization.

Also, the isounit representing gravitation as per rule (5.1.9) verifies
all the properties of the conventional unit I of gauge theories,

Î n̂ = Î , Î
ˆ1/2 = Î , (5.1.54a)

dÎ/dt = Î×̂Ĥ − Ĥ×̂Î = Ĥ − Ĥ = 0, etc. (5.1.54b)

The “hidden” character of gravitation in conventional gauge theories
is then confirmed by the isoexpectation value of the isounit recovering
the conventional unit I of gauge theories,

<̂Î>̂ =< ψ̂| × T̂ × Î × T̂ × |ψ̂ > / < ψ̂| × T̂ × |ψ̂ >= I. (5.1.55)

It then follows that IGU constitutes an explicit and concrete realiza-
tion of the theory of “hidden variables” [40]

λ = T (x) = g(x)/η, Ĥ×̂|ψ̂ >= Ĥ × λ × |ψ̂ >= Eλ × |ψ̂ >, (5.1.56)

and the theory is correctly reconstructed with respect to the new unit

Î = λ−1, (5.1.57)

in which von Neumann’s Theorem [41] and Bell’s inequalities [42] do not
apply, evidently because of the nonunitary character of the theory (see
Ref. [21] and Vol. II of Ref. [15] for details).

In summary, the proposed inclusion of gravitation in unified gauge
theories is essentially along the teaching of Einstein, Podolsky, and
Rosen [43] on the “lack of completion” of quantum mechanics, only
applied to gauge theories.
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5.2 ISO-, GENO-, AND HYPER-SELF-DUAL
COSMOLOGIES

A rather popular belief of the 20-th century was that the universe is
solely composed of matter. This belief was primarily due to the scientific
imbalance pertaining to antimatter as being solely studied at the level
of second quantization, without any theoretical, let alone experimental,
mean available for the study of antimatter.

In reality, there exists rather strong evidence that the universe is
indeed composed of matter as well as antimatter and, more particularly,
that some of the galaxies are made up of matter and others of antimatter.

To begin, not only the expansion of the universe, but more particularly
the recently detected increase of the expansion itself, can be readily
explained via an equal distribution of matter and antimatter galaxies.

In fact, antigravity experienced by matter and antimatter galaxies
(studied in the preceding chapter) explains the expansion of the universe,
while the continuous presence of antigravity explains the increase of the
expansion.

The assumption that the universe originated from a primordial ex-
plosion, the “big bang”, could have explained at least conceptually the
expansion of the universe. However, the “big bang” conjecture is elimi-
nated as scientifically possible by the increase of the expansion itself.

The “big bang” conjecture is also eliminated by the inability to explain
a possible large presence of antimatter in the universe, trivially, because
it would have been annihilated at the time of the “big bang” because
produced jointly with matter, as well as for other reasons.

By comparison, the only plausible interpretation at the current state
of our knowledge is precisely the assumption that the universe is made
up half of matter galaxies and half of antimatter galaxies due to the joint
explanation of the expansion of the universe and its increase.

Independently from the above, there exists significant evidence that
our Earth is indeed bombarded by antimatter particles and asteroids.

Astronauts orbiting Earth in spaceship have systematically reported
that, when passing over the dark side, they see numerous flashes in the
upper atmosphere that can be only interpreted as antimatter cosmic
rays, primarily given by high energy antiprotons and/or positrons7 orig-
inating from far away antimatter galaxies, which antiparticles, when in
contact with the upper layers of our atmosphere, annihilate themselves
producing the flashes seen by astronauts.

Note that the conventional cosmic rays detected in our atmosphere
are matter cosmic rays, that is, high energy particles, such as protons
and electrons, originating from a matter supernova or other matter as-
trophysical event.
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In any case, it is evident that matter cosmic rays with sufficient energy
can indeed penetrate deep into our atmosphere, while antimatter cosmic
rays will be stopped by the upper layers of our atmosphere irrespective
of their energy.

In addition, there exists evidence that our Earth has been hit by anti-
matter meteorites that, as such, can only originate from an astrophysical
body made up of antimatter.

The best case is the very large devastation recorded in 1908 in Tun-
guska, Siberia, in which over one million acres of forest were completely
flattened in a radial direction originating from a common center without
any crater whatever, not even at the center.

The lack of a crater combined with the dimension of the devastation,
exclude the origination from the explosion of a matter asteroid, firstly,
because in this case debris would have been detected by the various
expeditions in the area and, secondly, because there is no credible possi-
bility that the mere explosion of a matter asteroid could have caused a
devastation over such a large area requiring energies computed at about
100 times the atomic bomb exploded over Hiroshima, Japan.

The only plausible interpretation of the Tunguska explosion is that
it was due to an antimatter asteroid that eventually annihilated after
contact deep into our matter atmosphere.

The important point is that the numerical understanding of the Tun-
guska explosion requires an antimatter mass of the order of a ton, namely,
an antimatter asteroid that, as such, can only originate from the super-
nova explosion of an antimatter star.

Consequently, the evidence on the existence of even one antimatter
asteroid confirms the existence in the universe of antimatter stars. Since
it is highly improbable that antimatter stars can exist within a mat-
ter galaxy, antimatter asteroids constitute significant evidence on the
existence in the universe of antimatter galaxies.

But again, the expansion of the universe as well as the increase of
the expansion itself are the strongest evidence for an essentially equal
distribution of matter and antimatter galaxies in the universe, as well
as for the existence of antigravity between matter and antimatter.

In any case, there exist no alternative hypothesis at all known to this
author, let alone a credible hypothesis, that could explain quantitatively
both the expansion of the universe and the increase of the expansion
itself.

In view of the above occurrences, as well as to avoid discontinuities at
creation, Santilli [44] proposed the new Iso-Self-Dual Cosmology, namely,
a cosmology in which the universe has an exactly equal amount of matter
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and antimatter, much along the isoselfdual re-interpretation of Dirac’s
equation of Section 2.3.6.

Needless to say, such a conception of the universe dates back to the
very birth of cosmology, although it was abandoned due to various rea-
sons, including the lack of a consistent classical theory of antimatter,
inconsistencies for negative energies, and other problems.

The above conception of the universe was then replaced with the “big
bang” conjecture implying a huge discontinuity at creation, in which
a possible antimatter component in the universe is essentially left un-
treated.

All the above problems are resolved by the isodual theory of antimat-
ter, and quantitative astrophysical studies on antimatter galaxies and
quasars can now be initiated at the purely classical level.

Moreover, the prediction that the isodual light emitted by antimatter
experiences a repulsion in the gravitational field of matter [38], permits
the initiation of actual measurements on the novel antimatter astro-
physics.

Noticeably, there already exist reports that certain astrophysical
events can only be explained via the repulsion experiences by light emit-
ted by certain galaxies or quasars, although such reports could not be
subjected to due scientific process since the mere existence of such a re-
pulsion would invalidate Einstein’s gravitation, as studied in Section 1.4.

Even though the assumption of an equal distribution of matter and
antimatter in the universe dates back to the discovery of antimatter
itself in the early 1930s, the Iso-Self-Dual Cosmology is structurally new
because it is the first cosmology in scientific records based on a symmetry,
let alone an isoselfdual symmetry, that of Dirac’s equation subjected to
isotopies, Eq. (5.1.43), i.e.,

ŜTot = (P̂(3.1) ×̂ Ĝ) × (P̂(3.1)d ×̂d
Ĝd)

= [ŜL(2, Ĉ)×̂T̂ (3.1)×̂Î(1)] × [ŜL
d
(2, Ĉd)×̂d

T̂ d(3.1)×̂dÎd(1)], (5.2.1)

In fact, virtually all pre-existing cosmologies are based on Einstein’s
gravitation, thus eliminating a universal symmetry ab initio.

Other novelties of the Iso-Self-Dual Cosmology are given by the impli-
cations, that are impossible without the isotopies and isodualities, such
as:

1) The direct interpretation of the expansion of the universe, as well
as the increase of the expansion itself, since antigravity is permitted by
the isodualities but not in general by other theories;
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2) The prediction that the universe has absolutely null total charac-
teristics, that is, an absolutely null total time, null total mass, null total
energy, null total entropy, etc., as inherent in all isoselfdual states8;

3) The creation of the universe without any discontinuity at all, but
via the joint creation of equal amounts of matter and antimatter, since
all total characteristics of the universe would remain the same before
and after creation.

We also mention that the isoselfdual cosmology was proposed by San-
tilli [44] to initiate mathematical and theoretical studies on the creation
of the universe, studies that are evidently prohibited by theories with
huge discontinuities at creation.

After all, we should not forget that the Bible states the creation first
of light and then of the universe, while it is now known that photons
can create a pair of a particle and its antiparticle.

Also, there is a mounting evidence that space (the aether or the uni-
versal substratum) is composed of a superposition of positive and neg-
ative energies, thus having all pre-requisites needed for the creation of
matter and antimatter galaxies.

As one can see, a very simple property of the new number theory,
the invariance under isoduality as it is the case for the imaginary unit
(Section 2.1.1),

i ≡ id = −i† = −ī, (5.2.2)

acquires a fundamental physical character for a deeper understanding of
Dirac’s gamma matrices (Section 2.3.6),

γµ ≡ γd
µ = −γ†

µ, (5.2.3)

and then another fundamental character for the entire universe.
To understand the power of isodualities despite their simplicity, one

should meditate a moment on the fact that the assumed main char-
acteristics of the universe as having an equal amount of matter and
antimatter, can be reduced to a primitive abstract axiom as simple as
that of the new invariance (5.2.2).

Needless to say, the condition of exactly equal amounts of matter and
antimatter in the universe is a limit case, since in reality there may
exist deviations, with consequential breaking of the isoselfdual symmetry
(5.2.1). This aspect cannot be meaningfully discussed at this time due to
the abyssal lack of knowledge we now have on the antimatter component
in our universe.

It should be finally indicated that, in view of the topological features
assumed for the basic isounit

Î = Î† > 0, (5.2.4)



GRAND-UNIFICATION AND COSMOLOGY 313

the Iso-Self-Dual Cosmology outlined above can only represent a closed
and reversible universe, thus requiring suitable broadening for more re-
alistic theories.

Recall that, from its Greek meaning, “cosmology” denotes the entire
universe. Consequently, no theory formulated until now, including the
Iso-Self-Dual Theory, can be called, strictly speaking, a “cosmology”
since the universe is far from being entirely composed of closed and
reversible constituents.

To begin, there is first the need to represent irreversibility, since the
behavior in time of all stars, galaxies and quasars in the universe is
indeed irreversible.

This first need can be fulfilled with the Iso-Self-Dual Cosmology real-
ized via isounits that are positive-definite, but explicitly time dependent,

Î(t, . . .) = Î†(t, . . .) �= Î(−t, . . .). (5.3.5)

which feature assures irreversibility, although the universe remains closed
due to the conservation of the total energy of matter and that of anti-
matter.

The latter model has evident limitations, e.g., in view of the possi-
ble continuous creation of matter and antimatter advocated by various
researchers as an alternative to the “big bang”.

The latter condition, when joint with the necessary representation of
irreversibility, requires the broader Geno-Self-Dual Cosmology, namely,
a cosmology based on the Lie-admissible lifting of symmetry (5.2.1), via
the further generalization of generalized units (5.3.4) and (5.2.5) into
four genounits, one per each of the four possible directions of time

Î>, −Î>, (Î>)d = −<Î , −(Î>)d =< Î , (5.2.6)

whose explicit construction is left to the interested reader for brevity
(see Section 3.6).

Nevertheless, the latter genotopic lifting itself cannot be considered,
strictly speaking, a “cosmology” because a basic component of the uni-
verse is life, for which genotopic theories are insufficient, as indicated in
Section 3.7, due to their single-valuedness.

He latter need inevitably requires the formulation of cosmologies via
the most general possible methods studied in this monograph, the multi-
valued hyperstructure of Section 3.6.12, resulting in the Hyper-Self-Dual
Cosmology, namely, a cosmology based on the hyperlifting of symmetry
(5.2.1) characterized by the ordered multivalued hyperunits

Î> = {Î>
1 , Î>

2 , Î>
3 , . . .} − Î> = {−Î>

1 ,−Î>
2 ,−Î>

3 , . . .}, (5.2.7a)
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(Î>)d = {−<Î1,−<Î2,−<Î3, . . .} − (Î>)d = {<Î1,
< Î2,

< Î3, . . .}.
(5.2.6)

However, at this point we should remember the limitations of our mind
and admit that the foundations of the Hyper-Self-Dual Cosmology, such
as the multi-valued hypertime encompassing all four directions of time,
is simply beyond our human comprehension.

After all, we have to admit that a final scientific understanding of life
will likely require thousands of years of studies.

5.3 CONCLUDING REMARKS
The analysis conducted in this monograph establishes that the isodual

theory of antimatter does indeed resolve the scientific imbalance of the
20-th century caused by the treatment of matter at all levels of study,
and the treatment of antimatter at the sole level of second quantization.

In fact, the isodual theory of antimatter achieves an absolute democ-
racy of treatment of both matter and antimatter at all levels, from New-
ton to second quantization.

In particular, the analysis presented in this monograph establishes
that the isodual theory of antimatter is verified by all known experi-
mental data on antimatter, since the isodual theory trivially represents
all available classical experimental data (Section 2.2.3), while resulting
in being equivalent to charge conjugation at the operator level (Section
2.3.7), as a result of which the entire currently available experimental
knowledge on antiparticles is verified by the isodual theory.

Despite its simplicity, the isodual theory of antimatter has deep impli-
cations for all quantitative sciences, including classical mechanics, parti-
cle physics, superconductivity, chemistry, biology, astrophysics and cos-
mology.

The most salient consequence of the isodual theory is the prediction of
antigravity experienced by elementary antiparticles in the field of matter
and vice-versa.

This prediction is a direct consequence of the very existence of a con-
sistent classical formulation of antimatter, the electromagnetic origin of
the gravitational mass with consequential phenomenological equivalence
of electromagnetism and gravitation for both attraction and repulsion,
the forgotten Freud identity of the Riemannian geometry, and other as-
pects.

In reality, the prediction of antigravity for truly elementary antipar-
ticles in the field of matter is rooted in so many diversified aspects that
the possible experimental disproof of antigravity would likely require the
reconstruction of theoretical physics from its foundations.
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To minimize controversies, it should be stressed that the prediction
of antigravity has been solely and specifically presented for elementary
antiparticles, that is, for the positron, with the careful exclusion for first
tests of any unstable or composite particles whose constituents are not
seriously established as being all antiparticles.

As an illustration, we have discouraged the use in possible experi-
ments on the gravity of the positronium as claim for final knowledge
on the gravity of antimatter, because the positronium is predicted by
the isodual theory to be attracted in both fields of matter and antimat-
ter. Similarly we have discouraged the use of leptons because they may
eventually result to be composite of particles and antiparticles.

Finally, we have strongly discouraged to assume experimental data on
the gravity of antiprotons as final knowledge on the gravity of antiparti-
cles, because antiprotons are today fabricated in high energy laboratories
from matter components and are believed to be bound states of quarks
for which no gravity at all can be consistently defined [38].

It then follows that, while all experimental data are indeed useful
and should be supported, including experimental data on the gravity
of antiprotons, their use for general claims on the gravity of antimatter
could be deceptive.

Moreover, none of the numerous arguments against antigravity could
even be properly formulated for the isodual theory, let alone have any
value. As a result, the prediction of antigravity for elementary antipar-
ticles in the field of matter is fundamentally unchallenged at this writing
on theoretical grounds.

A test of the gravity of positrons in horizontal flight in a vacuum
tube, that is resolutory via gravitational deflections visible to the naked
eye, has been proposed by Santilli [45] and proved by the experimentalist
Mills [46] to be feasible with current technology and be indeed resolutory
(Section 4.2).

A comparative study of other tests has revealed that they are too
delicate and require too sensitive measurements to be as resolutory as
proposal [45] with current technologies.

It is hoped that the experimental community finally comes to its
senses, and conducts fundamental test [45,46], rather than continuing
to conduct tests of transparently less relevance at bigger public costs,
because in the absence of a final experimental resolution of the problem
of antigravity, the entire theoretical physics remains essentially in a state
of suspended animation.

In turn, the possible experimental verification of antigravity (as above
identified) would have implications so advanced as to be at the edge of
our imagination.
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One of these implications has been presented in Section 4.3 with the
Causal Time Machine, the novel, non-Newtonian isolocomotion (propul-
sion to unlimited speeds without any action and reaction as requested by
all currently available propulsions), and other far reaching possibilities.

The experimental resolution of the existence of antigravity for truly
elementary antiparticles is also crucial to fulfil the original scope for
which the isodual theory was built, namely, to conduct quantitative
studies as to whether far-away galaxies and quasars are made up of
matter or antimatter.

This main scope has been achieved via the isodual photon, namely, the
discovery that, according to the isodual theory, photons emitted by anti-
matter appear to have a number of physical differenecs with the photons
emitted by matter. In particular, the simplest possible isodual electro-
magnetic waves have negative energy, thus experiencing antigravity in
the field of matter.

The above prediction requires the experimental resolution as to
whether light emitted by antimatter is attracted or repelled by the grav-
itational field of matter.

Needless to say, the current availability at CERN of the antihydro-
gen atom is an ideal source for such a study, with the understanding
that gravitational deflections of light at short distances (as attainable
in a laboratory on Earth) are extremely small, thus implying extremely
sensitive measurements.

More promising is the re-inspection of available astrophysical data
privately suggested to the author because said data could already include
evidence of light from far-away galaxies and quasars that is repelled by
astrophysical objects closer to us.

Such a repulsion could not be publicly disclosed at this time because
of known opposition by organized academic interests on Einsteinian doc-
trines since, as well known, Einstein’s gravitation prohibits the existence
of antigravity (Section 4.1).

It is hoped that such organized academic interests come to their senses
too, if nothing else, to avoid an easily predictable serious condemnation
by posterity, in view of the well known catastrophic inconsistencies of
Einstein gravitation outlined in Section 1.4.

After all, we should not forget that antiparticles were first experimen-
tally detected in cosmic rays, thus confirming their possible origin from
supernova explosions of stars made up of antimatter.

Also, there are reports of huge explosions in Earth’s atmosphere before
the advent of atomic bombs without any crater on the ground, such as
the 1908 Tunguska explosion in Siberia, which explosions can be best
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interpreted as antimatter asteroids from far away antimatter galaxies or
quasars penetrating in our atmosphere.

Therefore, it should not be surprising if light experiencing gravita-
tional repulsion from matter is discovered first in astrophysics.

Additional tests on the possible gravitational repulsion of light emit-
ted by antimatter can be done via the direct measurement of the deflec-
tion of light from far away galaxies and quasars when passing near one
of the planets of our Solar system.

Under the assumption of using light originating from far away galax-
ies and quasars (to render plausible their possible antimatter nature),
and for the use of a sufficient number of galaxies and quasars (to have a
sufficient probability that at least one of them is made up of antimatter),
these astrophysical measurements are potentially historical, and will sig-
nal the birth of the new science proposed in thnis monograph under the
name of antimatter astrophysics.

The reader should be aware that, while the prediction of antigravity
for truly elementary antiparticles is an absolute necessity for the valid-
ity of the isodual theory, the gravitational behavior of light emitted by
antimatter is not that simple.

Recall from Section 4.2 that the prediction of antigravity for light
emitted by antimatter is based on the negative value of its energy for
the selected solution of the electromagnetic wave.

However, the photons is invariant under charge conjugation and travel
at the maximal causal speed in vacuum, c. Therefore, the photon could
well result to be a superposition of positive and negative energies, per-
haps as a condition to travel at the speed c, in which case the photon
would be an isoselfdual state, thus experiencing attraction in both fields
of matter and antimatter.

As a consequence, the possible disproof of antigravity for light emitted
by antimatter stars in the field of matter would not invalidate the isodual
theory of antimatter, but merely tell us that our conception of light
remains excessively simplistic to this day, since it could well be in reality
a composite state of photons and their isoduals.

The issue is further complicated by the fact indicated during the
analysis of this monograph that antigravity is predicted between masses
with opposite time evolutions, as it is the case for a positron in the field
of Earth. However, the photon travels at the speed of light at which
speed time has no meaningful evolution.

As a result, it is not entirely clear to this author whether the sole value
of negative energy for the isodual light is sufficient for the existence of a
gravitational repulsion, and the issue is suggested for study by interested
colleagues.
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To express a personal view, it would be distressing if light solely ex-
perience gravitational attraction irrespective of whether in the field of
matter or antimatter and whether originating from matter or antimat-
ter, because this would imply the impossibility for experimental studies
as to whether far-away galaxies and quasars are made up of matter or
antimatter, since all other aspects, including thermodynamics, are not
detectable at large distances, thus implying the perennial inability for
mankind to reach any in depth knowledge of the universe.

The author does not believe so. Advances in human knowledge have
no limit, and often go beyond the most vivid imagination, as established
by scientific realities that resulted in being beyond the science fiction of
preceding generations.

In closing, the author hopes that the studies presented in this mono-
graph have stimulated young minds of any age and confirmed that sci-
ence will never admit final theories. No matter how precious, beloved
and valid a given theory may appear to be at a given time, its surpassing
with broader theories more adequate for new scientific knowledge is only
a matter of time.

Notes

1 The indication of grand unifications inclusive of antimatter would be
greatly appreciated.

2 It is well known by expert, but rarely spoken, that Maxwell’s equa-
tions have no real physical value for the treatment of electromag-
netism within physical media for countless reasons, some of which
have been treated in Chapter 1. As an illustration, only to locally
varying character of electromagnetic waves within physical media re-
quires a radical revision of electromagnetism in the arena considered
as a condition to pass from academic politics to real science.

3 Papers [16] on the lifting of the rotational symmetry were evidently
written before paper [19] on the lifting of the Lorentz symmetry,
but appeared in print only two years following the latter due to
rather unreasonable editorial processing by various journals reported
in Ref. [16], which processing perhaps illustrates the conduct of some
(but not all) editors when facing true scientific novelty.

4 Ref. [24], which is the most important reference of this entire mono-
graph (because admitting all topics as particular cases), was rejected
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for years by all journals of Western Physical Societies because the
paper included an industrial application currently receiving large in-
vestments by the industry – although not by academia, – consisting
in the achievement of a numerical, exact and invariant representa-
tion of all characteristics of the neutron as a bound state of a proton
and an electron according to Rutherford. In fact, the resolution of
the historical difficulties of Rutherford’s conception of the neutron
permits the utilization of the large clean energy contained in the
neutron’s structure, via its stimulated decay caused by a hard pho-
ton with a resonating frequency (numerically predicted by hadronic
mechanics) that expels Rutherford’s electron (the isoelectron with an
isorenormalized mass generated by the nonlocal and non-Lagrangian
interactions in the hyperdense medium inside the proton, see Section
3.7.3 and references quoted therein),

γreson. + n → p+ + e− + ν̄.

Despite the undeniable mathematical consistency clear plausibility
and evident large societal implications due to the need for new clean
energies, Ref. [24] was rejected by all Western Physical Society with-
out any credible scientific motivation because not aligned with orga-
nized interests in quantum mechanics and special relativity. Paper
[24] was finally published in China in 1996. As a gesture of appre-
ciation for this scientific democracy, the author organized in Beijing
the 1997 International Workshop on Hadronic Mechanics (see the
Proceedings [104,105,106] listed in the Bibliography of Chapter 3).

5 Note that the use of the words “quantum gravity” for operator for-
mulation of gravitation, whether conventional or characterized by the
isotopies, would be merely political. This is due to the fact that, on
serious scientific grounds, the term “quantum” can only be referred to
physical conditions admitting a quantized emission and absorption of
energy as occurring in the structure of the hydrogen atom. By com-
parison, no such quantized orbits are possible for operator theories
of gravity, thus rendering nonscientific its characterization as “quan-
tum gravity”. Ironically, the editor of a distinguished physics journal
expressed interest in publishing a paper on “operator isogravity” un-
der the condition of being called “quantum gravity”, resulting in the
necessary withdrawal of the paper by the author so as not to reduce
fundamental physical inquiries to political compromises.

6 The use of conventional mathematics for isotheories would be the
same as elaborating Balmer’s quantum spectral lines in the hydro-
gen atoms with isofunctional analysis, resulting in evident major
inconsistencies.
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7 Evidently only stable antiparticles can travel intergalactic distances
without decaying.

8 We are here referring to intrinsic characteristic of isoselfdual states,
and not to the same characteristics when inspected from a matter
or an antimatter observer that would be evidently impossible for the
universe.
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Poincaré-Santilli isosymmetry, 294, 305

Poincarè-Santilli isodual transformations,
108

Poisson-Santilli isobrackets, 167
positron, 105, 128, 266
positronium, 131, 269
proton, 129
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146. V. Čápek and D.P. Sheehan: Challenges to the Second Law of Thermodynamics. Theory and

Experiment. 2005 ISBN 1-4020-3015-0
147. B.G. Sidharth: The Universe of Fluctuations. The Architecture of Spacetime and the Universe.

2005 ISBN 1-4020-3785-6
148. R.W. Carroll: Fluctuations, Information, Gravity and the Quantum Potential. 2005

ISBN 1-4020-4003-2
149.

150.

151. R.M. Santilli: Isodual Theory of Antimatter with applications to Antigravity, Grand Unification
and Cosmology. 2006 ISBN 1-4020-4517-4

springer.com

B.G. Sidharth: A Century of Ideas.  Personal Perspectives from a Selection of the Greatest 
Minds of the Twentieth Century. Planned 2006. ISBN 1-4020-4359-7
S.H. Dong: Factorization Method in Quantum Mechanics. Planned 2006.

ISBN to be announced


	cover-image-large
	front-matter
	Chapter (1)
	Chapter (2)
	Chapter (3)
	Chapter (4)
	Chapter (5)
	back-matter

